
Introduction to Informatics
for Students from all Faculties

Prof. Dr. Ingo Scholtes
Chair of Machine Learning for Complex Networks

Center for Artificial Intelligence and Data Science (CAIDAS)
Julius-Maximilians-Universität Würzburg

Würzburg, Germany
ingo.scholtes@uni-wuerzburg.de

Lecture 05
Algorithmic Thinking

November 19, 2024

Notes:

• Lecture L05: Algorithmic Thinking 19.11.2024

• Educational objective: We introduce algorithms for basic problems like binary search and sorting. We discuss
the runtime of algorithms and cover basic data structures.

– Python Data Structures
– A Simple Algorithm
– Binary Search Algorithm
– Basic Sorting Algorithms

• Exercise Sheet 4 due 26.11.2024

Motivation
▶ we introduced high-level programming languages that

are translated to machine code

▶ we wrote a first “Hello World” program in C and
inspected the machine code generated by the compiler

▶ we distinguished between compiled languages like
C/C++ and interpreted languages like python

▶ we introduced basics of the python syntax

open issues

▶ how to write programs that solve actual problems?
▶ what are algorithms and how we can we implement them in high-level

languages like python?
▶ need to develop algorithmic thinking, which is key to understand how a

computer (scientist) works

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 1

Notes:

Recap: python Syntax
▶ python programs are stored in text files (typically with

extension .py)

▶ one line in text file = one instruction

key python statements

▶ assignment (=) used to assign value to a variable
▶ def used to define a function
▶ import statement used to import functions from modules
▶ if and else used to conditionally execute instructions
▶ for and while used to repeatedly execute instructions in a loop

▶ “blocks” of instructions grouped by indentation level

▶ python is whitespace-sensitive, i.e. placement of
newline, space or tab characters changes semantics

▶ python enforces meaningful formatting of code, making
programs easy to read for humans

import time

def main () :
for i in range (5) :

tex t = " Hello World ! "
p r i n t (tex t)
tex t = 42
p r i n t (tex t)

sleep (5)

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 2

Notes:

• Note that the “grammatical structure” of a (programming) language is called “syntax”, which contains the Greek
words “syn” (together) and “taxis” (ordering/composition). The syntax of a language defined keywords and
determines the ordering of characters that constitutes a valid sentence or (program) in a (programming)
language.

Integrated Development Environment (IDE)
▶ all we need to write python program is text editor and

python interpreter (i.e. executable python.exe)

▶ sufficient for small single-file programs

▶ what about complex software with hundreds of files and
millions of lines in code?

▶ integrated development environments (IDEs) are
specialized tools to support and simplify development
of complex software

▶ IDEs provide advanced functions to edit and format
code, semantically highlight/color keywords, compile
and/or execute program, and find errors

Open Source IDE Visual Studio Code

definition

An Integrated Development Environment (IDE) is a
software that simplifies the programming of
computers. It minimally provides functions to edit
source code files, compile and/or execute programs,
and find errors at compile- and run-time.

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 3

Notes:

Python Data Structures
▶ all programming languages support basic data types

▶ integer numbers, i.e. 42, −55, 0
▶ floating point numbers, i.e. 4.52, 1.567e2, 2.0e − 2
▶ character types, i.e. “c”, “t”
▶ string types, i.e. “Lecture”

▶ python is a dynamically-typed language, i.e. we can
assign any type to a variable

▶ what if we need more complex structures to store data?
▶ list of numbers
▶ all sentences of a book
▶ mapping from numbers to text
▶ queue of jobs to be executed in sequence

▶ python standard library provides complex data types
that can hold list, sequences, dictionaries of values

import time

def main () :
for i in range (5) :

tex t = " Hello World ! "
p r i n t (tex t)
tex t = 42
p r i n t (tex t)

sleep (5)

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 4

Notes:

Python Lists
▶ python lists can hold ordered sequence of

elements of any type

adding / removing eleemnts

▶ append allows to append additional values at end of list
▶ pop can be used to remove and return element at a given

index (or at the end)
▶ remove deletes first occurrence of a value

▶ we can use zero-based integer indexing to
read/write elements at specific position

▶ slicing operator [start:end:step] can be used
to return new list with selected elements

▶ using append and pop(0) we can use list as
queue, where elements are returned in
fist-in-first-out (FIFO) order

create l i s t
l = [2 , 42 , 120 , 18 , 420]

adding/removing elements
l . append (’ hel lo ’)
l . remove (1 2 0)
p r i n t (l . pop ())
p r i n t (l . pop (0))

index −based access
l [1] = 43

elements up to index 2
(excluding 2)
p r i n t (l [: 2])

elements s ta r t i ng from index 1
(inc luding 1)
p r i n t (l [1 :])

i n i t i a l i z e l i s t with 42 zero en t r i e s
l = [0] *4 2

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 5

Notes:

Python Tuples
▶ by appending, assigning or removing elements,

python lists can dynamically change their size and
elements can change during lifetime of list

▶ requires complex implementation that makes some
operations relatively slow

▶ for fixed-size ordered sequences that cannot
change, we can use python tuples

▶ indexing and slicing works the same as for lists

▶ elements cannot change and size of tuple cannot
grow or shrink

▶ we can use + operator to concatenate two tuples,
returning a new tuple

create tuple
t = (2 , 42 , 120 , 189 , 420)

index −based access
p r i n t (t [1])

s l i c i n g
p r i n t (t [: 2])
p r i n t (t [1 :])

NOT VALID
t [1] = 43

returns new tuple with addi t ional
elements
t2 = t + (4 , 5 , 6)
p r i n t (t2)

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 6

Notes:

Python Sets
▶ lists and tuples are ordered sequences

▶ checking whether an element is in a list/tuple requires
to test all elements → naive linear search

▶ for unordered collection of objects without duplicates
we can use python set

▶ useful to eliminate duplicate elements and quickly test
for membership

▶ python sets are unordered and thus do not support
indexing or slicing

create set
s = { 2 , ’ hel lo ’ , 120 , 42 , 189 , 420}
p r i n t (s)

check membership
p r i n t (’ he l lo ’ in s)

add element
s . add (3 2)

remove element
s . remove (’ hel lo ’)

NOT VALID
s [1]
s [: 4]

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 7

Notes:

Python Dictionaries
▶ we often need an associative mapping that maps unique

keys to values
▶ string/number as unique identifier (key)
▶ arbitrary data of record (value)

▶ useful to quickly find data that are stored under a given
key

▶ we can read/write entries using index syntax similar to
lists

▶ but: index does not need to be an integer

▶ reverse lookup (i.e. find key(s) for a given value) not
supported

create d ic t ionary
d = { ’ hel lo ’ : ’ Hallo ’ ,

’ world ’ : ’ Welt ’ ,
’ teacher ’ : [’ Ingo ’ , ’ Scholtes ’]

}

check membership of key
p r i n t (’ he l lo ’ in d)

access value of given key
p r i n t (d [’ hel lo ’] , d [’ teacher ’])

assign value to (new) key
d [’ audience ’] = ’ Studierende ’

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 8

Notes:

Practice Session
▶ we show how to install the Open Source python

distribution Anaconda

▶ we use the integrated development environment (IDE)
Visual Studio Code to write and execute a simple
python program

▶ we use VS Code to rename variables and refactor code

▶ we use the debugger of Visual Studio Code for a
step-wise execution of python statements

▶ we demonstrate lists, tuples, sets, and dictionaries in
python

import time

def main () :
tex t = " Hello World ! "
p r i n t (tex t)
tex t = 42
p r i n t (tex t)
sleep (5)

practice session

see directory 05-01 in gitlab repository at
→ https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 9

Notes:

What is an algorithm?

definition → L01 - Motivation

An algorithm is a sequence of precisely defined (mathematical) instructions that
must be executed to solve a given problem.

▶ algorithm takes a (possibly empty) input and produces –
after a finite number of steps – a desired output

▶ expressing an algorithm in terms of a programming
language allows us to implement it on a computer

Example: pecil-and-paper algorithm to add two numbers

step 1 start at right-most position
step 2 add digits at current position
step 3 write last digit of sum below current position
step 4 for sums ≥ 10 additionally carry over 1 to position on the left
step 5 move one position to left and go to step 2

1 2 5 7
21 9 3 2
4 1 8 9

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 10

Notes:

Group Exercise 05-01
▶ Assume that we want to implement the pen-and-pencil algorithm to add two decimal numbers

with an arbitrary number of digits. Specify a reasonable input and output of this algorithm.

▶ Develop a python function add that implements the pen-and-pencil algorithm, using control
structures like while, for, if as well as a python list

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 11

Notes:

• In lecture L02 we have seen how we can use digital logics to implement the addition of two binary numbers in
terms of hardware. Thanks to the fact that this operation is implemented in the ALU of the CPU, we can directly
add two 32 or 64 bit numbers by a single machine instruction (e.g. ADD). This implies that we can use the ADD
operator + in high-level languages like python, which is directly mapped to this machine instruction.

• As an exercise, we pretend that there was no such operation that allows to add numbers with more than one
digit. Let us implement the pen-and-pencil algorithm to add decimal numbers in python.

• Note that such an algorithm can still be useful if we want to add two numbers that cannot be represented by 64
bits or less, which may not be supported by the ALU of a common CPUs.

Practice Session
▶ we use lists to implement the algorithm developed in

the previous group exercise in python

▶ we test our algorithm with different inputs

practice session

see directory 05-02 in gitlab repository at
→ https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 12

Notes:

Search problems
▶ we are frequently confronted with standard problems

that can be solved by well-understood standard
algorithms

▶ exemplary standard problem: search for an object

search problems

Search problems are a class of problems that seek to quickly find a given object
within a certain data structure.

▶ examples
▶ problem 1: search name “Turing” in arbitrary list of

10,000 names
▶ problem 2: search name “Turing” in a phonebook

▶ optimal solution to the search problem depends on
prior knowledge on the data structure

image credit: DALL-E generated image, prompt “needle in a haystack”

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 13

Notes:

Searching in sorted data
▶ we can sort a list of objects whenever for pair of objects a

and b we can determine whether a ≥ b
▶ we assume that we search object x in a list sorted in

ascending order, i.e. list l where for index i we have

l [i + 1] ≥ l [i]

▶ naive algorithm checks x == l [i] for index i = 0, 1, . . .

binary search algorithm

▶ test if x is larger/smaller/equal than middle element c
▶ if x == c return object
▶ if x > c repeat search in elements right of c
▶ if x < c repeat search in elements left of c

▶ binary search is example for divide-and-conquer algorithm

▶ both algorithms give correct result, but which one is “better”?

searching for x = 17

sorted list
2 3 5 11 17 23 47

step one
2 3 5 11 17 23 47
- - - - 17 23 47

step two
- - - - 17 23 47
- - - - 17 - -

step three
- - - - 17 - -

found x = 17!

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 14

Notes:

Complexity of binary search 1/2
we can evaluate algorithms in terms of computational complexity, i.e. we count how many
steps they maximally require to produce the correct output for a given input?

example 1: how many steps do we need in list l with 32 objects

naive (linear) search algorithm

step tested element
1 0
2 1
3 2
.
32 31

requires 32 steps for 32 objects

binary search algorithm

step tested element
1 16
2 8 or 24
3 4, 12, 20, or 28
4 2, 6, 10, 14, 18, 22, 26, or 30
5 0, 1, 3, 5, 7, 8, 9, 11, 13, 15, 16, 17, . . . or 31

requires 5 steps for 32 objects

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 15

Notes:

Complexity of binary search 2/2
we can evaluate algorithms in terms of computational complexity, i.e. we count how many
steps they maximally require to produce the correct output for a given input?

example 2: how many steps do we need in list l with 64 objects

naive (linear) search algorithm

step tested element
1 0
2 1
3 2
4 3
.
63 64

requires 64 steps for 64 objects

binary search algorithm

step tested element
1 32
2 16 or 48
3 8, 24, 40, or 56
4 4, 12, 20, 28, . . . or 60
5 2, 6, 10, 14, 18, 22, . . . or 62
6 0, 1, 3, 5, 7, 9, 11, 13, 15 . . . or 63

requires 6 steps for 64 objects

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 16

Notes:

Linear vs. logarithmic complexity
▶ naive search algorithm requires one step for each each

entry in the input list, i.e. runtime is proportional to the
input size

▶ we say an algorithm has linear complexity if for input
with size n it requires at most

c + x · n

steps for some numbers c and x

▶ thanks to sorted input, binary search algorithm requires
less than linear number of steps

▶ how does number of steps grow as we increase input
size n?

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 17

Notes:

Logarithms
Logarithm

For a number n, the logarithm logb(n) with base b of n is the number x such that bx = n.

logarithms base b = 2

n binary number log2(n)
20 = 1 1 0
21 = 2 10 1
22 = 4 100 2
23 = 8 1000 3
24 = 16 10000 4

logarithms base b = 10

n log10(n)
100 = 1 0
101 = 10 1
102 = 100 2
103 = 1000 3
104 = 10000 4

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 18

Notes:

• It is easy to see that logb(n) increases proportionally with the number of digits of n in a b-nary numeral system

Complexity of search algorithms
we can evaluate algorithms in terms of computational complexity, i.e. we count how many
steps they maximally require to produce the correct output for a given input of size n?

how many steps do we need in list l with n = 64 objects

naive (linear) search algorithm

step tested element
1 0
2 1
3 2
4 3
.
64 63

requires n steps for n objects

binary search algorithm

step tested element
1 32
2 16 or 48
3 8, 24, 40, or 56
4 4, 12, 20, 28, . . . or 60
5 2, 6, 10, 14, 18, 22, . . . or 62
6 0, 1, 3, 5, 7, 9, 11, 13, 15 . . . or 63

requires log2n steps for n objects

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 19

Notes:

Sorting problem
▶ for binary search, we assumed that the list of

objects is sorted

▶ to sort objects we must be able to compare
them, i.e. for each pair a, b we must be able to
determine a ≥ b

▶ how can we compare pairs of
▶ numbers,
▶ words,
▶ books,
▶ emojis?

sorting problem

The sorting problem refers to the problem of sorting a list of
pairwise comparable objects in ascending or descending order.

▶ in the following, we consider the sorting
problem for a list of integer numbers

input:
7 2 47 23 5 11

desired output:
2 5 7 11 23 47

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 20

Notes:

BubbleSort algorithm
▶ simple idea: repeatedly compare pairs of numbers and

swap them if they are in the wrong order
▶ with each swap . . .

▶ larger numbers progressively move to right
▶ smaller numbers progressively move to left

▶ in each pass of the algorithm, we must compare all
subsequent pairs of numbers in the list

▶ if we have zero swaps during a pass, we know that the
list is sorted!

▶ in the example, we needed
▶ 4 · 5 = 20 comparisons
▶ 4 + 2 + 1 = 7 swaps

▶ how many comparisons do we need in best/worst case?

third pass

2 7 5 11 23 47
2 7 5 11 23 47
2 7 5 11 23 47
2 5 7 11 23 47
2 5 7 11 23 47
2 5 7 11 23 47
2 5 7 11 23 47
2 5 7 11 23 47
2 5 7 11 23 47
2 5 7 11 23 47

5 comparisons, 1 swap

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 21

Notes:

Worst-case complexity of BubbleSort

worst-case runtime

For an input list sorted in reverse order BubbleSort algorithm
requires n passes with n − 1 comparisons each.

47 23 11 7 5 2

n = 6

n · (n − 1) = 6 · 5 = 30 comparisons

best-case runtime

For an input list that is already sorted BubbleSort algorithm
requires a single pass with n − 1 comparisons.

2 7 5 11 23 47

n = 6

n − 1 = 5 comparisons

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 22

Notes:

Linear vs. polynomial complexity
▶ for input list with n elements, BubbleSort has

worst-case runtime of

n · (n − 1) = n2 − n

i.e. number of required steps grows as second power
(i.e. square) of input size n

▶ we call expressions of the form

ak · nk + ak−1 · nk−1 + . . . a0 · n0

polynomial

▶ for polynomials with power larger than one, runtime
grows over-proportionally with input size

linear vs. polynomial growth of complexity

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 23

Notes:

MergeSort
▶ can we sort a list faster than BubbleSort?

▶ assume that we have two already sorted lists
l1 and l2

▶ in n = n1 + n2 steps we can merge l1 and l2
into a new sorted list l

▶ we can apply divide-and-conquer idea behind
binary search to sorting

▶ phase 1: repeatedly split input until we are left
with lists with one element (which are already
sorted)

▶ phase 2: repeatedly merge increasingly large
(sorted) lists until full list is sorted

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 24

Notes:

Complexity of MergeSort
▶ assume that for a list with n elements

MergeSort takes T (n) steps

▶ each split/merge then requires

2 · T (n
2) + n

▶ starting with T (1) = 0 we have
▶ T (2) = 2 · T (1) + 2 = 2
▶ T (4) = 2 · T (2) + 4 = 2 · 2 + 4 = 8
▶ T (8) = 2 · T (4) + 8 = 2 · 8 + 8 = 24
▶ T (16) = 2 · T (8) + 16 = 2 · 24 + 16 = 64
▶ . . .

▶ we can calculate runtime of MergeSort as

T (n) ≈ n · log2(n)
Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 25

Notes:

Complexity of sorting?
▶ with BubbleSort we can sort n numbers in n − 1 steps

in best case and n · (n − 1) in worst case

▶ MergeSort improves worst-case complexity of
BubbleSort from n2 to n log2(n)

▶ on average MergeSort requires n log2(n) steps

▶ to sort n objects based on pairwise comparisons, there
is no algorithm exist that requires less than n log2(n)
steps on average

▶ but: there are specialized algorithms to sort n integer
numbers in a fixed range with linear runtime → self-study

questions

worst-case complexity of MergeSort vs.
BubbleSort

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 26

Notes:

Practice Session
▶ we implement BubbleSort in python

▶ we implement the divide-and-conquer method
MergeSort

▶ we study the runtime of both algorithms in
increasingly large input lists

practice session

see directory 05-03 in gitlab repository at
→ https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 27

Notes:

In summary
▶ we covered basic python data structures like sets,

tuples, lists, and dictionaries

▶ we introduced basic algorithms for standard
computational problems like searching and sorting

▶ we evaluated the computational complexity of sort and
search algorithms

▶ we highlighted the difference between logarithmic,
linear, and polynomial runtime

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 28

Notes:

Self-study questions
1. Explain the differences between a set, a tuple, a dictionary and a list in python.
2. Give a formulation of the Pen-And-Pencil algorithm to add two numbers in python and explain it

in your own words.
3. Extend the Pen-And-Pencil algorithm from the group exercise such that it can add numbers

given as sequences of digits in an arbitrary k-nary numeral system.
4. Give a formulation of the Binary Search algorithm in python and explain it in your own words.
5. Could we generalize the Binary Search algorithm such that in each step we split the list into

three equally large parts, which would lead to a runtime log3(n)?
6. Give a formulation of the BubbleSort algorithm in python and explain it in your own words.
7. Give an example for an input for which the BubbleSort algorithm performs the

maximum/minimum number of comparisons.
8. Count the number of swaps in an input list with n elements, where BubbleSort performs the

maximum number of comparisons.
9. Give a formulation of the MergeSort algorithm in python and explain it in your own words.

10. Investigate the BucketSort algorithm for integers in a fixed range and explain why it takes less
than n log2 n steps on average.

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 29

Notes:

Literature

References

▶ K Mehlhorn, P Sanders: Algorithms and Data Structures - The
Basic Toolbox, Springer, 2008

▶ TH Cormen, CE Leiserson, RL Rivest, C Stein: Introduction to
Algorithms, MIT Press, 2001

▶ F Kaefer, P Kaefer: Introduction to Python Programming for
Business and Social Science Applications, SAGE Publications,
2020

▶ DE Knuth: The Art of Computer Programming. Vol. 3: Sorting
and Searching, Addison-Wesley, 1998

▶ EH Friend: Sorting on Electronic Computer Systems, Journal of
the ACM, Vol. 3, 1956

Ingo Scholtes Introduction to Informatics Lecture 05: Algorithmic Thinking November 19, 2024 30

Notes:

