Introduction to Informatics
for Students from all Faculties

Prof. Dr. Ingo Scholtes

Chair of Machine Learning for Complex Networks
Center for Artificial Intelligence and Data Science (CAIDAS)
Julius-Maximilians-Universitat Wiirzburg
Wirzburg, Germany

ingo.scholtes@uni-wuerzburg.de

Lecture 04
Programming Languages

November 12, 2024

Notes:

* Lecture LO4: Programming Languages 1211.2024

+ Educational objective: We introduce high-level programming languages and explain the difference between
compiled and interpreted languages.
- 0S User Interfaces
- Machine Instructions and Assembly Language
- High-Level Programming Languages and Compilers
- Interpreted Languages: Python

+ Exercise Sheet 3 due 26.11.2024

Motivation

» we have taken a top-down approach to study the
hardware/software interface

P> we investigated how programs are executed at the level
of machine code

» we introduced key functionality of operating systems
and discussed the abstraction of processes

» we discussed how multi-tasking allows to execute
multiple processes simultaneously

open questions
» how can humans interact with the operating system?
» how can we write programs that solve actual problems?

» how can we translate code that is understandable for humans
to instructions that can be executed by the CPU?

Ingo Scholtes Introduction to Informatics

64a:
64b:
64c:
64e:
64f:
652:
653:
659:
65a:
65d:
65e:
661:
662:
664:
665:
66b:
670:
675:
67a:
67b:
67c:

83 ec 10

8d @5 ab 00 oo oo

89 45 f8

8b 45 f8

8d 3d a7 @0 o0 e
b8 @@ @0 ee ee
e8 ab fe ff ff

b8 6@ @0 ee ee

9

c3

ef 1f 40 ee

push
dec
mov
dec
sub
dec
lea
dec
mov
dec
mov
dec
mov
dec
lea
mov
call
mov
leave
ret
nopl

%ebp

Jeax

%esp ,%ebp

Jeax

$0x10,%esp

Jeeax

©xab,%eax

Jeax

%eax , -8x8(%ebp)
Feax

-6x8(%ebp) ,%eax
%eax

%eax,%esi

Jeeax

©exa7,%edi
$exe,%eax

520 <printf@plt>
$0x8, %eax

©x0(%eax)

A simple Hello World program in machine code

Lecture 04: Programming Languages

November 12, 2024

Notes:

Reminder: Multi-Tasking

» 0S can use multi-tasking to execute multiple ProcessA | ProcessB = Process C
processes concurrently (even on a single CPU) (inactive) | SRR | (inactive)
» every few milliseconds, OS performs context instr:fjtions instructions
X . and data and data
switch between running processes
» context switch from process A to B requires to - —
switch execution context registers registers
context switch from process Ato B
1. interrupt execution of program by CPU Operating System
2. save current values in CPU registers (incl. PC) to memory, which (Windows, Linux, Mac OS X, ...)
fully determine execution state of process A
3. restore previously saved CPU registers of process B from
Hardware

memory
4. continue execution of program by CPU
instructions

registers ardl ek

» 0S scheduler fairly allocates CPU time

» preemptive scheduler forces context switches

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024

Notes:

1. The opposite of preemptive scheduling is called coooperative scheduling. This means that a context switch can
only happen if a process “voluntarily” surrenders the CPU periodically, such that another process can take over.
Early operating systems like Windows (before Windows 95) or Mac OS (before Mac OS X) in the 1990s used

cooperative scheduling, which intreoduced the problem that the whole computer freezes if a single process is
implemented badly.

Launching a process

> we can use OS to launCh a hew proceSS that Process A Process B Process C
executes a program (inactive) | (inactive) | (active)
» reminder: process = one instance of program instr:Ztions instructions
and data and data
executed by CPU
launching a proces T oy
1. OS reads “executable file” from hard drive/SSD registers registers

and copies it into main memory (RAM)

2. “executable file” contains machine instructions Operating System
and data (Windows, Linux, Mac OS X, ...

3. OS sets program counter of CPU to address of first
machine instruction in main memory Hardware

4. OS transfers control to CPU (until next context e
. a Instructions
switch) registers and data

» how can we tell OS to launch a new process?

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024

Notes:

Graphical User Interfaces (GUI)

» modern operating systems provide an intuitive and
human-friendly graphical user interface (GUI)

» key functions of OS (e.g. launching a process) can be
accessed in an intuitive way (e.g. by double-clicking
program icon with the mouse)

» 0S provides special program (e.g. file explorer or finder)
to manage files on permanent storage (hard drive, SSD)
or network shares

» multi-tasking is typically represented by multiple
program windows or icons that represent running
processes

aLOo-€m

definition

A graphical user interface (GUI) provides access to the
functions of a program or OS by allowing the user to
manipulate visual icons and indicators, typically by
means of a touch pad, touch screen, or mouse.

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024

Notes:

Command line Interfaces

» in addition to GUI, all major operating systems provide
text-based command line interfaces (CLI)

» Windows: command line/PowerShell
P Linux/Mac OS X: terminal

» CLI provides full access to all functions of an 0S

examplary commands (Linux-based 0S)

command meaning
cd change directory
1s list files in current directory
rm remove file or directory
mv move/rename file or directory
ps list running processes

./<executable> launch new process for program

» command-line interpreter executes commands

» CLI can be programmed via “scripts” (commands in text
file)

goya:/mnt/c/Users/
B e 5

total 1864
druxrwxeex 1 ingo ingo 512 Oct 7 13:84
druxrwxewx 1 ingo ingo 512 Oct 6 23:38
-ruxrxewx 1 ingo ingo 5248 Oct 7 13:04
“ruxruxwx 1 ingo ingo 38059 Oct 7 13:04 Le:
“ruxruxrwe 1 ingo ingo 163372 Oct 7 13:04 L.
“ruxruxwx 1 ingo ingo 61423 Oct 7 13:04
“ruxruxrwx 1 ingo ingo 3074 Oct 7 13:04
-ruxrxewx 1 ingo ingo 764 Oct 7 13:04
“ruxruxrwx 1 ingo ingo 1094320 Oct 7 13:04
“ruxruxrwx 1 ingo ingo 6 oct 7 13:04
-ruxruxrwx 1 ingo ingo 27176 Oct 7 13:04
-ruxruxrwx 1 ingo ingo 9477 Oct 7 13:0:
“ruxruxrwx 1 ingo ingo 7 13:04
-ruxrxewx 1 ingo ingo 477430 Oct 6 69:5:

druxruxrux 1 ingo ingo 512 Oct
druxruxrux 1 ingo ingo 512 Oct
srexrwsnwx 3 ngo ngo 7356 oct

user 0 AP WEN VS RSSTTY STAT START TIME comuan
c0s » Ssl 1155 6:06 /init
316 ttyl Ss 12103 0160 /init
sty s 12ie3

2108 tey1

goya: /mt /c/Users/ ingos/Documents/orkbench/teaching/ 202
& Langusges$

Command line interface of Ubuntu Linux

definition

A command-line interface (CLI) accepts text-based
commands to launch and manage processes, manage
files, or update system settings.

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024

ingos/Documents/uorkbench/ teaching/2022_iiSe_Informatics_Jurists/L62 -

workbench/teaching/2022_Wise_Informatics_Jurists/Le2 -

workbench/teaching/2622_Wise_Tnformatics_durists/Le2 -

iSe_Tnformatics_Jurists/La2 -

Notes:

Practice Session

we locate the command line interface (CLI) of our OS contents of section .text:

©530 31ed4989 d15e4889 e24883e4 f0©50544c
8540 8de58a01 8?664‘?8d ?dlSBlBE 00488d3d
we use the CLI to launch a process that executes a D s s A (e
. ©570 3984889 e5741948 Sb@SS?@a 20004885
simple HelloWorld program e

4000662e

0520 488d3d69 ©a200048 8d35620a 20005548

> . d k.ll 85b0 29fe4889 e548clfe 03488910 48cle83f
- - ©5c0 4801c648 d1fe7418 488b0521 ©a200048
we use GUI- and CLI-based tools to monitor and ki S50 (D GG/ il G
. ©5e@ 5dc3eflf 4000662e ©f1f8400 ©BEOLE0Q
I’unnlng processes ©5f0 803d190a 20000075 2f48833d 7092000
9600 00554889 e5740c48 8b3dfa®9 2000e80d
8610 ffffffe8 48ffffff c605f109 2800015d
. 3 . 0620 c30f1f80 00BEELRe f3c3660f 11448000
» we use the Linux-based CLI-tool objdump to inspect oes0 55488ses SdeSeGtf FFirss4s ssesisss
. 0640 ec10488d ©59b0000 00488945 f8488b45
0650 f84889c7 e8b7feff ffb8eeGE ©000c9c3
machine code instructions contained in an executable PusefrassuncifeseTie nhgnbeacooloaoRca:
8670 20005548 8d2d46087 20085341 89fd4989
ﬁ le 0680 f64c29e5 4883ec@8 48c1fde3 e857feff
8690 ff4885ed 742 db ef1f8400 00008000
©6a0 4c89fadc 8964489 ef41ffl4 dca883c3
©6b0 014839dd 75ea4883 c4085b5d 415c415d
©6c0 415e415f c390662e ©f1f8400 ©BEOLE0Q
06de f3c3

practice session

see directory 04-01in gitlab repository at

— https://gitlab2.informatik.uni

s_notebook:

_infhaf_not

Ingo Scholtes Introduction to Informatics mming Languages November 12, 2024

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Notes:

Programming in machine language?

» machine code is designed to make execution by CPU as sha: 55 push %abp
fast as possible e B v D
64f: 83 ec 10 sub $ox1e,%esp
. 652: 48 dec %eax
» machine code is not optimized to be written or read by 653: &d @5 ab 00 00 00 lea o, eax
659: 48 lec ax
humans = oa" A
65e: 8b 45 f8 mov -0x8(%ebp) ,%eax
. . 661: 48 dec %eax
» requires us to manually address registers, store values cs2: 85 co mov %eax,%esi
664: 48 dec %eax
at addresses in memory, remember cryptic machine G 20209 EIEIED I Gz
66b: b8 00 00 o0 oo mov $9x6,%e§x
instructions, etc. &75: s o0 05 0 00 o Soogem
67a: e} leave
. 67b: c3 ret
» machine code is specific to CPU architecture, i.e. 67c: of 1f 40 00 nopl 0x0(%eax)

programs in machine code are not portable
A simple Hello World program in machine code

challenges

1. how can we make programming simple and (actually) enjoyable for human
programmers?

2. how can we write portable programs that are independent of the processor
architecture?

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024

Notes:

Assembly language

» assembly language is a low-level language that
simplifies writing of machine code

» different from machine code, assembly language allows o

symbolic labels, directives, and comments EXEN

» assembler (software) translates assembly program to

machine instructions

» strong but not strict correspondence between assembly
language and machine instructions

» developer maintains control over machine instructions,
i.e. programs are (potentially) very fast

> but: assembly code is still not portable Motorola 6800 assembler program

image credit: Wikipedia, public domain

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024

Notes:

High-Level Languages

> idea: use programming language with higher-level int k = 1;
abstractions that are easy to understand by humans int | =1
» high-level languages typically provide (at least) the for (int i=0; i<10; i++) {
following abstractions I'(“E tf ke L
» symbolic variables (with data types), e.g. int k = 42 [= t
» complex types and data structures (text, list, queue, etc.) }
P control structures to influence control flow in a program
char* text = "Result: %s\n";

» functions or routines that can be called for code reuse printf(text, 1);

» compiler (software) translates program in high-level
language to simpler machine instructions

» original program = source code
» compiled program = executable or binary

» many compilers can generate binaries for multiple
processor architectures (cross-compilation)

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024

Notes:

Variables vs. registers or memory addresses

» in machine code, we use registers and addresses in main
memory to store data

1. need to manually move values between registers and
main memory

2. need to specify registers/memory based on address (i.e.
register R2 or Ox4a2f)

high-level languages allow to store values in variables

P we use assignment operator = to assign value to
variable, i.e. contents can change during runtime

» variable can refer to address in memory or CPU register
(decided by compiler)

» in statically-typed languages, variables have types (e.g.
32-bit integer or list of 8-bit characters)

int k = 1;
int | = 1;

for (int i=0; i<10; i++) {
int t =k + L;
k = L;
l = t;

}

char* text = "Result: %s\n";
printf(text, |);

definition

In high-level programming languages, a variable is a
symbolic name for an abstract storage location, i.e. it
is a “named container” that can hold a value that can
change during the runtime of a process.

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024

Notes:

From source code to executables...

source_code.c

int main(void) {

intx=42;
inty =43;
intz=0;

for (int i=0; i<10; i++) {
intt =x+y;
z+=t;

}
printf(“%s\n‘, z)

advantages

i1

Ingo Scholtes

massively simplifies programming: increases productivity and
reduces errors

makes it easier to maintain complex software systems

allows to perform automatic optimizations at the level of
machine code

facilitates writing of source code that is portable across
processor architectures

for copyright/security reasons)

Introduction to Informatics

distribution of executables hinders access to source code (e.g.

—» Compiler > : -

program.exe

pu
1

disadvantages

13

Lecture 04: Programming Languages

no direct correspondence between high-level and machine
instructions

lack of control which specific instructions are executed
hinders manual optimization of machine instructions

possible introduction of errors/security issues, i.e. we need to
trust the compiler

distribution of executables hinders access to source code (i.e.
requires to trust executable)

November 12, 2024

Notes:

The C programming language
> general-purpose programming language created by
Ritchie and Thompson in 1972 as successor to language B

» one of the most important and widely-used
programming languages

> statically-typed language, i.e. we must specify type of
variable

» C compilers support virtually any processor architecture
limitations of C
» error-prone dynamic allocation/release of memory

» lack of object-oriented abstractions

» basis for object-oriented “successors”
C++ (1979) and Objective-C (Apple, 1984)

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages

#include <stdio.h>
#include <unistd.h>

int main(void) {

char* text = "Hello World!";
printf("%s\n", text);
sleep (5);

}

November 12, 2024 12

Notes:

Software libraries

> self-contained programs must implement all functions
that are needed by the software that we want to develop

» analogy: if you write a book, you can rely on (and refer

to) common knowledge published by other authors

Application

Library

P software libraries contain common functionality that
can be reused by other programs

1.
2.

binary libraries with machine instructions
library with reusable source code

» most high-level programming languages provide
standard libraries for common tasks

>

vvyy

Ingo Scholtes

complex mathematical operations
reading/writing from/to files
network communication

graphics and visualization

Introduction to Informatics Lecture 04: Programming Languages

Library Library

Operating System

(Windows, Linux, Mac OS X, ...)

Hardware
(CPU, Memory, Disks, ...)

November 12, 2024

Notes:

Application Programming Interfaces

» software library provides application programming
interface (API) that enables us to access common
functions

P> analogy: table of contents in a book, which gives page
number for each “topic”

P API specifies details that are required to call function

» name of function

» number, type and semantics of parameters that caller
must provide

» semantics and type of return value that is returned by
the function

» example 1: C library stdio provides function printf
that outputs text via CLI

» example 2: python module math provides function
sqrt that returns square root of given value

getopt(int, char * const[], const char); (LEGACY)
*gsts(char *);

getw(FILE *);

pclose(FILE *);

perror(const char *);

*popen(const char *, const char *);
printf(const char *, ...);

putc(int, FILE *);

putchar(int);

putc_unlocked(int, FILE *);
putchar_unlocked(int);

puts(const char *);

putw(int, FILE *);

remove(const char *);

rename(const char *, const char *);
rewind(FILE *);

scanf(const char *, ...);

setbuf(FILE *, char *);

setvbuf(FILE *, char *, int, size_t);
snprintf(char *, size_t, const char *, ...);
sprintf(char *, const char *, ...);
sscanf(const char *, const char *, int ...);
*tempnam(const char *, const char *);
*tmpfile(void);

*tmpnam(char *);

ungetc(int, FILE *);

vfprintf(FILE *, const char *, va_list);
vprintf(const char *, va_list);
vsnprintf(char *, size_t, const char *, va_list);
vsprintf(char *, const char *, va_list);

excerpt of API of C Standard Library stdio

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages

November 12, 2024

Notes:

Practice Session

P> we write a simple program in the high-level #include <stdio.h>

[anguagec #include <unistd.h>
. . . int main(void) {
» we use two library functions .to print text and char* text = "Hello World!":
to pause the program execution printf("%s\n", text);
sleep(5);

P we use the compiler gcc to compile the source !
code to an executable program

practice session

see directory 04-02 in gitlab repository at

— https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 15

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Notes:

Compiled vs. interpreted languages

» compiler translates program in high-level language to

. . definition
machine code before it can be executed

i . An interpreter is a software that directly executes
> compiled binaries are not portable instructions written in a programming language,

» users may need to compile source code without requiring its prior compilation to machine
» each change requires to recompile source code code.

> interpreter can directly execute instructions in a
high-level programming language

P interpreter is program that reads and executes source
code, i.e. process = instance of interpreter that executes
code in a file

no need for (re)compilation, no non-portable binaries

interpreted languages are typically slower than
compiled languages (but not necessarily)

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024

Notes:

Introducing Python

» python is the most popular interpreted programming
language

» widely-used for data processing, analytics, and machine
learning

P object-oriented with automatic memory management,
i.e. memory is automatically allocated and released

» dynamically-typed language, i.e. types of variables are
automatically inferred (and can change) at runtime

Guido van Rossum, developer of python
» user-friendly, great for beginners in programming

image credit: Wikpedia, Doc Searls, CC BY-SA 2.0

» rich ecosystem of software libraries (modules) that
implement almost any imaginable functionality

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024

Notes:

Basic python syntax

» python programs are stored in text files (typically with import time
extension .py)
Py def main():
» one line in text file = one instruction for i in range(s5):
text = "Hello World!"
- print(text)
y python statements
text = 42
» assignment (=) used to assign value to a variable print(text)
» def used to define a function sleep (5)
> import statement used to import functions from modules
> if and else used to conditionally execute instructions
» for and while used to repeatedly execute instructions in a loop
> “blocks” of instructions grouped by indentation level
» python is whitespace-sensitive, i.e. placement of

newline, space or tab characters changes semantics

» python enforces meaningful formatting of code, making
programs easy to read for humans

Ingo Scholtes Introduction to Informatics November 12, 2024 18

Lecture 04: Programming Languages

Notes:

Practice Session

> we install the Open Source python distribution

import time

Anaconda
def main():
: : « " . text = "Hello World!"
P> we write a simple “Hello World” program in python print (text)
. text = 42
» we use the python interpreter to execute our program print(text)
sleep (5)

> we inspect running processes during the execution of
our program

practice session

see directory 04-03 in gitlab repository at

— https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Notes:

Integrated Development Environment (IDE)

> all we need to write python program is text editor and
python interpreter (i.e. executable python. exe)

» sufficient for small single-file programs

» what about complex software with hundreds of files and
millions of lines in code?

> integrated development environments (IDEs) are
specialized tools to support and simplify development
of complex software

» IDEs provide advanced functions to edit and format
code, semantically highlight/color keywords, compile
and/or execute program, and find errors

Open Source IDE Visual Studio Code

definition

An Integrated Development Environment (IDE) is a
software that simplifies the programming of
computers. It minimally provides functions to edit
source code files, compile and/or execute programs,
and find errors at compile- and run-time.

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 20

Notes:

Practice Session

» we use the integrated development environment (IDE) import time
Visual Studio Code to write and execute a simple
def main():
Python program text = "Hello World!"
print(text)
> we use VS Code to rename variables and refactor code text = 42
print(text)
» we use the debugger of Visual Studio Code for a steep (5)

step-wise execution of python statements

practice session

see directory 04-04 in gitlab repository at

— https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024

21

https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Notes:

>

In summary

we inspected the GUI and the CLI of modern operating
systems

we motivated the use of high-level programming
languages

we explained the difference between compiled and
interpreted languages

we introduced the popular interpreted high-level
panguage python and wrote a first program

open issues

>
>
>

Ingo Scholtes Introduction to Informatics

how can we use high-level languages to solve actual problems?

what are algorithms and how we can we implement them?

need to develop algorithmic thinking, which is key to understand how
computer scientists think and work.

64a:
64b

64c:
6de:
64f:
652:
653:
659:
65a:
65d:
65e:
661:
662:
664:
665:
66b:
670:
675:
67a:
67b:
67c:

Lecture 04: Programming Languages

push
dec
e5 mov
dec
ec 10 sub
dec
@5 ab 00 60 00 lea
dec
45 f8 mov
dec
45 8 mov
dec
c6 mov
dec
3d a7 @@ 00 @0 lea
00 0@ e ee mov
ab fe ff ff call
00 oe oe ee mov.
leave
ret
1f 40 o0 nopl

November 12, 2024

%ebp

Jeax

%esp,%ebp

Yeax

$0x10,%esp
Zeax

©xab,%eax

Feax

S%eax, -Ox8(%ebp)
%eax
-ex8(%ebp) , %eax
Zeax

Seax,%esi

Feax

©exa7,%edi
$0x0,%eax

520 <printf@plt>
$exe, %eax

Oxe(%eax)

22

Notes:

Self-study questions

1. Explain the difference of a GUI and a CLI of an operating system. Which one is more intuitive?
Which one is more powerful?

2. Explain the steps taken by an OS to launch a process that executes a HelloWorld program
stored in an executable file.

3. Explain the difference between machine instructions and assembler code.

4. What are the advantages of high-level programming languages like C compared to assembler?

List abstractions provided by a high-level programming language that are not provided by

machine instructions?

What is a variable in a high-level language?

What is the difference between statically- and dynamically-typed programming languages?

What is a compiler and what is an interpreter?

Explain the steps needed to write and execute a Hello World program written in the

programming language C.

10. Explain the steps needed to write and execute a Hello World program written in the

programming language python.
11. What are advantages/disadvantages of compiled and interpreted programming languages?
12. What advantages does an integrated development environment (IDE) provide?

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024

»

© g

Notes:

Literature

reading list

» W Kernighan, D Ritchie: The C Programming Language, Prentice Halle, 2000
» F Kaefer, P Kaefer: Introduction to Python Programming for Business and Social Science
Applications, SAGE Publications, 2020

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages

DIGITAL
COMPUTER

November 12, 2024

Notes:

	OS User Interfaces
	High-Level Programming Languages
	Interpreted Languages
	Self-study questions and References

