
Theory of Machine Learning

Exercise sheet 2 — Session 2

Exercise I (Estimation of true risk) §. Assume that X := R and Y := {0, 1}. Let the
space of predictors H := {ft : X → Y s.t. ∀x ∈ R, f(x) = 1x≥t}.

We want to estimate numerically the expected risk of a given predictor R(ft), where the data
is normally distributed X ∼ N (0, 1) and the label is Y := 1X≥0.

1. Sample N ∈ N⋆ data points from N (0, 1) using numpy.random.normal().

2. Given t ∈ R, compute the Monte-Carlo estimation of R(ft) using the previously sampled
points. (Hint: empirical risk)

3. Plot the Monte-Carlo estimates of R(ft) for various values of t as the number of points N
increases. Generate a separate curve for each value of t and display all curves on the same
figure for comparison.

Exercise II (Closed-form of true risk) Ò. Assume that X := R and Y := R. We want to
compute the expected risk of the identity predictor g(x) := x, for x ∈ R, using the squared loss
function. The expected risk R(g) is defined as R(g) := EX

[
(g(X)− f∗(X))2

]
, where the data is

normally distributed X ∼ N
(
0, σ2

)
(σ > 0) and the labels are determined by a fixed function

f∗(x) = 0, for x ∈ R.

1. Show that

R(g) = EX

[
X2

]
.

2. Prove the following formula:

Var (X) = E
[
X2

]
− E [X]

2
,

where X is a random variable with finite second moment and Var (X) := E
[
(X − E [X])2

]
.

3. Compute R(g) using Question 2.

4. How does the variance σ2 influence the expected risk R(g)?

Exercise III (Consistency and bias of empirical risk) Ò. Consider a fixed predictor f :
X → Y and a loss function ℓ : Y × Y → R.

Given an i.i.d. (independent and identically distributed) data sample S := {Xi}Ni=1 ∼ p of size
N ∈ N⋆, we remind the definition of the empirical risk

R̂S(f) :=
1

N

N∑
i=1

ℓ(f(Xi), f
∗(Xi)) ,

where E [|ℓ(f(X1), c(X1))|] < +∞ and the labels areß determined by a fixed function f∗ : X → Y.

1. Show that

ES

[
R̂S(f)

]
= R(f) .

2. Show that the empirical risk R̂S(f) converges (in probability) to the expected risk R(f)
using the law of large numbers.

3. Which version of the law of large numbers did you use?



Exercise IV (Bayes predictor for binary classification) Ò. In this exercise, we compute
the expression of the Bayes predictor for binary classification with 0− 1 loss (Y = {0, 1}). As in
the lecture, we set η(x) := P (Y = 1 |X = x) for all x ∈ X and we let

f⋆(x) =

{
1 if η(x) ≥ 1/2

0 otherwise.

1. Let f : X → Y be a predictor. Show that

P (f(X) ̸= Y |X = x) = η(x) · P (f(X) = 0 |X = x) + (1− η(x)) · P (f(X) = 1 |X = x) .

2. Deduce that
P (f⋆(X) ̸= Y |X = x) = min(η(x), 1− η(x)) .

3. Show that, for any predictor f : X → Y ,

P (f(X) ̸= Y |X = x) ≥ P (f⋆(X) ̸= Y |X = x) .

4. Deduce that f⋆ is risk optimal, that is, for any predictor f ,

R(f⋆) ≤ R(f) .


