
Introduction to Informatics
for Students from all Faculties

Prof. Dr. Ingo Scholtes
Chair of Machine Learning for Complex Networks

Center for Artificial Intelligence and Data Science (CAIDAS)
Julius-Maximilians-Universität Würzburg

Würzburg, Germany
ingo.scholtes@uni-wuerzburg.de

Lecture 04
Programming Languages

November 12, 2024

Notes:

• Lecture L04: Programming Languages 12.11.2024

• Educational objective: We introduce high-level programming languages and explain the difference between
compiled and interpreted languages.

– OS User Interfaces
– Machine Instructions and Assembly Language
– High-Level Programming Languages and Compilers
– Interpreted Languages: Python

• Exercise Sheet 3 due 26.11.2024

Motivation
▶ we have taken a top-down approach to study the

hardware/software interface

▶ we investigated how programs are executed at the level
of machine code

▶ we introduced key functionality of operating systems
and discussed the abstraction of processes

▶ we discussed how multi-tasking allows to execute
multiple processes simultaneously

open questions

▶ how can humans interact with the operating system?
▶ how can we write programs that solve actual problems?
▶ how can we translate code that is understandable for humans

to instructions that can be executed by the CPU?

A simple Hello World program in machine code

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 1

Notes:

Reminder: Multi-Tasking
▶ OS can use multi-tasking to execute multiple

processes concurrently (even on a single CPU)

▶ every few milliseconds, OS performs context
switch between running processes

▶ context switch from process A to B requires to
switch execution context

context switch from process A to B
1. interrupt execution of program by CPU
2. save current values in CPU registers (incl. PC) to memory, which

fully determine execution state of process A
3. restore previously saved CPU registers of process B from

memory
4. continue execution of program by CPU

▶ OS scheduler fairly allocates CPU time

▶ preemptive scheduler forces context switches

Operating System
(Windows, Linux, Mac OS X, ...)

Hardware

Process A
(inactive)

Process B
(active)

Process C
(inactive)

instructions
and data

CPU
registers

instructions
and data

CPU
registers

CPU Memory

...

instructions
and dataregisters

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 2

Notes:

1. The opposite of preemptive scheduling is called coooperative scheduling. This means that a context switch can
only happen if a process “voluntarily” surrenders the CPU periodically, such that another process can take over.
Early operating systems like Windows (before Windows 95) or Mac OS (before Mac OS X) in the 1990s used
cooperative scheduling, which intreoduced the problem that the whole computer freezes if a single process is
implemented badly.

Launching a process
▶ we can use OS to launch a new process that

executes a program

▶ reminder: process = one instance of program
executed by CPU

launching a proces

1. OS reads “executable file” from hard drive/SSD
and copies it into main memory (RAM)

2. “executable file” contains machine instructions
and data

3. OS sets program counter of CPU to address of first
machine instruction in main memory

4. OS transfers control to CPU (until next context
switch)

▶ how can we tell OS to launch a new process?

Operating System
(Windows, Linux, Mac OS X, ...)

Hardware

Process A
(inactive)

Process B
(inactive)

Process C
(active)

instructions
and data

CPU
registers

instructions
and data

CPU
registers

CPU Memory

...

instructions
and dataregisters

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 3

Notes:

Graphical User Interfaces (GUI)
▶ modern operating systems provide an intuitive and

human-friendly graphical user interface (GUI)

▶ key functions of OS (e.g. launching a process) can be
accessed in an intuitive way (e.g. by double-clicking
program icon with the mouse)

▶ OS provides special program (e.g. file explorer or finder)
to manage files on permanent storage (hard drive, SSD)
or network shares

▶ multi-tasking is typically represented by multiple
program windows or icons that represent running
processes

definition

A graphical user interface (GUI) provides access to the
functions of a program or OS by allowing the user to
manipulate visual icons and indicators, typically by
means of a touch pad, touch screen, or mouse.

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 4

Notes:

Command line Interfaces
▶ in addition to GUI, all major operating systems provide

text-based command line interfaces (CLI)
▶ Windows: command line/PowerShell
▶ Linux/Mac OS X: terminal

▶ CLI provides full access to all functions of an OS

examplary commands (Linux-based OS)

command meaning
cd change directory
ls list files in current directory
rm remove file or directory
mv move/rename file or directory
ps list running processes

./<executable> launch new process for program

▶ command-line interpreter executes commands

▶ CLI can be programmed via “scripts” (commands in text
file)

Command line interface of Ubuntu Linux

definition

A command-line interface (CLI) accepts text-based
commands to launch and manage processes, manage
files, or update system settings.

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 5

Notes:

Practice Session
▶ we locate the command line interface (CLI) of our OS

▶ we use the CLI to launch a process that executes a
simple HelloWorld program

▶ we use GUI- and CLI-based tools to monitor and kill
running processes

▶ we use the Linux-based CLI-tool objdump to inspect
machine code instructions contained in an executable
file

practice session

see directory 04-01 in gitlab repository at
→ https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 6

Notes:

Programming in machine language?
▶ machine code is designed to make execution by CPU as

fast as possible

▶ machine code is not optimized to be written or read by
humans

▶ requires us to manually address registers, store values
at addresses in memory, remember cryptic machine
instructions, etc.

▶ machine code is specific to CPU architecture, i.e.
programs in machine code are not portable

challenges

1. how can we make programming simple and (actually) enjoyable for human
programmers?

2. how can we write portable programs that are independent of the processor
architecture?

A simple Hello World program in machine code

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 7

Notes:

Assembly language
▶ assembly language is a low-level language that

simplifies writing of machine code

▶ different from machine code, assembly language allows
symbolic labels, directives, and comments

▶ assembler (software) translates assembly program to
machine instructions

▶ strong but not strict correspondence between assembly
language and machine instructions

▶ developer maintains control over machine instructions,
i.e. programs are (potentially) very fast

▶ but: assembly code is still not portable Motorola 6800 assembler program

image credit: Wikipedia, public domain

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 8

Notes:

High-Level Languages
▶ idea: use programming language with higher-level

abstractions that are easy to understand by humans
▶ high-level languages typically provide (at least) the

following abstractions
▶ symbolic variables (with data types), e.g. int k = 42
▶ complex types and data structures (text, list, queue, etc.)
▶ control structures to influence control flow in a program
▶ functions or routines that can be called for code reuse

▶ compiler (software) translates program in high-level
language to simpler machine instructions
▶ original program = source code
▶ compiled program = executable or binary

▶ many compilers can generate binaries for multiple
processor architectures (cross-compilation)

i n t k = 1 ;
i n t l = 1 ;

for (i n t i =0 ; i < 1 0 ; i ++) {
i n t t = k + l ;
k = l ;
l = t ;

}

char * tex t = " Result : %s\n" ;
p r i n t f (text , l) ;

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 9

Notes:

Variables vs. registers or memory addresses
▶ in machine code, we use registers and addresses in main

memory to store data
1. need to manually move values between registers and

main memory
2. need to specify registers/memory based on address (i.e.

register R2 or 0x4a2f)

▶ high-level languages allow to store values in variables

▶ we use assignment operator = to assign value to
variable, i.e. contents can change during runtime

▶ variable can refer to address in memory or CPU register
(decided by compiler)

▶ in statically-typed languages, variables have types (e.g.
32-bit integer or list of 8-bit characters)

i n t k = 1 ;
i n t l = 1 ;

for (i n t i =0 ; i < 1 0 ; i ++) {
i n t t = k + l ;
k = l ;
l = t ;

}

char * tex t = " Result : %s\n" ;
p r i n t f (text , l) ;

definition

In high-level programming languages, a variable is a
symbolic name for an abstract storage location, i.e. it
is a “named container” that can hold a value that can
change during the runtime of a process.

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 10

Notes:

From source code to executables . . .
source_code.c

int main(void) {

 int x =42;
 int y = 43;
 int z = 0;

 for (int i=0; i<10; i++) {
 int t = x+y;
 z += t;
 }
 printf(“%s\n“, z)

Compiler

program.exe

advantages

1. massively simplifies programming: increases productivity and
reduces errors

2. makes it easier to maintain complex software systems

3. allows to perform automatic optimizations at the level of
machine code

4. facilitates writing of source code that is portable across
processor architectures

5. distribution of executables hinders access to source code (e.g.
for copyright/security reasons)

disadvantages

1. no direct correspondence between high-level and machine
instructions

2. lack of control which specific instructions are executed

3. hinders manual optimization of machine instructions

4. possible introduction of errors/security issues, i.e. we need to
trust the compiler

5. distribution of executables hinders access to source code (i.e.
requires to trust executable)

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 11

Notes:

The C programming language
▶ general-purpose programming language created by

Ritchie and Thompson in 1972 as successor to language B

▶ one of the most important and widely-used
programming languages

▶ statically-typed language, i.e. we must specify type of
variable

▶ C compilers support virtually any processor architecture

limitations of C

▶ error-prone dynamic allocation/release of memory

▶ lack of object-oriented abstractions

▶ basis for object-oriented “successors”
C++ (1979) and Objective-C (Apple, 1984)

include < std io . h>
include < unistd . h>

i n t main (void) {
char * tex t = " Hello World ! " ;
p r i n t f ("%s\n" , tex t) ;
sleep (5) ;

}

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 12

Notes:

Software libraries
▶ self-contained programs must implement all functions

that are needed by the software that we want to develop

▶ analogy: if you write a book, you can rely on (and refer
to) common knowledge published by other authors

▶ software libraries contain common functionality that
can be reused by other programs

1. binary libraries with machine instructions
2. library with reusable source code

▶ most high-level programming languages provide
standard libraries for common tasks
▶ complex mathematical operations
▶ reading/writing from/to files
▶ network communication
▶ graphics and visualization

Operating System
(Windows, Linux, Mac OS X, ...)

Hardware
(CPU, Memory, Disks, ...)

Application

CPU Memory

Software
Library

Software
Library

Software
Library

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 13

Notes:

Application Programming Interfaces
▶ software library provides application programming

interface (API) that enables us to access common
functions

▶ analogy: table of contents in a book, which gives page
number for each “topic”

▶ API specifies details that are required to call function
▶ name of function
▶ number, type and semantics of parameters that caller

must provide
▶ semantics and type of return value that is returned by

the function
▶ example 1: C library stdio provides function printf

that outputs text via CLI
▶ example 2: python module math provides function

sqrt that returns square root of given value
excerpt of API of C Standard Library stdio

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 14

Notes:

Practice Session
▶ we write a simple program in the high-level

language C

▶ we use two library functions to print text and
to pause the program execution

▶ we use the compiler gcc to compile the source
code to an executable program

include < std io . h>
include < unistd . h>

i n t main (void) {
char * tex t = " Hello World ! " ;
p r i n t f ("%s\n" , tex t) ;
sleep (5) ;

}

practice session

see directory 04-02 in gitlab repository at
→ https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 15

Notes:

Compiled vs. interpreted languages
▶ compiler translates program in high-level language to

machine code before it can be executed
▶ compiled binaries are not portable
▶ users may need to compile source code
▶ each change requires to recompile source code

▶ interpreter can directly execute instructions in a
high-level programming language

▶ interpreter is program that reads and executes source
code, i.e. process = instance of interpreter that executes
code in a file

▶ no need for (re)compilation, no non-portable binaries

▶ interpreted languages are typically slower than
compiled languages (but not necessarily)

definition

An interpreter is a software that directly executes
instructions written in a programming language,
without requiring its prior compilation to machine
code.

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 16

Notes:

Introducing Python
▶ python is the most popular interpreted programming

language

▶ widely-used for data processing, analytics, and machine
learning

▶ object-oriented with automatic memory management,
i.e. memory is automatically allocated and released

▶ dynamically-typed language, i.e. types of variables are
automatically inferred (and can change) at runtime

▶ user-friendly, great for beginners in programming

▶ rich ecosystem of software libraries (modules) that
implement almost any imaginable functionality

Guido van Rossum, developer of python

image credit: Wikpedia, Doc Searls, CC BY-SA 2.0

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 17

Notes:

Basic python syntax
▶ python programs are stored in text files (typically with

extension .py)

▶ one line in text file = one instruction

key python statements

▶ assignment (=) used to assign value to a variable
▶ def used to define a function
▶ import statement used to import functions from modules
▶ if and else used to conditionally execute instructions
▶ for and while used to repeatedly execute instructions in a loop

▶ “blocks” of instructions grouped by indentation level

▶ python is whitespace-sensitive, i.e. placement of
newline, space or tab characters changes semantics

▶ python enforces meaningful formatting of code, making
programs easy to read for humans

import time

def main () :
for i in range (5) :

tex t = " Hello World ! "
p r i n t (tex t)
tex t = 42
p r i n t (tex t)

sleep (5)

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 18

Notes:

Practice Session
▶ we install the Open Source python distribution

Anaconda

▶ we write a simple “Hello World” program in python

▶ we use the python interpreter to execute our program

▶ we inspect running processes during the execution of
our program

import time

def main () :
tex t = " Hello World ! "
p r i n t (tex t)
tex t = 42
p r i n t (tex t)
sleep (5)

practice session

see directory 04-03 in gitlab repository at
→ https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 19

Notes:

Integrated Development Environment (IDE)
▶ all we need to write python program is text editor and

python interpreter (i.e. executable python.exe)

▶ sufficient for small single-file programs

▶ what about complex software with hundreds of files and
millions of lines in code?

▶ integrated development environments (IDEs) are
specialized tools to support and simplify development
of complex software

▶ IDEs provide advanced functions to edit and format
code, semantically highlight/color keywords, compile
and/or execute program, and find errors

Open Source IDE Visual Studio Code

definition

An Integrated Development Environment (IDE) is a
software that simplifies the programming of
computers. It minimally provides functions to edit
source code files, compile and/or execute programs,
and find errors at compile- and run-time.

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 20

Notes:

Practice Session
▶ we use the integrated development environment (IDE)

Visual Studio Code to write and execute a simple
python program

▶ we use VS Code to rename variables and refactor code

▶ we use the debugger of Visual Studio Code for a
step-wise execution of python statements

import time

def main () :
tex t = " Hello World ! "
p r i n t (tex t)
tex t = 42
p r i n t (tex t)
sleep (5)

practice session

see directory 04-04 in gitlab repository at
→ https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 21

Notes:

In summary
▶ we inspected the GUI and the CLI of modern operating

systems

▶ we motivated the use of high-level programming
languages

▶ we explained the difference between compiled and
interpreted languages

▶ we introduced the popular interpreted high-level
panguage python and wrote a first program

open issues

▶ how can we use high-level languages to solve actual problems?
▶ what are algorithms and how we can we implement them?
▶ need to develop algorithmic thinking, which is key to understand how

computer scientists think and work.

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 22

Notes:

Self-study questions
1. Explain the difference of a GUI and a CLI of an operating system. Which one is more intuitive?

Which one is more powerful?
2. Explain the steps taken by an OS to launch a process that executes a HelloWorld program

stored in an executable file.
3. Explain the difference between machine instructions and assembler code.
4. What are the advantages of high-level programming languages like C compared to assembler?
5. List abstractions provided by a high-level programming language that are not provided by

machine instructions?
6. What is a variable in a high-level language?
7. What is the difference between statically- and dynamically-typed programming languages?
8. What is a compiler and what is an interpreter?
9. Explain the steps needed to write and execute a Hello World program written in the

programming language C.
10. Explain the steps needed to write and execute a Hello World program written in the

programming language python.
11. What are advantages/disadvantages of compiled and interpreted programming languages?
12. What advantages does an integrated development environment (IDE) provide?

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 23

Notes:

Literature

reading list

▶ W Kernighan, D Ritchie: The C Programming Language, Prentice Halle, 2000
▶ F Kaefer, P Kaefer: Introduction to Python Programming for Business and Social Science

Applications, SAGE Publications, 2020

Ingo Scholtes Introduction to Informatics Lecture 04: Programming Languages November 12, 2024 24

Notes:

