
Introduction to Programming
with Python

Dr. Anatol Wegner
Chair of Machine Learning for Complex Networks

Center for Artificial Intelligence and Data Science (CAIDAS)
Julius-Maximilians-Universität Würzburg

Würzburg, Germany

anatol.wegner@uni-wuerzburg.de

Lecture 04
Interacting with modules and files

November 22, 2024



Recap
▶ We introduced functions in Python
▶ We introduced classes in Python and

learned how to define them
▶ and class attributes and methods

Today

▶ Modules
▶ Interacting with files

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 1



Recap
▶ We introduced functions in Python
▶ We introduced classes in Python and

learned how to define them
▶ and class attributes and methods

Today

▶ Modules
▶ Interacting with files

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 1



What Are Modules?

Definition:
▶ Modules are reusable pieces of Python code.
▶ They can be built-in or user-defined.
▶ Allow for organized and efficient code reuse.

Examples:
▶ Built-in: math, os, random.
▶ User-defined: A Python file you create with functions and classes.

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 2



Using Built-in Modules

How to Import a Module:
▶ import module_name
▶ from module_name import specific_item
▶ import module_name as alias

Examples:

import math
print(math.sqrt(16))

from random import randint
print(randint(1, 10))

import os as operating_system
print(operating_system.getcwd())

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 3



Creating a User-Defined Module

Steps to Create a Module:

1. Create a Python file (e.g., mymodule.py).

2. Define functions, variables, or classes in it.

3. Import the file into your script.

Example: mymodule.py

def greet(name):
return f"Hello, {name}!"

main.py

import mymodule

print(mymodule.greet("Alice"))

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 4



Libraries and APIs
▶ software libraries contain code that can be

reused by other programs

▶ most languages provide libraries that
facilitate common tasks
▶ File access,OS functions
▶ Network communication
▶ Complex mathematical operations
▶ Machine learning
▶ ...

▶ application programming interface (API)
enables programs to use provided
functions

▶ example: NumPy is a Python library for
large, multi-dimensional arrays and
matrices, along with a large collection of
high-level mathematical functions.

Operating System
(Windows, Linux, Mac OS X, ...)

Hardware
(CPU, Memory, Disks, ...)

Application

CPU Memory

Software 
Library

Software 
Library

Software 
Library

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 5



Libraries and APIs
▶ software libraries contain code that can be

reused by other programs

▶ most languages provide libraries that
facilitate common tasks
▶ File access,OS functions
▶ Network communication
▶ Complex mathematical operations
▶ Machine learning
▶ ...

▶ application programming interface (API)
enables programs to use provided
functions

▶ example: NumPy is a Python library for
large, multi-dimensional arrays and
matrices, along with a large collection of
high-level mathematical functions.

some Python libraries

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 5



Libraries and APIs
▶ software libraries contain code that can be

reused by other programs

▶ most languages provide libraries that
facilitate common tasks
▶ File access,OS functions
▶ Network communication
▶ Complex mathematical operations
▶ Machine learning
▶ ...

▶ application programming interface (API)
enables programs to use provided
functions

▶ example: NumPy is a Python library for
large, multi-dimensional arrays and
matrices, along with a large collection of
high-level mathematical functions.

some Python libraries

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 5



Installing Third-Party Libraries
What Are Third-Party Libraries?
▶ Libraries are collections of modules designed for specific tasks.
▶ Examples:

▶ numpy for numerical computations.
▶ matplotlib for data visualization.
▶ requests for web requests.

Installing Libraries with conda:
▶ Command: conda install library_name.
▶ Example: conda install numpy.
Installing Libraries from PyPI:
▶ Use pip within an active conda environment.
▶ Command: pip install library_name.
▶ Example: pip install requests.

Viewing Installed Libraries:

conda list
Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 6



Creating and Managing Environments
Why Use Environments?
▶ Isolate dependencies for different projects.
▶ Avoid version conflicts between modules.

Basic conda Environment Commands:
▶ To create a new environment: conda create –name myenv
▶ Activate the environment: conda activate myenv
▶ Deactivate the environment: conda deactivate
▶ Delete an environment: conda remove –name myenv –all

Best Practices:

▶ Use separate environments for each project.

Practice Session 1

▶ Modules in Python

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_
infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Lecture_04.ipynb

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 7

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Lecture_04.ipynb
https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Lecture_04.ipynb


Creating and Managing Environments
Why Use Environments?
▶ Isolate dependencies for different projects.
▶ Avoid version conflicts between modules.

Basic conda Environment Commands:
▶ To create a new environment: conda create –name myenv
▶ Activate the environment: conda activate myenv
▶ Deactivate the environment: conda deactivate
▶ Delete an environment: conda remove –name myenv –all

Best Practices:

▶ Use separate environments for each project.

Practice Session 1

▶ Modules in Python

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_
infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Lecture_04.ipynb

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 7

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Lecture_04.ipynb
https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Lecture_04.ipynb


Creating and Managing Environments
Why Use Environments?
▶ Isolate dependencies for different projects.
▶ Avoid version conflicts between modules.

Basic conda Environment Commands:
▶ To create a new environment: conda create –name myenv
▶ Activate the environment: conda activate myenv
▶ Deactivate the environment: conda deactivate
▶ Delete an environment: conda remove –name myenv –all

Best Practices:

▶ Use separate environments for each project.

Practice Session 1

▶ Modules in Python

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_
infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Lecture_04.ipynb

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 7

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Lecture_04.ipynb
https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Lecture_04.ipynb


File Handling Basics

Key Concepts:
▶ Files are opened with the open() function.
▶ Modes:

▶ ’r’: Read mode (default).
▶ ’w’: Write mode (overwrites existing content).
▶ ’a’: Append mode.
▶ ’b’: Binary mode.

▶ Use the with statement to handle files safely.

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 8



Reading Text Files

Basic File Reading Methods:
▶ file.read(): Reads the entire file.
▶ file.readline(): Reads one line at a time.
▶ file.readlines(): Reads all lines into a list.

Example:

with open(’example.txt’, ’r’) as file:
content = file.read()
print(content)

with open(’example.txt’, ’r’) as file:
for line in file:

print(line.strip())

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 9



Writing to Text Files

Writing Methods:
▶ file.write(string): Writes a string to the file.
▶ file.writelines(list): Writes a list of strings to the file.

Example: Writing Data to a File

with open(’output.txt’, ’w’) as file:
file.write(’Hello, World!\n’)

data = [’Line 1\n’, ’Line 2\n’, ’Line 3\n’]
with open(’output.txt’, ’a’) as file:

file.writelines(data)

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 10



Working with File Paths

Using the os Module:
▶ Check if a file exists: os.path.exists(filepath).
▶ Get the current directory: os.getcwd().
▶ Create directories: os.makedirs().

Example:

import os

if os.path.exists(’example.txt’):
print(’File exists!’)

print(f’Current directory: {os.getcwd()}’)

os.makedirs(’new_folder’, exist_ok=True)

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 11



In summary
▶ we introduced modules in Python
▶ we learned how to import modules
▶ In-built modules (math, random, os ...)
▶ Creating our own modules
▶ Installing 3rd party libraries
▶ Creating Python environments
▶ Opening files in ’r’, ’w’, ’a’ and ’b’
▶ Reading files and lines
▶ Writing and appending to files

Exercise Session

▶ Modules and File handling

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_
infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Exercise_L04.ipynb

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 12

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Exercise_L04.ipynb
https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Exercise_L04.ipynb


In summary
▶ we introduced modules in Python
▶ we learned how to import modules
▶ In-built modules (math, random, os ...)
▶ Creating our own modules
▶ Installing 3rd party libraries
▶ Creating Python environments
▶ Opening files in ’r’, ’w’, ’a’ and ’b’
▶ Reading files and lines
▶ Writing and appending to files

Practice Session 2

▶ File handling

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_
infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Lecture_04.ipynb

Exercise Session

▶ Modules and File handling

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_
infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Exercise_L04.ipynb

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 12

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Lecture_04.ipynb
https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Lecture_04.ipynb
https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Exercise_L04.ipynb
https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Exercise_L04.ipynb


In summary
▶ we introduced modules in Python
▶ we learned how to import modules
▶ In-built modules (math, random, os ...)
▶ Creating our own modules
▶ Installing 3rd party libraries
▶ Creating Python environments
▶ Opening files in ’r’, ’w’, ’a’ and ’b’
▶ Reading files and lines
▶ Writing and appending to files

Exercise Session

▶ Modules and File handling

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_
infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Exercise_L04.ipynb

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 12

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Exercise_L04.ipynb
https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks/-/blob/main/PythonIntroNotebooks/Exercise_L04.ipynb


Self-study questions
1. What is a Python module and how is it used in Python?
2. How do you import a module in Python? Give examples of different import

methods.
3. Name some commonly used built-in Python modules and explain their

functionalities (e.g., ‘os‘, ‘math‘, ‘sys‘).
4. How do you access the functions and classes inside a module once it is

imported?
5. What is the ‘os‘ module and how can it be used for file and directory

management?
6. What is file handling in Python? How do you read and write files using

Python?
7. What are the different file modes in Python (‘’r’‘, ‘’w’‘, ‘’a’‘, ‘’b’‘, etc.)?

Describe each one.
8. How do you append data to an existing file without overwriting its

contents?
9. What is a Python virtual environment, and why is it useful?

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 13



Literature

reading list

▶ F Kaefer, P Kaefer: Introduction to Python
Programming for Business and Social Science
Applications, SAGE Publications, 2020

▶ Official Python documentation
https://docs.python.org/

▶ Python tutorial:
https://docs.python.org/3/tutorial/

Anatol Wegner Lecture 04: Interacting with modules and files November 22, 2024 14


	Modules
	File Handling
	Self-study questions and References

