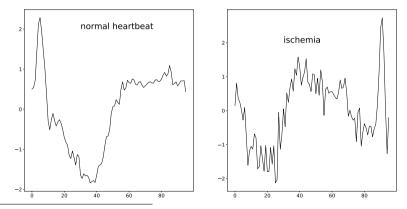
6.4. LIMESegment

Time series classification

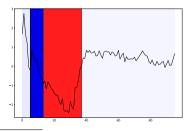
- **Time series:** ordered sequence of *T* observations
- **Example:**⁴⁴ ECG from one heartbeat, detect ischemia or not



⁴⁴Olszewski, *Generalized feature extraction for structural pattern recognition in time-series data*, Carnegie Mellon, 2001

LIMESegment

- ▶ Idea:⁴⁵ adapt the LIME framework to time series
- similar high-level operation (differences in **bold**):
 - 1. create interpretable features
 - 2. sample *n* perturbed samples x_1, \ldots, x_n from ξ
 - 3. weight the x_is
 - 4. train a local surrogate model
- Output: highlight important parts of the time-series



⁴⁵Sivill, Flach, LIMESegment: Meaningful, Realistic Time Series Explanations, AISTATS, 2022

Interpretable features: homogeneous segments in the time series

- standard problem (usually called change-point detection⁴⁶)
- proposed methodology: NNSegment
- **Reminder:** empirical mean: let $A \in \mathbb{R}^{\ell}$,

$$\overline{A} := rac{1}{\ell} \sum_{i=1}^{\ell} A_i$$

Reminder: empirical covariance / variance:

$$\widehat{\mathrm{Cor}}(A,B):=rac{1}{\ell-1}\sum_{i=1}^{\ell-1}(A_i-\overline{A})(B_i-\overline{B})\,,\qquad \widehat{\mathrm{Var}}(A):=rac{1}{\ell-1}\sum_{i=1}^\ell(A_i-\overline{A})^2\,.$$

⁴⁶Truong, Oudre, Vayatis, *Selective review of offline change-point detection methods*, Signal Processing, 2020

 \blacktriangleright let w_s be a fixed window size, define

$$x_{a:b} := (x_a, x_{a+1}, \ldots, x_b)^\top$$
.

- for a given window size w_s , define $w_i := x_{i:(i+w_s)}$
- **Definition:** normalized cross-correlation (*a.k.a.* sample correlation):

$$\forall s_1, s_2 \in [T - w_s], \qquad \psi(w_{s_1}, w_{s_2}) := \frac{\widehat{\operatorname{Cor}}(w_{s_1}, w_{s_2})}{\sqrt{\widehat{\operatorname{Var}}(w_{s_1})}\widehat{\operatorname{Var}}(w_{s_2})}$$

- Intuition: higher is better (= more similar)
- Examples:

▶ if
$$w_{s_1} = w_{s_2}$$
, then $\widehat{\operatorname{Cor}}(w_{s_1}, w_{s_2}) = 1$
▶ if w_{s_1} and w_{s_2} are "independent," then $\widehat{\operatorname{Cor}}(w_{s_1}, w_{s_2}) = 0$

- back to NNSegment:
 - 1. compute all pairwise correlations between segments $\psi(s_1, s_2)$
 - 2. connect each segment ot its *nearest neighbor*
 - 3. group adjacent segments together (nearest neighbor = next segment)
- **Further refinement:** look at difference in signal to noise ratio

$$ho(w_i, w_j) := \left| rac{\mu(w_i)}{\sigma(w_i)} - rac{\mu(w_j)}{\sigma(w_j)}
ight|$$

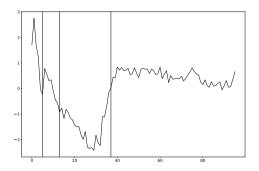
and then:

- if $\rho(w_i, w_{i-w_s}) > \rho(w_i, w_{i+w_s})$, group i with $i + w_s$
- if $\rho(w_i, w_{i-w_s}) < \rho(w_i, w_{i+w_s})$, group *i* with $i w_s$

 \blacktriangleright stop doing this when we have reached the user-specified number of segments T

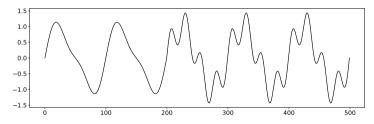
Output: segmented signal

Example: here we obtain 4 segments, that is, 3 breakpoints



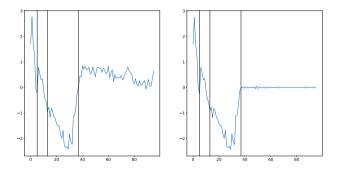
Step 2: perturbed examples

- Idea: identify background signal in the spectral domain
- ▶ Discrete Short Time Frequency Transform (STFT): → time-frequency domain
- **Example:** (local) spectrogram of superposition of sine waves



Step 2: perturbed samples

- identify a persistent frequency, map it back via inverse STFT
- **Example:** perturbing the last segment of the signal



Step 3: weights

- similar idea: exponential weights depending on a distance
- **Issue:** Euclidean distance between the z_i does not reflect distance between signals
- Dynamic time warping (DTW):⁴⁷ distance between signals taking alignment into account
- formally,

$$\mathsf{DTW}(x,x')^2 := \min_{\pi \in P(x,x')} \sum_{(i,i') \in \pi} d(x_i,x'_{i'}),$$

where π is an *admissible path*

namely:

- $\pi_1 = (1, 1)$ (beginning of signals matched together);
- $\pi_{\kappa} = (S, T)$ (end of signals matched together);
- writing π_k as (i_k, i'_k) , both *i* and *i'* are non-decreasing.

⁴⁷Bellman, Kalaba, On adaptive control processes, IRE Transactions on Automatic Control, 1959

Summary

- Final steps: surrogate model as before (ridge), coefficients given as importance
- Main message: a lot depends on the data-type and the kind of perturbation we want
- results depends a lot on the segmentation / sampling scheme
- no existing theoretical analysis
- many other methods⁴⁸

⁴⁸see Theissler et al., *Explainable AI for Time Series Classification: A review, taxonomy and research directions*, for an overview

6.5. Anchors

Notation and first definitions

Back to text: ξ = document to explain = ordered sequence of tokens (ξ_1, \ldots, ξ_T), f = classifier

Definition: we define an *anchor* A as an ordered subset of the words of ξ . We let A be the set of all possible *non-empty* anchors.

- two key definitions:
 - 1. precision = probability of same classification knowing that the document contains A
 - 2. coverage = how many documents in the dataset contain A

one-sentence summary: find anchor with prescribed precision and maximal coverage

$$\operatorname{Prec}(A) = 0.97$$
 $\operatorname{Cov}(A) = 0.12$

How precision is computed

Formal definition:

$$\operatorname{Prec}(A) := \mathbb{P}_A(f(X) = f(\xi))$$
,

where X is a random perturbation of ξ containing all words in A

- Question: what is the distribution of "X given A" in this definition?
 - default implementation: i.i.d. Bernoulli for each word not in A to decide removal, replace by UNK token if removed (more on that later)
 - generative model: for instance, using BERT⁴⁹ to generate the missing words,...
 - deterministic replacements: get word embedding and replace by word having similar embeddings,⁵⁰...

⁴⁹Devlin, Chang, Lee, Toutanova, *BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding*, Proc. ACL, 2019

⁵⁰Ribeiro, Singh, Guestrin, "Why should I trust you?" Explaining the prediction of any classifier, ACM SIGKDD, 2016

Sampling mechanism

The selection on the menu is great, and so is the food! The service is not bad, prices are fine.

the selection on the menu is great and so is the food the service is not bad prices are fine the selection on the menu is great and so is the food the service is not bad prices are fine the selection on the menu is great and so is the food the service is not bad prices are fine the selection UNKthe menu is great and so is the food the UNK is not bad prices UNK fine

Sampling mechanism

The selection on the menu is great, and so is the food! The service is not bad, prices are fine.

the selection on the menu is great and so is the food the service is not bad prices are fine the selection on the menu is great and so is the food the service is not bad prices are fine the selection on the menu is great and so is the food the service is not bad prices are fine the selection on the menu is great and so is UNK food the UNK is not bad prices are fine

Sampling mechanism

The selection on the menu is great, and so is the food! The service is not bad, prices are fine.

the selection on the menu is great and so is the food the service is not bad prices are fine the selection on the menu is great and so is the food the service is not bad prices are fine the selection on the menu is great and so is the food the service is not bad prices are fine

UNK selection on the menu UNKgreat and UNKUNKthe UNK the UNK UNKnot bad UNK are fine

Estimating Prec(A)

• wlog, one can assume that $f(\xi) = 1$

thus

$$\operatorname{Prec}(A) := \mathbb{P}_A(f(X) = 1)$$
.

- Remark: of course, impossible to compute in practice (too costly with UNK replacement, worse with BERT)
- **Solution:** Monte-Carlo estimate:

$$\widehat{\operatorname{Prec}}_n(A) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{f(X_i)=1},$$

where X_i i.i.d. draw from X

▶ in practice, n = 10

Coverage

Formal definition: let C be a given set of documents. For any anchor A, we define

 $\operatorname{Cov}(A) := |\{\delta \in \mathcal{C} \quad \text{s.t.} \quad \forall w \in A, w \in \delta\}|.$

- Remark: in practice, shorter anchors have higher coverage
- Why? think one common word: contain in many documents
- \blacktriangleright in the other direction, whole sentence \rightarrow only contained in one document
- since Cov(A) costly to compute, Anchors minimizes |A| instead of maximizing Cov(A)

Summary

- let $\varepsilon > 0$ be some tolerance threshold (by default, $\varepsilon = 0.05$)
- What is described originally:

 $\operatorname*{\mathsf{MaximizeCov}}_{A\in\mathcal{A}}(A) \hspace{0.1 in} ext{subject to} \hspace{0.1 in} \operatorname{Prec}(A) \geq 1-arepsilon \,.$

What the actual goal is:

$$\begin{array}{ll} \operatorname{\mathsf{Minimize}}_{A\in\mathcal{A}}|A| & \operatorname{\mathsf{subject}} \text{ to } & \widehat{\operatorname{Prec}}_n(A) \geq 1-\varepsilon \,. \end{array} \tag{\star}$$

- Additional caveat: if ξ has length b, $|\mathcal{A}| = 2^{b}...$
- ▶ What is done in practice: use KL-UCB⁵¹ to approximately solve (*)

⁵¹Kaufmann and Kalyanakrishnnan, Information complexity in bandit subset selection, COLT, 2013

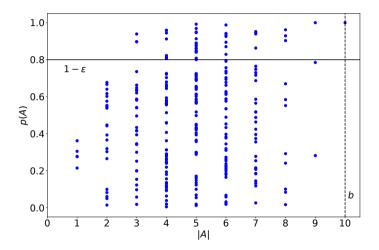


Figure: all anchors for a given example / classifier represented in the |A| / p(A) = Prec(A) space

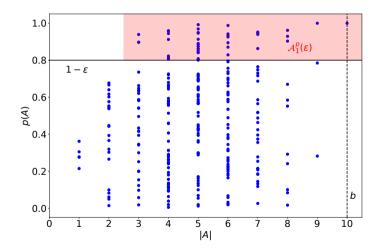


Figure: selecting $\mathcal{A}_1^p(\varepsilon)$, set of all anchors with evaluation higher than $1-\varepsilon$

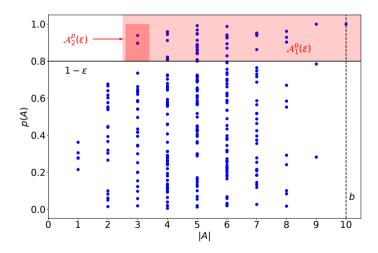


Figure: selecting $\mathcal{A}_2^p(\varepsilon)$, anchors with $p(A) \ge 1 - \varepsilon$ and minimal length

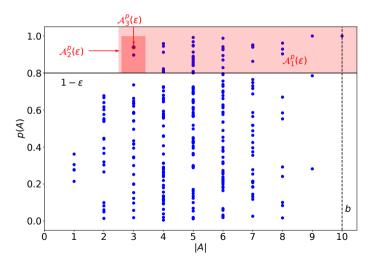


Figure: selecting $\mathcal{A}_{3}^{p}(\varepsilon)$, anchors with $p(A) \geq 1 - \varepsilon$, minimal length, and maximal p(A)

Summary

- rule selection via random perturbation
- interpretable features = subset of the words
- post-hoc, local method, with a global flavor
- very costly to run
- some theoretical limited theoretical analysis (indicator and linear models)⁵²

⁵²Lopardo, Precioso, Garreau, A sea of words: an in-depth analysis of Anchors for text data, AISTATS, 2023

6.6. A game-theoretical perspective: Shapley values

Shapley values

- **Setting:** *D*-player game⁵³
- ▶ characteristic function $v: 2^D \to \mathbb{R}$, gives the *value* of a coalition *S*
- total sum of gains the members of S can obtain by cooperation
- Idea: distribute fairly the total gains to the players, assuming that they all contribute

Definition: Shapley value of player *j*:

$$\phi_j(\mathbf{v}) = \sum_{S \subseteq [D] \setminus \{j\}} \frac{|S|!(D-|S|-1)!}{D!} (\mathbf{v}(S \cup \{j\}) - \mathbf{v}(S)) \;.$$

▶ Intuition: if player *j* plays much better than the others, then $v(S \cup \{j\})$ consistently higher than v(S), and $\phi_j(v) \gg 0$

⁵³Shapley, A value for n-person game, Contributions to the theory of games, 1953

Properties

Shapley values have nice theoretical properties:

• *efficiency:* sum of Shapley values = gain of the whole coalition:

$$\sum_j \phi_j(\mathbf{v}) = \mathbf{v}(\{1,\ldots,D\}).$$

symmetry: players with the same skills are rewarded equally:

$$\forall S \subseteq \{1,\ldots,D\}, \ v(S \cup \{j\}) = v(S \cup \{k\}) \quad \Rightarrow \quad \phi_j(v) = \phi_k(v).$$

Inearity: v and w two characteristic functions, then

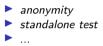
$$\forall j \in \{1,\ldots,D\}, \quad \phi_j(\mathbf{v}+\mathbf{w}) = \phi_j(\mathbf{v}) + \phi_j(\mathbf{w}).$$

null player: a player that does not bring anything is not rewarded:

$$\forall j \in \{1,\ldots,D\}, \quad v(S \cup \{j\}) = v(S) \quad \Rightarrow \quad \phi_j(v) = 0$$

Shapley values, ctd.

other nice properties:



more interestingly:

Theorem:⁵⁴ Shapley values are the only payment rule satisfying efficiency, symmetry, linearity, and null player.

- Question: connection with interpretability?
- \blacktriangleright we can see f as the reward and a subset of features as the player

Shapley regression values

Example: linear model

▶ for each subset of features $S \subseteq [D]$, retrain a model f_S only using the features in S

Definition:⁵⁵ the Shapley regression value associated to feature j is given by

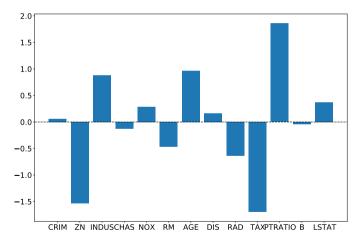
$$\phi_j := \sum_{S \subseteq [D] \setminus \{j\}} \frac{|S|!(D-|S|-1)!}{D!} \left(f_{S \cup \{j\}}(\xi_{S \cup \{j\}}) - f_S(\xi_S) \right) ,$$

where ξ_S is the restriction of ξ to S features.

⁵⁵Lipovetsky and Conklin, *Analysis of regression in game theory approach*, Applied Stochastic Models in business and industry, 2001

Shapley regression values

Example: output for linear regressor on Boston housing dataset



Shapley sampling values

there are two main problems with this approach:

- computational cost = $\mathcal{O}(2^D)$
- retraining the model each time
- ▶ a first solution: Shapley sampling values⁵⁶
 - subsample in the sum over all subsets
 - instead of retraining the model, mimic the removal a variables by randomly sampling over the training set
- in other words, replace $f_S(\xi_S)$ by

$$\mathbb{E}\left[f(x) \mid x_S = \xi_S\right] \,.$$

f can now be any model, provided that we can query efficiently

⁵⁶Štrumbelj and Kononenko, *Eplaining models and individual predictions with feature contributions*, Knowledge and information systems, 2014

Kernel SHAP

- still very costly to test all the coalitions
- ▶ Idea: linear regression on the presence / absence of features
- ▶ as before, define interpretable features $z \in \{0,1\}^d$, with $d \leq D$
- ▶ $h_{\xi}: \{0,1\}^d \to \mathbb{R}^D$ mapping function such that $h_{\xi}(\mathbf{1}) = \xi$

Definition (kernel SHAP)⁵⁷: define ϕ as the minimizer of

$$\sum_{z\in\{0,1\}^d}\frac{d-1}{\binom{d}{|z|}\cdot|z|\cdot(d-|z|)}\left(f(h_\xi^{-1}(z))-\phi^\top z\right)^2.$$

⁵⁷Lundberg and Lee, A Unified Approach to Interpreting Model Predictions, NeurIPS, 2017

Kernel SHAP

- can be seen weighted linear regression
- computational cost: $\mathcal{O}\left(2^d + d^3\right)$
- **Remark:** not practical if $d \gg 1$
- ▶ in that case, subsample: z_1, \ldots, z_n i.i.d. Bernoulli $\in \{0, 1\}^d$ and minimize for $\phi \in \mathbb{R}^d$

$$\sum_{i=1}^n \pi_i \cdot \left(f(h_{\xi}^{-1}(z_i)) - \phi^{\top} z_i\right)^2 \,,$$

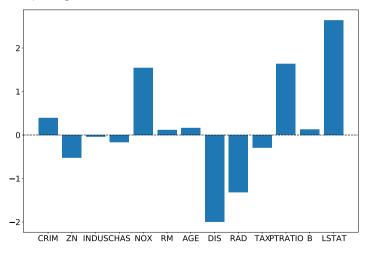
with

$$\pi_i := rac{d-1}{inom{d}{|z_i|} \cdot |z_i| \cdot (d-|z_i|)} \,.$$

Remark: very similar to LIME

SHAP, tabular example

Example: interpreting a linear model on the Boston dataset:



SHAP, tabular example

- we can also use the shap Python package
- really nice visualizations:

Kernel SHAP properties

assume f is linear, that is,

$$f(x) := \sum_{j=1}^d \lambda_j x_j + b \, .$$

Corollary:⁵⁸ If f is linear, then $\phi_0 = b$ and

$$\phi_j = \lambda_j (\xi_j - \overline{x}_j) \,,$$

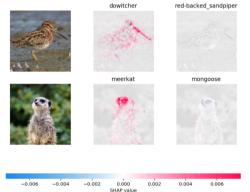
where \overline{x}_i is the mean of feature *j* on the dataset.

▶ we recover the coefficients of the linear model multiplied by the (normalized) input

⁵⁸ibid

Extensions

- Kernel SHAP is not restricted to tabular data
- **Example:** explaining the predictions of VGG16 for two classes



Summary

Advantages:

- ► Kernel SHAP can be used on any model
- can take advantage of specific architectures:
 - ► *TreeSHAP*⁵⁹ (tree-based predictors)
 - DeepSHAP (DeepLIFT⁶⁰ + Shapley values)

Inconvenients:

- ▶ costly to run⁶¹
- not easy to read if many features

⁵⁹Lundberg et al., *Consistent individualized feature attribution for tree ensembles*, arxiv, 2018 ⁶⁰Shrikumar et al., *Learning important features through propagating activation differences*, ICML, 2017 ⁶¹improving the efficiency is work in progress, *e.g.*, Covert and Lee, *Improving KernelSHAP: Practical Shapley Value Estimation via Linear Regression*, AISTATS, 2021