
Conclusion on least squares
▶ now we can look at the solutions:

Theorem (James, 1978): Let A ∈ Rd×d and b ∈ Rd . If AA†b = b, the complete set of
solutions of Ax = b is given by

z = A†b + (Id −A†A)w ,

for w ∈ Rd .

▶ A†A is an orthogonal projection, Id − A†A is the orthogonal projection on Im(A†A)⊥ and

∥A†b + (Id −A†A)w∥2 = ∥(A†A)A†b + (Id −A†A)w∥2

= ∥A†b∥2 + ∥(Id −A†A)w∥2 .

▶ taking the Moore-Penrose pseudo-inverse guarantees that we take the solution with
smallest Euclidean norm.
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Gradient descent

▶ yet another possibility: gradient descent
▶ Idea: minimize R̂ following the steepest descent line
▶ formally, build the sequence of iterates{

θ(0) = θ0

θ(t+1) = θ(t) − γ∇R̂(θ(t))

with γ > 0 the stepsize
▶ if convergence, then ∇R̂ = 0: minimizer
▶ computational complexity for each step is reduced to O (d)
▶ it T steps, with T ≪ d2, much faster
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3.3. Fixed design analysis
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Setting

▶ Fixed design: in this section, we assume that Φ is deterministic
▶ namely, fixed, deterministic x1, . . . , xn ∈ X
▶ Assumption I: there exists θ⋆ ∈ Rd such that

∀i ∈ [n], Yi = φ(xi)⊤θ⋆ + εi ,

with εi noise variables
▶ in matrix notation, we still have:

Y = Φθ⋆ + ε .

▶ Assumption II: the εis are independent, have zero mean, and variance E
[
ε2

i
]

= σ2

▶ Remark (i): we do not assume identically distributed
▶ Remark (ii): variance assumption is sometimes called homoscedasticity

71



Mahalanobis distance

▶ for any positive-definite matrix A, we set

∀u ∈ Rd , ∥u∥2
A ··= u⊤Au .

▶ Remark (i): taking A = I, we recover the Euclidean norm
▶ Remark (ii): intuition when A is diagonal: weighting the features
▶ the function

dA(x , y) ··= ∥x − y∥A

is often called Mahalanobis distance
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Excess risk

▶ under our assumptions, we now turn to the computation of the Bayes risk and excess risk
of ordinary least squares

▶ Definition: excess risk = true risk − Bayes risk
▶ Notation: we set Σ̂ ··= 1

n Φ⊤Φ ∈ Rd×d the (empirical) covariance matrix

Proposition (excess risk of OLS): under assumptions I and II, for any θ ∈ Rd , we have
R⋆ = σ2 and

R(θ) − R⋆ = ∥θ − θ⋆∥2
Σ̂ .

▶ Remark (i): in the presence of noise (σ2 > 0), the Bayes risk is positive
▶ Remark (ii): excess risk is the squared distance between our parameter and the true

parameter in the geometry defined by Σ̂
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Excess risk, ctd.

Proof: we know that Y = Φθ⋆ + ε, thus

R(θ) = E
[

1
n ∥Y − Φθ∥2

]
= E

[
1
n ∥Φθ⋆ + ε − Φθ∥2

]
= 1

nE
[
∥Φ(θ⋆ − θ)∥2 + 2ε⊤Φ(θ⋆ − θ) + ∥ε∥2

]
= σ2 + 1

n (θ − θ⋆)⊤Φ⊤Φ(θ − θ⋆) . (E [εi ] = 0, E
[
ε2

i
]

= σ2)

Since Σ̂ is invertible, θ⋆ is the unique global minimizer and the minimum value is σ2.
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Bias / variance decomposition

Proposition (bias-variance): Let θ̂ ∈ Rd . Then, under assumption I and II,

E
[
R(θ̂)

]
− R⋆ =

∥∥∥E[θ̂] − θ⋆
∥∥∥2

Σ̂
+ E

[∥∥∥θ̂ − E[θ̂]
∥∥∥2

Σ̂

]
expected excess risk = bias + variance

Proof: using the previous proposition:

E
[
R(θ̂)

]
− R⋆ = E

[
∥θ − θ⋆∥2

Σ̂

]
= E

[∥∥∥θ − E[θ̂] + E[θ̂] − θ⋆
∥∥∥2

Σ̂

]
,

then develop.
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Expectation and variance

▶ Reminder: the OLS solution is given by

θ̂ = (Φ⊤Φ)−1Φ⊤Y = 1
n Σ̂−1Φ⊤Y .

Proposition (mean and variance of OLS): Let θ̂ be the OLS solution. Assume I and II.
Then θ̂ satisfies

E[θ̂] = θ⋆ and Var(θ̂) = σ2

n Σ̂−1 .

▶ Remark (i): in the language of statistics, we say that θ̂ is an unbiased estimator of θ⋆

▶ Remark (ii): the matrix Σ̂−1 is sometimes called the precision matrix
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Expectation and variance, proof

Proof: We know that E [Y ] = Φθ⋆, thus

E[θ̂] = (Φ⊤Φ)−1Φ⊤Φθ⋆ = θ⋆ .

We deduce that

θ̂ − θ⋆ = (Φ⊤Φ)−1Φ⊤(Φθ⋆ + ε) − θ⋆

= (Φ⊤Φ)−1Φ⊤ε ,

from which we compute the variance

Var(θ̂) = E
[
(Φ⊤Φ)−1Φ⊤εε⊤Φ(Φ⊤Φ)−1]

= σ2(Φ⊤Φ)−1(Φ⊤Φ)(Φ⊤Φ)−1 (E [εiεj ] = σ21i=j)
= σ2(Φ⊤Φ)−1 .
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Excess risk of OLS

Proposition (expected excess risk of OLS): Assume I and II. Then the (expected)
excess risk of the ERM is equal to

E
[
R(θ̂)

]
− R⋆ = σ2d

n .

▶ Remark (i): decreasing when n → +∞ (consistency)
▶ Remark (ii): but, for fixed n, quite bad when d ≈ n...
▶ Remark (iii): one can show that

E
[
R̂(θ̂)

]
= n − d

n σ2 = σ2 − d
n σ2 ,

thus training error underestimates test error, which is

E
[
R(θ̂)

]
= σ2 + d

n σ2 .
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Excess risk of OLS, illustration
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▶ Figure: excess risk as a function of n (one simulation per n). Gaussian noise, dimension
10, θ⋆ = 1. In red, the expected value σ2d/n. 79



Excess risk of OLS, proof

Proof: Using our previous computations:

E
[
R(θ̂)

]
− R⋆ = E

[∥∥∥θ̂ − θ⋆
∥∥∥2

Σ̂

]
= E

[
trace

(
(θ̂ − θ⋆)⊤Σ̂(θ̂ − θ⋆)

)]
(definition of ∥·∥Σ̂)

= E
[
trace

(
(θ̂ − θ⋆)(θ̂ − θ⋆)⊤Σ̂

)]
(cyclic property of the trace)

= trace
(

Var(θ̂)Σ̂
)

(linearity)

= trace
(

σ2

n Σ̂−1Σ̂
)

(variance computation)

= σ2

n trace (I)
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