Conclusion on least squares

» now we can look at the solutions:

Theorem (James, 1978): Let A c R9*9 and b € RY. If AATh = b, the complete set of
solutions of Ax = b is given by

z=Ab+ (Il —ATA)w,
for w € RY.

» AfAis an orthogonal projection, I; — AT A is the orthogonal projection on Im(AfA)+ and
[ATh + (14 —ATA)w|? = [|[(ATA)ATH + (14 —ATA)w |2
= |ATB|? + [[(1l —ATA)w]]?.

» taking the Moore-Penrose pseudo-inverse guarantees that we take the solution with
smallest Euclidean norm.
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Gradient descent

yet another possibility: gradient descent
Idea: minimize R following the steepest descent line

formally, build the sequence of iterates

9(0) =6,
Ot = 9(t) — AT R(A())

with v > 0 the stepsize

if convergence, then VR = 0: minimizer

computational complexity for each step is reduced to O (d)
it T steps, with T < d?, much faster
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3.3. Fixed design analysis
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Setting

Fixed design: in this section, we assume that ® is deterministic
namely, fixed, deterministic xq,...,x, € X
Assumption I: there exists §* € RY such that

Vi € [n], Yi=p(x) 0" +¢,

with &; noise variables
in matrix notation, we still have:
Y =06 <.
Assumption ll: the ¢;s are independent, have zero mean, and variance E [5,2]
Remark (i): we do not assume identically distributed

Remark (ii): variance assumption is sometimes called homoscedasticity

=0

2
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Mahalanobis distance

» for any positive-definite matrix A, we set
Yu € RY, HuHi = u'Au.

» Remark (i): taking A =1, we recover the Euclidean norm
» Remark (ii): intuition when A is diagonal: weighting the features
» the function

da(x,y) = lIx = ylla

is often called Mahalanobis distance
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Excess risk

» under our assumptions, we now turn to the computation of the Bayes risk and excess risk
of ordinary least squares

» Definition: excess risk = true risk — Bayes risk

> Notation: we set ¥ := 20T d € RY*9 the (empirical) covariance matrix

Proposition (excess risk of OLS): under assumptions | and Il, for any 6 € R?, we have
R* = 02 and

R(O) —R* =10 — %)% .

» Remark (i): in the presence of noise (02 > 0), the Bayes risk is positive

» Remark (ii): excess risk is the squared distance between our parameter and the true
parameter in the geometry defined by %
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Excess risk, ctd.

Proof: we know that Y = ®6* + ¢, thus
1 2
R(0) =B |1y - o6
1 N 5
=K {n |[P6* + & — dO| }
1
=K [II‘D(@* —0)[* + 2= TO(0* — 0) + ||e]|?

=7 (0 6) 0T O - ). (E[e] =0, E[e7] = 0?)

Since ¥ is invertible, 6* is the unique global minimizer and the minimum value is 0. U
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Bias / variance decomposition

Proposition (bias-variance): Let § € R?. Then, under assumption | and Il,

o+ |lo-za]

variance

E [R(é)} _RF = HIE[&“] e

expected excess risk =

bias +

Proof: using the previous proposition:
E[R(@)] - R* =E[llo - 6" 3]

—E Me —E[0] + E[] — 0"

2
~|
)X

then develop.
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Expectation and variance

» Reminder: the OLS solution is given by

A 1.
f=("o) oYy =-5"toTY.
n

Proposition (mean and variance of OLS): Let 0 be the OLS solution. Assume | and II.

Then @ satisfies

O'2A

E[f] = 0*  and Var(é):7z—1.

» Remark (i): in the language of statistics, we say that 0 is an unbiased estimator of 6*

» Remark (ii): the matrix > 1 is sometimes called the precision matrix
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Expectation and variance, proof

Proof: We know that E[Y] = ®8*, thus
E[f] = (¢ o) 1o do* = 0*.
We deduce that
O—0" = (") o7 (dh* +¢) — 0
=(®'o) tole,
from which we compute the variance
Var(d) =E [(¢T®) 1o TecTo(dTd)
=o?(® o) (e o) (P )t
=o’(®To) .

(E[eig)] = 0*1i))
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Excess risk of OLS

Proposition (expected excess risk of OLS): Assume | and Il. Then the (expected)
excess risk of the ERM is equal to
od

E[R(H)] - R =

> Remark (i): decreasing when n — +oo (consistency)
» Remark (ii): but, for fixed n, quite bad when d = n...
» Remark (iii): one can show that

E {7@(@)} = n;d02 202—%02,

thus training error underestimates test error, which is

E [R(GA)] =0+ %02 .
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Excess risk of OLS, illustration

> Figure: excess risk as a function of n (one simulation per n). Gaussian noise, dimension
10, 8* = 1. In red, the expected value sz/n.



Excess risk of OLS, proof

Proof: Using our previous computations:

!

—E [trace ((9“ 0TS0 — 9*))]

E[R@)|-R*=E [He o

=E [trace ((é —0*)(0 - 9*)Ti)}
= trace (Var(é)i>

2
= trace (OZ_IZ>
n

2
o
- race (1)

(definition of [|-||s)
(cyclic property of the trace)

(linearity)

(variance computation)
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