
6.4. LIMESegment
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Time series classification
▶ Time series: ordered sequence of T observations
▶ Example:44 ECG from one heartbeat, detect ischemia or not
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44Olszewski, Generalized feature extraction for structural pattern recognition in time-series data, Carnegie
Mellon, 2001
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LIMESegment
▶ Idea:45 adapt the LIME framework to time series
▶ similar high-level operation (differences in bold):

1. create interpretable features
2. sample n perturbed samples x1, . . . , xn from ξ
3. weight the xi s
4. train a local surrogate model

▶ Output: highlight important parts of the time-series
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45Sivill, Flach, LIMESegment: Meaningful, Realistic Time Series Explanations, AISTATS, 2022
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Step 1: interpretable features

▶ Interpretable features: homogeneous segments in the time series
▶ standard problem (usually called change-point detection46)
▶ proposed methodology: NNSegment
▶ Reminder: empirical mean: let A ∈ Rℓ,

A ··=
1
ℓ

ℓ∑
i=1

Ai .

▶ Reminder: empirical covariance / variance:

Ĉor(A,B) ··=
1

ℓ− 1

ℓ−1∑
i=1

(Ai − A)(Bi − B) , V̂ar(A) ··=
1

ℓ− 1

ℓ∑
i=1

(Ai − A)2 .

46Truong, Oudre, Vayatis, Selective review of offline change-point detection methods, Signal Processing, 2020
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Step 1: interpretable features

▶ let ws be a fixed window size, define

xa:b ··= (xa, xa+1, . . . , xb)⊤ .

▶ for a given window size ws , define wi ··= xi :(i+ws )
▶ Definition: normalized cross-correlation (a.k.a. sample correlation):

∀s1, s2 ∈ [T − ws ], ψ(ws1 ,ws2) ··=
Ĉor(ws1 ,ws2)√

V̂ar(ws1)V̂ar(ws2)
.

▶ Intuition: higher is better (= more similar)
▶ Examples:

▶ if ws1 = ws2 , then Ĉor(ws1 ,ws2 ) = 1
▶ if ws1 and ws2 are “independent,” then Ĉor(ws1 ,ws2 ) = 0
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Step 1: interpretable features

▶ back to NNSegment:
1. compute all pairwise correlations between segments ψ(s1, s2)
2. connect each segment ot its nearest neighbor
3. group adjacent segments together (nearest neighbor = next segment)

▶ Further refinement: look at difference in signal to noise ratio

ρ(wi ,wj) ··=
∣∣∣∣µ(wi)
σ(wi)

− µ(wj)
σ(wj)

∣∣∣∣ ,
and then:
▶ if ρ(wi ,wi−ws ) > ρ(wi ,wi+ws ), group i with i + ws
▶ if ρ(wi ,wi−ws ) < ρ(wi ,wi+ws ), group i with i − ws

▶ stop doing this when we have reached the user-specified number of segments T
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Step 1: interpretable features

▶ Output: segmented signal
▶ Example: here we obtain 4 segments, that is, 3 breakpoints
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Step 2: perturbed examples
▶ Idea: identify background signal in the spectral domain
▶ Discrete Short Time Frequency Transform (STFT): → time-frequency domain
▶ Example: (local) spectrogram of superposition of sine waves
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Step 2: perturbed samples

▶ identify a persistent frequency, map it back via inverse STFT
▶ Example: perturbing the last segment of the signal
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Step 3: weights

▶ similar idea: exponential weights depending on a distance
▶ Issue: Euclidean distance between the zi does not reflect distance between signals
▶ Dynamic time warping (DTW):47 distance between signals taking alignment into

account
▶ formally,

DTW(x , x ′)2 ··= min
π∈P(x ,x ′)

∑
(i,i′)∈π

d(xi , x ′
i′) ,

where π is an admissible path
▶ namely:

▶ π1 = (1, 1) (beginning of signals matched together);
▶ πK = (S,T ) (end of signals matched together);
▶ writing πk as (ik , i ′

k), both i and i ′ are non-decreasing.

47Bellman, Kalaba, On adaptive control processes, IRE Transactions on Automatic Control, 1959
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Summary

▶ Final steps: surrogate model as before (ridge), coefficients given as importance
▶ Main message: a lot depends on the data-type and the kind of perturbation we want
▶ results depends a lot on the segmentation / sampling scheme
▶ no existing theoretical analysis
▶ many other methods48

48see Theissler et al., Explainable AI for Time Series Classification: A review, taxonomy and research
directions, for an overview
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6.5. Anchors
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Notation and first definitions
▶ Back to text: ξ = document to explain = ordered sequence of tokens (ξ1, . . . , ξT ), f =

classifier

Definition: we define an anchor A as an ordered subset of the words of ξ. We let A be
the set of all possible non-empty anchors.

▶ two key definitions:
1. precision = probability of same classification knowing that the document contains A
2. coverage = how many documents in the dataset contain A

▶ one-sentence summary: find anchor with prescribed precision and maximal coverage

The selection on the

menu is great, and so

is the food! The

service is not bad,

prices are fine.

=⇒ Prec(A) = 0.97
Cov(A) = 0.12
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How precision is computed

▶ Formal definition:
Prec(A) ··= PA (f (X ) = f (ξ)) ,

where X is a random perturbation of ξ containing all words in A
▶ Question: what is the distribution of “X given A” in this definition?

▶ default implementation: i.i.d. Bernoulli for each word not in A to decide removal, replace
by UNK token if removed (more on that later)

▶ generative model: for instance, using BERT49 to generate the missing words,...
▶ deterministic replacements: get word embedding and replace by word having similar

embeddings,50...

49Devlin, Chang, Lee, Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding, Proc. ACL, 2019

50Ribeiro, Singh, Guestrin, “Why should I trust you?” Explaining the prediction of any classifier, ACM
SIGKDD, 2016
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Sampling mechanism
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Sampling mechanism
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Sampling mechanism
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Estimating Prec(A)

▶ wlog, one can assume that f (ξ) = 1
▶ thus

Prec(A) ··= PA (f (X ) = 1) .
▶ Remark: of course, impossible to compute in practice (too costly with UNK replacement,

worse with BERT)
▶ Solution: Monte-Carlo estimate:

P̂recn(A) ··=
1
n

n∑
i=1

1f (Xi )=1 ,

where Xi i.i.d. draw from X
▶ in practice, n = 10
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Coverage

▶ Formal definition: let C be a given set of documents. For any anchor A, we define

Cov(A) ··= |{δ ∈ C s.t. ∀w ∈ A,w ∈ δ}| .

▶ Remark: in practice, shorter anchors have higher coverage
▶ Why? think one common word: contain in many documents
▶ in the other direction, whole sentence → only contained in one document
▶ since Cov(A) costly to compute, Anchors minimizes |A| instead of maximizing Cov(A)
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Summary

▶ let ε > 0 be some tolerance threshold (by default, ε = 0.05)
▶ What is described originally:

Maximize
A∈A

Cov(A) subject to Prec(A) ≥ 1 − ε .

▶ What the actual goal is:

Minimize
A∈A

|A| subject to P̂recn(A) ≥ 1 − ε . (⋆)

▶ Additional caveat: if ξ has length b, |A| = 2b...
▶ What is done in practice: use KL-UCB51 to approximately solve (⋆)

51Kaufmann and Kalyanakrishnnan, Information complexity in bandit subset selection, COLT, 2013
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Visualization
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Figure: all anchors for a given example / classifier represented in the |A| / p(A) = Prec(A)
space 160



Visualization
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Figure: selecting Ap
1(ε), set of all anchors with evaluation higher than 1 − ε
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Visualization
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Figure: selecting Ap
2(ε), anchors with p(A) ≥ 1 − ε and minimal length
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Visualization
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Figure: selecting Ap
3(ε), anchors with p(A) ≥ 1 − ε, minimal length, and maximal p(A)
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Summary

▶ rule selection via random perturbation
▶ interpretable features = subset of the words
▶ post-hoc, local method, with a global flavor
▶ very costly to run
▶ some theoretical limited theoretical analysis (indicator and linear models)52

52Lopardo, Precioso, Garreau, A sea of words: an in-depth analysis of Anchors for text data, AISTATS, 2023
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6.6. A game-theoretical perspective:
Shapley values
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Shapley values
▶ Setting: D-player game53

▶ characteristic function v : 2D → R, gives the value of a coalition S
▶ total sum of gains the members of S can obtain by cooperation
▶ Idea: distribute fairly the total gains to the players, assuming that they all contribute

Definition: Shapley value of player j :

ϕj(v) =
∑

S⊆[D]\{j}

|S|!(D − |S| − 1)!
D! (v(S ∪ {j}) − v(S)) .

▶ Intuition: if player j plays much better than the others, then v(S ∪ {j}) consistently
higher than v(S), and ϕj(v) ≫ 0

53Shapley, A value for n-person game, Contributions to the theory of games, 1953
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Properties

▶ Shapley values have nice theoretical properties:
▶ efficiency: sum of Shapley values = gain of the whole coalition:∑

j

ϕj(v) = v({1, . . . ,D}) .

▶ symmetry: players with the same skills are rewarded equally:

∀S ⊆ {1, . . . ,D}, v(S ∪ {j}) = v(S ∪ {k}) ⇒ ϕj(v) = ϕk(v) .

▶ linearity: v and w two characteristic functions, then

∀j ∈ {1, . . . ,D}, ϕj(v + w) = ϕj(v) + ϕj(w) .

▶ null player: a player that does not bring anything is not rewarded:

∀j ∈ {1, . . . ,D}, v(S ∪ {j}) = v(S) ⇒ ϕj(v) = 0 .
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Shapley values, ctd.

▶ other nice properties:
▶ anonymity
▶ standalone test
▶ ...

▶ more interestingly:

Theorem:54 Shapley values are the only payment rule satisfying efficiency, symmetry,
linearity, and null player.

▶ Question: connection with interpretability?
▶ we can see f as the reward and a subset of features as the player

54ibid
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Shapley regression values

▶ Example: linear model
▶ for each subset of features S ⊆ [D], retrain a model fS only using the features in S

Definition:55 the Shapley regression value associated to feature j is given by

ϕj ··=
∑

S⊆[D]\{j}

|S|!(D − |S| − 1)!
D!

(
fS∪{j}(ξS∪{j}) − fS(ξS)

)
,

where ξS is the restriction of ξ to S features.

55Lipovetsky and Conklin, Analysis of regression in game theory approach, Applied Stochastic Models in
business and industry, 2001
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Shapley regression values
▶ Example: output for linear regressor on Boston housing dataset

CRIM ZN INDUSCHAS NOX RM AGE DIS RAD TAXPTRATIO B LSTAT
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0.5
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0.5

1.0

1.5

2.0
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Shapley sampling values

▶ there are two main problems with this approach:
▶ computational cost = O

(
2D)

▶ retraining the model each time
▶ a first solution: Shapley sampling values56

▶ subsample in the sum over all subsets
▶ instead of retraining the model, mimic the removal a variables by randomly sampling over

the training set
▶ in other words, replace fS(ξS) by

E [f (x) | xS = ξS ] .

▶ f can now be any model, provided that we can query efficiently

56Štrumbelj and Kononenko, Eplaining models and individual predictions with feature contributions,
Knowledge and information systems, 2014
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Kernel SHAP

▶ still very costly to test all the coalitions
▶ Idea: linear regression on the presence / absence of features
▶ as before, define interpretable features z ∈ {0, 1}d , with d ≤ D
▶ hξ : {0, 1}d → RD mapping function such that hξ(1) = ξ

Definition (kernel SHAP)57: define ϕ as the minimizer of∑
z∈{0,1}d

d − 1( d
|z|
)

· |z | · (d − |z |)

(
f (h−1

ξ (z)) − ϕ⊤z
)2

.

57Lundberg and Lee, A Unified Approach to Interpreting Model Predictions, NeurIPS, 2017
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Kernel SHAP

▶ can be seen weighted linear regression
▶ computational cost: O

(
2d + d3)

▶ Remark: not practical if d ≫ 1
▶ in that case, subsample: z1, . . . , zn i.i.d. Bernoulli ∈ {0, 1}d and minimize for ϕ ∈ Rd

n∑
i=1

πi ·
(

f (h−1
ξ (zi)) − ϕ⊤zi

)2
,

with
πi ··=

d − 1( d
|zi |
)

· |zi | · (d − |zi |)
.

▶ Remark: very similar to LIME
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SHAP, tabular example
▶ Example: interpreting a linear model on the Boston dataset:

CRIM ZN INDUSCHAS NOX RM AGE DIS RAD TAXPTRATIO B LSTAT
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SHAP, tabular example
▶ we can also use the shap Python package
▶ really nice visualizations:
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Kernel SHAP properties

▶ assume f is linear, that is,

f (x) ··=
d∑

j=1
λjxj + b .

Corollary:58 If f is linear, then ϕ0 = b and

ϕj = λj(ξj − x j) ,

where x j is the mean of feature j on the dataset.

▶ we recover the coefficients of the linear model multiplied by the (normalized) input

58ibid
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Extensions
▶ Kernel SHAP is not restricted to tabular data
▶ Example: explaining the predictions of VGG16 for two classes
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Summary

Advantages:
▶ Kernel SHAP can be used on any model
▶ can take advantage of specific architectures:

▶ TreeSHAP59 (tree-based predictors )
▶ DeepSHAP (DeepLIFT60 + Shapley values)

Inconvenients:
▶ costly to run61

▶ not easy to read if many features

59Lundberg et al., Consistent individualized feature attribution for tree ensembles, arxiv, 2018
60Shrikumar et al., Learning important features through propagating activation differences, ICML, 2017
61improving the efficiency is work in progress, e.g., Covert and Lee, Improving KernelSHAP: Practical Shapley

Value Estimation via Linear Regression, AISTATS, 2021
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