
Theory of Machine Learning

Exercise sheet 3 —Session 3

Exercise I (simple linear regression) Ò. Consider real-valued inputs and outputs (X = R
and Y = R) with X := (X1, . . . , Xn)

⊤ ∈ Rn the input vector and Y := (Y1, . . . , Yn)
⊤ ∈ Rn the

response vector. Let φ(x) = (1, x)⊤ and Φ ∈ Rn×2 the matrix of inputs with row i defined as
Φi,: := ϕ(Xi)

⊤. We set
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1. Give the expression of Φ⊤Φ using these notation.

2. Under which conditions is this matrix invertible?

3. Assume that Φ⊤Φ is invertible. We want to minimize the empirical risk of θ ∈ R2 defined
as R̂(θ) = 1

n ∥Y − Φθ∥2. Given that θ̂ := (Φ⊤Φ)−1Φ⊤Y , express θ̂ in this specific case.

Exercise II (coding simple linear regression) §. The objective is to implement the previ-
ous exercise using numpy.

1. Generate a dataset {Xi, Yi}ni=1 as follows:

(a) Sample the n ∈ N⋆ inputs as Xi ∼ U ([−5, 5]) (Hint: use numpy.random.uniform() )

(b) The labels are Yi = Xi + εi with εi ∼ N (0, 1) (Hint: use numpy.random.normal() )

2. Implement the least-square estimator θ̂ of exercise I as follows:

(a) First construct the matrix of inputs Φ ∈ Rn×2 using the previously sampled inputs Xi.

(b) Compute Φ⊤Φ.

(c) Compute θ̂ := (Φ⊤Φ)−1Φ⊤Y , where Y is the label vector sampled previously.

Exercise III (maximum likelihood estimation) Ò. In the fixed design setting, we can
make further assumptions on the noise, for instance let us assume that the εis are i.i.d. Gaussian,
with mean zero and variance σ2. A typical approach in statistics is to look at the likelihood of
observations, defined as the product of densities at the observations, then to maximize it with
respect to the parameters.

1. What is the density of the random variable Yi in this setting?

2. Write L(Y |θ, σ2) the product of densities evaluated at Y1, . . . , Yn.

3. Find θ̃ which maximizes L(Y |θ, σ2). What is his relationship to θ̂? (Hint: maximizing L is
equivalent to maximizing logL)


