
3. Linear least-square regression

50

3.1. Framework

51

Intuition

▶ Goal: find the “best” hyperplane going through our training data

4 3 2 1 0 1 2 3 4

x
2

1

0

1

2

3

y

Which line do we want?

52

Least-square framework
▶ reminders: regression ⇒ Y = R
▶ square loss ℓ(y , y ′) = (y − y ′)2

▶ we know that the optimal predictor is f ⋆(x) = E [Y | X = x]
▶ Notation: φ : X → Rd some feature function
▶ ERM on the class of functions

fθ(x) = φ(x)⊤θ =
d∑

j=1
φ(x)jθj ,

with θ ∈ Rd

▶ Remark: linear in θ, not necessarily in x !
▶ Overall: minimize

R̂(θ) ··=
1
n

n∑
i=1

(Yi − φ(Xi)⊤θ)2 .

53

Random design

▶ mathematically, more interesting to see (xi , yi) as random variables
▶ → we write (Xi , Yi) instead of (xi , yi)

Key assumption: (Xi , Yi) are independent, identically-distributed (i.i.d.) copies of (X , Y).

▶ from now on, we will work in this framework
▶ Remark: distribution shift is a current research topic4

▶ Key difference:

R̂(f) = 1
n

n∑
i=1

ℓ(Yi , f (Xi))

is a random variable
4Sugiyama, Kawanabe, Machine learning in non-stationary environments: Introduction to covariate shift

adaptation, MIT Pres, 2012
54

Example 1: linear regression

▶ Question: what is φ? and why is it useful?
▶ univariate inputs: X = R
▶ take d = 2
▶ Why? allowing an intercept: φ(x) = (1, x)⊤ and

Φ =


1 X1
1 X2
...

...
1 Xn



55

Example 2: polynomial regression

▶ consider again univariate inputs: X = R
▶ take d = p + 1, with p maximal degree
▶ set φ(x) = (1, x , x2, . . . , xp)⊤, and

Φ =

1 X1 X 2
1 · · · X p

1
...

...
...

1 Xn X 2
n · · · X p

n

 ∈ Rn×(p+1)

▶ true strength of the linear model: non-linear transformations of the entries

56

Matrix notation

▶ let Y ··= (Y1, . . . , Yn)⊤ ∈ Rn the response vector
▶ let Φ ∈ Rn×d the matrix of inputs
▶ row i of Φ = φ(Xi)⊤

▶ with these notation,
R̂(θ) = 1

n ∥Y − Φθ∥2
.

▶ Reminder:

∥u∥2 = ⟨u, u⟩ = u⊤u =
d∑

j=1
u2

j

denotes the Euclidean norm

57

3.2. Ordinary least-squares

58

Ordinary Least Squares

▶ Reminder: we want to minimize

R̂(θ) = 1
n ∥Y − Φθ∥2

.

▶ now we have to work a bit because crit is a function of d variables:

0

5.0
4.5

4.0
3.5

3.0
2.5

2.0
1.5

1.0

1

3.0
3.5

4.0
4.5

5.0
5.5

6.0
6.5

7.0

400

600

800

1000

1200

1400

Plot of crit(), optimum in red

59

Calculus aparte

▶ Reminder: let f : RN → RM , then the gradient of f is defined as

∇f =


∂f1
∂x1

∂f2
∂x1

· · · ∂fM
∂x1

∂f1
∂x2

∂f2
∂x2

· · · ∂fM
∂x2...

...
...

∂f1
∂xN

∂f2
∂xN

· · · ∂fM
∂xN

 ∈ RN×M

▶ Example: when f is real-valued (M = 1), ∇f is a vector, thus a column

60

Calculus aparte, ctd.

▶ let us consider first the function f : x 7→ Ax , with x ∈ RN and A ∈ RM×N a fixed matrix
▶ let j ∈ {1, . . . , M}, then we know that

(Ax)j = Aj,1x1 + Aj,2x2 + · · · + Aj,NxN .

▶ let i ∈ {1, . . . , N}, then
∂

∂xi
(Ax)j = Aj,i .

▶ we deduce from this computation that

∀A ∈ RM×N , ∇(Ax) = A⊤

61

Calculus aparte, ctd.

▶ more complicated: let B ∈ RN×N and define f : x 7→ x⊤Bx
▶ set 1 ∈ {1, . . . , N}, then

(Bx)j = Bj,1x1 + Bj,2x2 + · · · + Bj,NxN .

▶ we deduce that

x⊤Bx =
n∑

j,k=1
Bj,kxjxk .

▶ therefore,
∂

∂xi
(x⊤Bx) =

n∑
j=1

(Bi,j + Bj,i)xj .

▶ in a concise form:
∀B ∈ RN×N , ∇(x⊤Bx) = (B + B⊤)x

62

Closed-form solution (i)

▶ R̂ is a convex smooth function ⇒ look at critical point
▶ back to the definition:

R̂(θ) = 1
n ∥Y − Φθ∥2

= 1
n

(
∥Y ∥2 − 2θ⊤Φ⊤Y + θ⊤Φ⊤Φθ

)
▶ from the previous slides, we deduce

∇R̂(θ) = 2
n
(
Φ⊤Φθ − Φ⊤Y

)
▶ setting to zero yields the normal equations:

Φ⊤Φθ̂ = Φ⊤Y .

63

Closed-form solution (ii)

Proposition: Assume that Φ has full column rank. Then the unique minimizer of R̂ is
given by

θ̂ = (Φ⊤Φ)−1Φ⊤Y .

▶ when it exists, we will refer to θ̂ as the ordinary least squares (OLS) solution
▶ Remark (i): Φ full column rank ⇔ Φ⊤Φ positive-definite (in particular, invertible)
▶ Remark (ii): if φ = id, recover the well-know formula:

θ̂ = (X⊤X)−1X⊤Y .

▶ Remark (iii): Φθ̂ (vector of predictions) = orthogonal projection of Y onto Im (Φ)

64

Numerical resolution, invertible case
▶ inverting matrices is hard (costly + unstable)
▶ What is done in practice: QR factorization: write

Φ = QR

with Q ∈ Rn×d such that Q⊤Q = I and R ∈ Rd×d upper triangular
▶ fast, and more stable
▶ then

Φ⊤Φ = R⊤Q⊤QR = R⊤R

which means (
Φ⊤Φ

)
θ̂ = Φ⊤Y

if, and only if,
R⊤R θ̂ = R⊤Q⊤Y ⇔ R θ̂ = Q⊤Y

▶ last step = triangular linear system (easy)
65

Numerical resolution, non-invertible case

Definition-Theorem (singular value decomposition): Let A ∈ RM×N . Then there exist
(i) U ∈ RM×M orthogonal, (ii) V ∈ RN×N orthogonal, and (iii) Σ ∈ RM×N diagonal with
positive entries such that

A = UΣV ⊤ .

The matrix Σ is unique up to ordering of its diagonal elements.

▶ we call σi ··= Σii the singular values of A
▶ they are the square roots of the eigenvalues of A⊤A
▶ only rank (A) of them are non-zero
▶ the columns of U (resp. V) are the eigenvectors of AA⊤ (resp. A⊤A)

66

Generalized inverse
▶ pseudo-inverse of a diagonal matrix:


d1 0 · · · 0 0

0
.

...
... · · ·

...
. 0 0 · · ·

0 · · · 0 dp 0

 7→



d†
1 0 · · · 0

0
.

...
...

. 0
0 · · · 0 d†

p
0 · · · 0 0

...
...


where x† = x−1 is x ̸= 0 and 0 otherwise

▶ the Moore-Penrose pseudo-inverse of M is then defined as
M† = V Σ†U⊤ .

We always have M†MM† = M† and MM†M = M.
▶ Example: if M is invertible, then M−1 = M†.
▶ from now on, we set (X⊤X)−1 = (X⊤X)†

67

