3. Linear least-square regression
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3.1. Framework



Intuition

» Goal: find the “best” hyperplane going through our training data

Which line do we want?
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L east-square framework

reminders: regression = ) =R

square loss £(y,y') = (y — y')?

we know that the optimal predictor is f*(x) = E[Y | X = x]
Notation: ¢ : X — R? some feature function

ERM on the class of functions

fo(x) = 0(x)T0 =" @(x);;

j=1

with 8 € R
Remark: linear in 6, not necessarily in x!

Overall: minimize
n

R(B) = = S2(¥; — o(X) 0.

i=1
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Random design

> mathematically, more interesting to see (x;, ;) as random variables
> — we write (X;, Y;) instead of (x;,y;)

Key assumption: (X;, Y;) are independent, identically-distributed (i.i.d.) copies of (X, Y).

» from now on, we will work in this framework
» Remark: distribution shift is a current research topic*
» Key difference:

R(F) = 3 (Y5 F(X)

is a random variable

4Sugiyama, Kawanabe, Machine learning in non-stationary environments: Introduction to covariate shift
adaptation, MIT Pres, 2012
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Example 1: linear regression

» Question: what is ¢? and why is it useful?

» univariate inputs: X =R

> take d =2

» Why? allowing an intercept: ¢(x) = (1,x)T and
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Example 2: polynomial regression

» consider again univariate inputs: X =R
» take d = p+ 1, with p maximal degree

> set o(x) = (1,x,x2,...,xP)T, and
1 X X2 - XP
o= : e Rx(p+1)
1 X, X2 ... Xp

» true strength of the linear model: non-linear transformations of the entries
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Matrix notation

let Y :=(Y1,...,Y,)" € R" the response vector
let & € R"™*9 the matrix of inputs
row i of ® = p(X;)"
with these notation,
R(O) =~ |y — o]

Reminder:
d

ol = (wu) =u"u= "o
j=1

denotes the Euclidean norm
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3.2. Ordinary least-squares



Ordinary Least Squares

» Reminder: we want to minimize

A 1
R(0) =~ ||Y — 0] .

» now we have to work a bit because crit is a function of d variables:

Plot of crit(B), optimum in red
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Calculus aparte

» Reminder: let f : RN — RM then the gradient of f is defined as

of Of

9x; Ox

on  on
vF 3?@ 6?<2

of  Of

BXN 3)(/\/

Ofu
ox1
Ofy
ox;
-2 c RNXM

Oty
Oxn

» Example: when f is real-valued (M = 1), Vf is a vector, thus a column
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Calculus aparte, ctd.

» let us consider first the function f : x — Ax, with x € R’ and A € RM*N 3 fixed matrix
> let j € {1,..., M}, then we know that

(AX)j = Ajixi + Ajoxa+ -+ Ajnxn

> let i€ {1,..., N}, then
0

8x,-

» we deduce from this computation that

(AX)J- = Aj’,' .

VA RM*N v(Ax) = AT
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Calculus aparte, ctd.

more complicated: let B € RV*N and define f : x — x ' Bx

set 1 € {1,..., N}, then

we deduce that

therefore,

in a concise form:

(BX)J- = Bj1x1 + Bjaxo + -+ Bj nxn -

n
T
x' Bx = E Bj kxjxi .

0

J k=1

n

B (x"Bx) = (Bij+Bi)x-

j=1

VB e RVXN,

V(x"Bx)=(B+ B")x
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Closed-form solution (i)

> R is a convex smooth function = look at critical point

» back to the definition:
. 1 )
R(0) = —[|Y — @]

n

1
S (H YIP—20T 0Ty + echcha)
n
» from the previous slides, we deduce

VR() == (¢Td0 — dTY)

SN

> setting to zero yields the normal equations:

oTPh=0"Y.

63



Closed-form solution (ii)

Proposition: Assume that ® has full column rank. Then the unique minimizer of R is

given by .
h=(o o) loTy.

> when it exists, we will refer to 6 as the ordinary least squares (OLS) solution
» Remark (i): ® full column rank < ®T® positive-definite (in particular, invertible)

» Remark (ii): if ¢ = id, recover the well-know formula:
0=(X"X)'XTy.

> Remark (jii): ®d (vector of predictions) = orthogonal projection of Y onto Im ()
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Numerical resolution, invertible case

inverting matrices is hard (costly 4+ unstable)

What is done in practice: QR factorization: write
o =QR

with Q € R"™ 9 such that QT Q = | and R € R¥*9 upper triangular
fast, and more stable
then
dTO=RTQ"QR=R"R
which means .
(To)d=0TY
if, and only if, A .
RTRO=R'Q'Y & RI=Q'Y

last step = triangular linear system (easy)
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Numerical resolution, non-invertible case

Definition-Theorem (singular value decomposition): Let A € RM*N_ Then there exist
(i) U € RMXM orthogonal, (ii) V € RM*N orthogonal, and (iii) £ € RM*N diagonal with
positive entries such that

A=UzVT.

The matrix X is unique up to ordering of its diagonal elements.

» we call o; := X;; the singular values of A

» they are the square roots of the eigenvalues of AT A

» only rank (A) of them are non-zero

> the columns of U (resp. V) are the eigenvectors of AAT (resp. AT A)
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Generalized inverse

» pseudo-inverse of a diagonal matrix:

d o0 - 0
d o0 0 0 0 :
0 . 0
L. s 0 0 .- 0 -~ 0 df
0 - 0 d, 0 o --- 0 0

where xt = x™1 is x # 0 and 0 otherwise
» the Moore-Penrose pseudo-inverse of M is then defined as

M =vEiuT.
We always have Mt MM = Mt and MMTM = M.

» Example: if M is invertible, then M~1 = M.
» from now on, we set (XTX)™! = (XTX)f
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