
Theory of Machine Learning

Exercise sheet 4 — Session 4

Exercise I (A bit of coding) §. The goal of this exercise is to reproduce the figure of
slide 79. Consider vector-valued inputs and real-valued outputs (X = Rd and Y = R) with
X := (X1, . . . , Xn)

⊤ ∈ Rn×d the input vector and Y := (Y1, . . . , Yn)
⊤ ∈ Rn the response vector.

Let ϕ(x) = (x1, . . . , xd)
⊤ and Φ ∈ Rn×d the matrix of inputs with row i defined as Φi,: := ϕ(Xi)

⊤.
We work in the fixed design setting where for a fixed input X ∈ Rn×d, the output is Y = Φθ⋆ + ε
(ε i.i.d. N

(
0, σ2

)
) and θ⋆ ∈ Rd.

1. Generate the data for fixed d = 2, θ⋆ = (1, . . . , 1)
⊤ ∈ Rd and noise σ = 1:

(a) Sample the input dataXi,j ∼ U ([−1, 1]), whereX ∈ Rn×d. (Hint: use numpy.random.uniform() )

(b) Compute the design matrix Φ ∈ Rn×d.

(c) Compute the output Y = Φθ⋆+ε on the fixed input dataX. (Hint: use numpy.random.normal() )

2. Estimation of the expected excess risk E
[
R(θ̂)

]
−R⋆ := EY

[∥∥∥θ̂ − θ⋆
∥∥∥2
Σ̂

]
, where

∥∥∥θ̂ − θ⋆
∥∥∥2
Σ̂
:=

(θ̂ − θ⋆)⊤Σ̂(θ̂ − θ⋆) and Σ̂ := 1
nΦ

⊤Φ:

(a) For the fixed input X from Question 1.a, generate N = 100 samples of Y as described
in Question 1.c.

(b) Compute the OLS estimators θ̂i := (Φ⊤Φ)−1Φ⊤Y for each sampled Yi (i ∈ JNK).

(c) Compute the estimate of E
[
R(θ̂)

]
−R⋆ as 1

N

∑N
i=1

∥∥∥θ̂i − θ⋆
∥∥∥2
Σ̂
.

3. By reusing the previous code that computes the (estimated) excess risk for a fixed n, plot
the (estimated) excess risk as a function of n ∈ J10, 100K.

4. (Bonus) For each n, repeat the experiment several times and plot error bars.

Exercise II (Mahalanobis distance) Ò. Let A ∈ Rd×d be a positive definite matrix and set

∥u∥2A := u⊤Au for all u ∈ Rd. As in the lecture, define dA(x, y) := ∥x− y∥A. Let us prove that dA
is indeed a distance.

1. Write u⊤Au when d = 2 as a function of the coefficients of u and A.

2. Prove that dA is symmetric;

3. Prove that dA(x, y) is always greater than 0;

4. Prove that da(x, y) = 0 only if x = y;

5. Prove that dA satisfies the triangle inequality

∀x, y, z ∈ Rd, dA(x, y) ≤ dA(x, z) + dA(z, y) .

Hint: prove that (x⊤Ay)2 ≤ x⊤Ax · y⊤Ay.

6. Is dA a distance when A is only assumed to be positive semi-definite?

Exercise III (Expected empirical risk) Ò. Assume that Y = Φθ⋆ + ε where ε is centered
and the εis are independent, and have common variance σ2 (assumptions I and II in the lecture).

1. Show that

R̂(θ̂) =
1

n
∥Πε∥2 ,

where Π := I−Φ(Φ⊤Φ)−1Φ⊤ ∈ Rn×n.

2. Show that

E
[
R̂(θ̂)

]
=

n− d

n
σ2 .

Hint: Π := I−Φ(Φ⊤Φ)−1Φ⊤ ∈ Rn×n is an orthogonal projection matrix.



Exercise IV (On the Moore–Penrose inverse) Ò. The goal of this exercise is to explore
fundamental properties of the Moore–Penrose inverse, as defined via the Singular Value Decom-
position (SVD) in the lecture slides.

1. Given A :=

(
1 0

1 0

)
(a) Compute the Moore–Penrose inverse of A.

(b) As seen in the lecture slide 68, compute A†A and I2 −A†A.

(c) What are the properties of the previous matrices?

2. Show the following equalities for M ∈ Rm×n:

(a) MM†M = M .

(b) M†MM† = M†.


