

Theory of Machine Learning

Exercise sheet 4 — Session 4

Exercise I (A bit of coding) \square . The goal of this exercise is to reproduce the figure of slide 79. Consider vector-valued inputs and real-valued outputs ($\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \mathbb{R}$) with $X := (X_1, \dots, X_n)^\top \in \mathbb{R}^{n \times d}$ the input vector and $Y := (Y_1, \dots, Y_n)^\top \in \mathbb{R}^n$ the response vector. Let $\phi(x) = (x_1, \dots, x_d)^\top$ and $\Phi \in \mathbb{R}^{n \times d}$ the matrix of inputs with row i defined as $\Phi_{i,:} := \phi(X_i)^\top$. We work in the fixed design setting where for a fixed input $X \in \mathbb{R}^{n \times d}$, the output is $Y = \Phi\theta^* + \varepsilon$ (ε i.i.d. $\mathcal{N}(0, \sigma^2)$) and $\theta^* \in \mathbb{R}^d$.

1. Generate the data for fixed $d = 2$, $\theta^* = (1, \dots, 1)^\top \in \mathbb{R}^d$ and noise $\sigma = 1$:
 - (a) Sample the input data $X_{i,j} \sim \mathcal{U}([-1, 1])$, where $X \in \mathbb{R}^{n \times d}$. (Hint: use `numpy.random.uniform()`)
 - (b) Compute the design matrix $\Phi \in \mathbb{R}^{n \times d}$.
 - (c) Compute the output $Y = \Phi\theta^* + \varepsilon$ on the fixed input data X . (Hint: use `numpy.random.normal()`)
2. Estimation of the expected excess risk $\mathbb{E} [\mathcal{R}(\hat{\theta})] - \mathcal{R}^* := \mathbb{E}_Y \left[\left\| \hat{\theta} - \theta^* \right\|_{\hat{\Sigma}}^2 \right]$, where $\left\| \hat{\theta} - \theta^* \right\|_{\hat{\Sigma}}^2 := (\hat{\theta} - \theta^*)^\top \hat{\Sigma} (\hat{\theta} - \theta^*)$ and $\hat{\Sigma} := \frac{1}{n} \Phi^\top \Phi$:
 - (a) For the fixed input X from Question 1.a, generate $N = 100$ samples of Y as described in Question 1.c.
 - (b) Compute the OLS estimators $\hat{\theta}_i := (\Phi^\top \Phi)^{-1} \Phi^\top Y$ for each sampled Y_i ($i \in \llbracket N \rrbracket$).
 - (c) Compute the estimate of $\mathbb{E} [\mathcal{R}(\hat{\theta})] - \mathcal{R}^*$ as $\frac{1}{N} \sum_{i=1}^N \left\| \hat{\theta}_i - \theta^* \right\|_{\hat{\Sigma}}^2$.
3. By reusing the previous code that computes the (estimated) excess risk for a fixed n , plot the (estimated) excess risk as a function of $n \in \llbracket 10, 100 \rrbracket$.
4. (Bonus) For each n , repeat the experiment several times and plot error bars.

Exercise II (Mahalanobis distance) \checkmark . Let $A \in \mathbb{R}^{d \times d}$ be a positive definite matrix and set $\|u\|_A^2 := u^\top A u$ for all $u \in \mathbb{R}^d$. As in the lecture, define $d_A(x, y) := \|x - y\|_A$. Let us prove that d_A is indeed a distance.

1. Write $u^\top A u$ when $d = 2$ as a function of the coefficients of u and A .
2. Prove that d_A is symmetric;
3. Prove that $d_A(x, y)$ is always greater than 0;
4. Prove that $d_A(x, y) = 0$ only if $x = y$;
5. Prove that d_A satisfies the triangle inequality

$$\forall x, y, z \in \mathbb{R}^d, \quad d_A(x, y) \leq d_A(x, z) + d_A(z, y).$$

Hint: prove that $(x^\top A y)^2 \leq x^\top A x \cdot y^\top A y$.

6. Is d_A a distance when A is only assumed to be positive *semi*-definite?

Exercise III (Expected empirical risk) \checkmark . Assume that $Y = \Phi\theta^* + \varepsilon$ where ε is centered and the ε_i s are independent, and have common variance σ^2 (assumptions I and II in the lecture).

1. Show that

$$\widehat{R}(\hat{\theta}) = \frac{1}{n} \|\Pi \varepsilon\|^2,$$

where $\Pi := \mathbf{I} - \Phi(\Phi^\top \Phi)^{-1} \Phi^\top \in \mathbb{R}^{n \times n}$.

2. Show that

$$\mathbb{E} [\widehat{R}(\hat{\theta})] = \frac{n-d}{n} \sigma^2.$$

Hint: $\Pi := \mathbf{I} - \Phi(\Phi^\top \Phi)^{-1} \Phi^\top \in \mathbb{R}^{n \times n}$ is an orthogonal projection matrix.

Exercise IV (On the Moore–Penrose inverse) . The goal of this exercise is to explore fundamental properties of the Moore–Penrose inverse, as defined via the Singular Value Decomposition (SVD) in the lecture slides.

1. Given $A := \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$
 - (a) Compute the Moore–Penrose inverse of A .
 - (b) As seen in the lecture slide 68, compute $A^\dagger A$ and $\mathbf{I}_2 - A^\dagger A$.
 - (c) What are the properties of the previous matrices?
2. Show the following equalities for $M \in \mathbb{R}^{m \times n}$:
 - (a) $MM^\dagger M = M$.
 - (b) $M^\dagger MM^\dagger = M^\dagger$.