
Introduction to Informatics
for Students from all Faculties

Prof. Dr. Ingo Scholtes
Chair of Machine Learning for Complex Networks

Center for Artificial Intelligence and Data Science (CAIDAS)
Julius-Maximilians-Universität Würzburg

Würzburg, Germany
ingo.scholtes@uni-wuerzburg.de

Lecture 02
Digital Logics and Data Representation

October 29, 2024

Notes:

• Lecture L02: Digital Logics and Data Representation 29.10.2024

• Educational objective: We show how data is represented in a digital computer. We introduce basics of digital
logics and show how we can implement arithmetic operations based on logic circuits.

– Digital Representation of Data
– Digital Logics and Digital Circuits
– From Logics to Arithmetics

• Exercise Sheet 01 due 05.11.2024

Motivation
▶ how are data and instructions represented in an

electronic digital computer?

▶ how can we implement logical operations based on
digital electronic circuits?

▶ how can we perform (arithmetic) operations on digitally
encoded data?

▶ how can we represent instructions that can be executed
by a programmable computer? → L03

▶ answering these questions requires basic foundations in
terms of numeral systems and digital logics

schematic view of a transistor

image credit: Wikipedia, CC-BY-SA

a digital signal

image credit: Wikipedia, CC-By-SA

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 1

Notes:

Encoding numbers with numeral systems

definition

A numeral system is a system that can be used to consistently encode numbers
based on a set of symbols that are called digits. In a positional numeral system
the contribution of a digit to the value of the encoded number depends on the
position of the digit.

example: decimal numeral system

▶ digits represent different powers of ten depending on their position
▶ we call ten base of the decimal number system
▶ rightmost position represents power of zero, i.e. 100 = 1
▶ powers of ten associated with a position increase from right to left

▶ value of encoded number is given by the sum of
contributions of individual digits

▶ left-most digit is called most-significant digit
▶ right-most digit is called least-significant digit

MMXXIV
number 2024 represented in the Roman

numeral system, where M represents thousand,
X represents ten, V represents five and I

represents one

103 102 101 100

2 0 2 4

2 · 1000 + 2 · 10 + 4 · 1 = 1011

number 2024 represented in the decimal
numeral system, where the value of a digit

depends on its position

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 2

Notes:

Binary numeral system
▶ in a digital electronic computer we can use voltage

levels to encode two symbols 0 and 1
▶ low or no voltage = 0
▶ high voltage = 1

▶ voltage levels can be used to encode binary digits or
“bits” (0 or 1) of the binary numeral system

▶ positional encoding analogous to decimal system, but
using base two instead of ten

▶ depending on their position digits represent powers of
two, where the least-significant bit represents 20 = 1

▶ value of an encoded number is given as the sum of
powers of two

23 22 21 20

1 0 1 1

1 · 8 + 1 · 2 + 1 · 1 = 11

image credit: Wikipedia, CC-By-SA

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 3

Notes:

Powers of two
21 2
22 4
23 8
24 16
25 32
25 64
27 128
28 256

29 512
210 1,024
211 2,048
212 4,096
213 8,192
214 16,384
215 32,768
216 65,536

217 131,072
218 262,144
219 524,288
220 1,048,576
221 2,097,152
222 4,194,304
223 8,388,608
224 16,777,216

225 33,554,432
226 67,108,864
227 134,217,728
228 268,435,456
229 536,870,912
230 1,073,741,824
231 2,147,483,648
232 4,294,967,296

rules of thumb for orders of magnitude

20 = 1 = 100

210 ≈ 1, 000 = 103

220 ≈ 1, 000, 000 = 106

230 ≈ 1, 000, 000, 000 = 109

240 ≈ 1, 000, 000, 000, 000 = 1012

. . .
Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 4

Notes:

Group Exercise 02-01
▶ Convert the the decimal number 126 into the binary number system.

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1
0 1 1 1 1 1 1 0

We thus have

126 = 64 + 32 + 16 + 8 + 4 + 2

▶ Convert the binary number 10010101 into the decimal number system.

27 26 25 24 23 22 21 20

1 0 0 1 0 1 0 1
And thus 128 + 16 + 4 + 1 = 149

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 5

Notes:

Hexadecimal numbers
▶ long binary numbers are difficult to read and memorize

for humans

▶ hexadecimal numeral system (base 16) yields
human-friendly representation of large (binary) numbers

▶ to distinguish 16 numbers from 0 to 15 with single digit,
we extend the symbols 0, . . . , 9 by letters A, . . . F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 A B C D E F

▶ prefix 0x used to denote hexadecimal number, e.g. 0x10
= 16

▶ sice 24 = 16, each hexadecimal digit corresponds to
four bits, i.e. easy to convert binary/hexadecimal
numbers

0101101011110011

163 162 161 160

0x 5 A F 3

5 · 4096 + 10 · 256 +
15 · 16 + 3 · 1 = 23283

0x 5 A F 3
0101 1010 1111 0011

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 6

Notes:

Group Exercise 02-01 1/2
Convert the following decimal numbers into the hexadecimal and binary numeral system.

▶ 3
3 = 0x3= 0011

▶ 4
4 = 0x4 = 0100

▶ 19
19 = 0x13 = 0001 0011

▶ 64
64 = 0x40 = 0100 0000

▶ 255
255 = 0xFF = 1111 1111

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 7

Notes:

Group Exercise 02-02 2/2
Convert the following hexadecimal numbers into the decimal and the binary numeral system.
▶ 0x10

0x10 = 16 = 0001 0000

▶ 0xF0
0xF0 = 240 = 1111 0000

▶ 0xAA
0xAA = 170 = 1010 1010

▶ 0x0100
0x100 = 256 = 0001 0000 0000

▶ 0xFFFF
0xFFFF = 65535 = 1111 1111 1111 1111

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 8

Notes:

Encoding text
▶ how can we encode text in a digital computer?

▶ idea: use numbers to encode text characters
and represent each number by group of bits

ASCII encoding

American Standard Code for Information Interchange (ASCII)
defines a 7-bit encoding of 128 different characters.

▶ code table maps numbers 0 to 127 (represented
by 7 bits) to characters and vice-versa

example

Binary ASCII-encoded text “Jurist”
1001010 1110101 1110010 1101001 1110011 1110100
Hexadecimal ASCII-encoded text “Jurist”
0x 4A 75 72 59 73 74

▶ UNICODE text encoding supports all writing
systems in the world

ASCII code table from printer handbook, 1971

image credit: public domain

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 9

Notes:

Encoding images
▶ how can we represent image data in a digital

computer?

digital images

A digital (raster) image is a picture that is composed of a
rectangular arrangement of pixels, where each pixel either
represents a brightness and (possibly a color value).

▶ idea: use numbers to represent birghtness
(and colors) of pixels
▶ grayscale pixels: 8 bits encoding 255

brightness levels from black (0) to white (255)
▶ color pixels: 3 × 8 bits encoding 255

brightness levels of red (R), green (G), blue (B)

▶ image can be digitally encoded by sequence of
bits, where groups of 8 or 24 bits represent
grayscale or color pixels in rectangular grid

Closeup of pixels (consisting of a red, green, and blue
subpixel) on a liquid crystal display (LCD) laptop screen

image credit: Wikimedia Commons, User Kprateek88, CC-BY-SA 4.0

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 10

Notes:

From binary numbers to arithmetics
▶ we introduced the digital representation of numbers,

text, and images by bits

▶ how can a digital computer perform arithmetic
operations like addition, multiplication, etc.?

▶ as example, consider addition of two binary numbers
with 4 bits each

▶ given input of 8 bits (i.e. binary numbers A and B with 4
bits each), we must compute 5 bits of output that
encode the sum A + B

Adder
Circuit

A3 A2 A1 A0 B3 B2 B1 B0

S4 S3 S2 S1 S0

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 11

Notes:

• Why do we need five bits for the sum of two four bit binary numbers?

• The largest sum that we can have for two four bit binary numbers is the sum of 1111b = 15 and 1111b = 15
which is 30 = 1110b . This requires 5 bits.

Digital logics
▶ digital logics is the basis for any (arithmetic) operation

of a digital computer

▶ all functions of a digital computer can eventually be
reduced to simple logical operations implemented by
electronic switches (e.g. transistors)

▶ consider one bit representing voltage levels of source
(S), gate (G), and drain (D)

▶ considering S and G as inputs, the output D represents a
logical AND operation

gate (G)

source (S) drain (D)

S G D
0 0 0
0 1 0
1 0 0
1 1 1

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 12

Notes:

Boolean Logic
▶ formal treatment of logics pioneered by mathematician George

Boole

▶ Boole formalized logics in analogy to arithmetic operations like
+, −, × → G Boole, 1854

▶ basic logical operations AND, OR and NOT can be mapped to
arithmetic operations on numbers 0 and 1 representing False
and True

basic operations in Boolean logics

▶ A AND B ≡ A × B
▶ A OR B ≡ A + B − A × B
▶ NOT A ≡ 1 − A

George Boole (1815 – 1864)

image credit: Wikimedia Commons, public domain

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 13

Notes:

Truth tables
▶ truth tables define output of logical operations
▶ each row in the truth table is one possible combination of inputs
▶ we use 0 and 1 to represent logical values False and True

AND
A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1

OR
A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

NOT
A NOT A
0 1
1 0

XOR
A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

basic operations in Boolean logics

▶ A AND B ≡ A × B
▶ A OR B ≡ A + B − A × B
▶ NOT A ≡ 1 − A
▶ A XOR B ≡ (A − B)2

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 14

Notes:

Boolean functions and digital circuits
▶ basic Boolean logical operations NOT, AND, OR and XOR

are defined for one or two inputs, respectively

▶ we can use these as building blocks of more complex
Boolean functions with more than one or two inputs

▶ in formular notation we use brackets to determine order
in which operations are executed

examples

▶ A OR NOT B
▶ [A OR B] AND C
▶ A OR [B AND C]

▶ Boolean functions can be represented as digital circuits
where logic gates represent Boolean operations

OR

A B

AND

C

digital circuit
implementing Boolean

function
[A OR B] AND C

AND

A B

OR

C

digital circuit
implementing Boolean

function
A OR [B AND C]

image credit:

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 15

Notes:

Group Exercise 02-03 1/4
▶ Give the truth table for the Boolean function A OR [B AND NOT C] with three inputs A, B, C .

A B C A OR [B and NOT C]
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 16

Notes:

Group Exercise 02-03 2/4
▶ Give a formula for the Boolean function represented by the following truth table.

A B C ?
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

This can be expressed as [B XOR C] OR [A AND B AND C]

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 17

Notes:

Group Exercise 02-03 3/4
▶ Show that the logical operation XOR (with two inputs A and B) can be constructed as Boolean

function that only uses AND, OR and NOT operations.

A B A OR B NOT [A AND B] [A OR B] AND NOT [A AND B] = A XOR B
0 0 0 1 0
0 1 1 1 1
1 0 1 1 1
1 1 1 0 0

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 18

Notes:

Group Exercise 02-03 4/4
▶ Show that the logical operation OR (with two inputs A and B) can be constructed as Boolean

function that only uses AND and NOT operations.

A B NOT A NOT B NOT [[NOT A] AND [NOT B]] = A OR B
0 0 1 1 0
0 1 1 0 1
1 0 0 1 1
1 1 0 0 1

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 19

Notes:

From Digital Circuits to Arithmetics
▶ we can implement complex Boolean functions by

composing basic logical operations AND, OR, and NOT

▶ assume that we have digital inputs that represent two
numbers A and B in the binary numeral system

▶ how can we perform arithmetic operations like addition
or multiplication?

▶ idea: specify Boolean functions that give correct digital
output for each combination of digital inputs

Adder
Circuit

A3 A2 A1 A0 B3 B2 B1 B0

S4 S3 S2 S1 S0

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 20

Notes:

Adding decimal numbers
▶ consider pencil-and-paper algorithm to add numbers in

the decimal numeral system

pecil-and-paper algorithm to add two numbers

step 1 start at right-most position

step 2 add digits at current position

step 3 write last digit of sum below current position

step 4 for sums ≥ 10 additionally carry over 1 to position on the left

step 5 move one position to left and go to step 2

▶ algorithm reduces addition of numbers with any number
of digits to repeated addition of single digit numbers

open questions

▶ how can we apply this to binary numbers ?
▶ how can we map addition to logical operations?

1 2 5 7
21 9 3 2
4 1 8 9

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 21

Notes:

Adding binary numbers
▶ how does pencil-and-paper addition work for two binary

numbers with arbitrary number of digits?

▶ we can apply the same algorithm but we only have
binary digits (bits) 0 and 1

pecil-and-paper algorithm to add two numbers

step 1 start at right-most position

step 2 add digits at current position

step 3 write last digit of sum below current position

step 4 for sums ≥ 2 additionally carry over 1 to position on the left

step 5 move one position to left and go to step 2

▶ carry bit of one is created whenever the sum is larger
than base two of the binary numeral system

0 1 1 0
01 1 0 1
1 0 1 1

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 22

Notes:

Half adder circuit
▶ we can write down the truth table of a Boolean

function that generates the sum S for two
binary digits A and B

▶ sum bit can be generated by a single XOR
operation on A and B

▶ we can further write a Boolean function that
generates the carry-over bit Co

▶ carry bit can be generated by a single AND
operation on A and B

▶ we call the resulting digital circuit a half adder

▶ is this enough to add two binary numbers with
any number of digits?

A B S
0 0 0
0 1 1
1 0 1
1 1 0

S = A XOR B

A B Co
0 0 0
0 1 0
1 0 0
1 1 1

Co = A AND B

A B

S

Co XORAND

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 23

Notes:

Adding numbers with more than one bit?
Can we connect multiple half adder circuits to add numbers A and B that

consist of more than one bit?

B0 A0

S0

Half-
Adder

Co

B1 A1

S1

Half-
Adder

Co... ??

problem

Half adder produces carry-out bit for next position but does not have input that allows to
consider carry bit from previous position!

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 24

Notes:

Full adder circuit
▶ paper-and-pencil algorithm requires to

include carry bit from the right when summing
digits for any given position

▶ need Boolean function taking three bits A, B
and “carry-in” bit Ci as input and generating
sum S and “carry-out” bit Co as output

▶ resulting digital circuit is called full adder

▶ carry-out output generated for one position is
used as carry-in input for next position to the
left

▶ this digital circuit design implements our
simple pen-and-pencil method

0 1 1 0
01 10 00 10
1 0 1 1

Full-
Adder

Co

A B

S

Ci

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 25

Notes:

Group Exercise 02-04
▶ Write down truth tables for the sum and carry-out bit of a full-adder.
▶ Give formulas for Boolean functions for the sum and the carry-out bit of a full-adder.

A B Ci S
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

S = A XOR B XOR Ci

A B Ci Co
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Co = [Ci AND [A XOR B]] OR [A AND B]

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 26

Notes:

Carry-Ripple Adder
▶ we can now construct a full adder based on logical

operations AND, OR and XOR.

▶ we connect multiple full adders to a digital circuit that
adds binary numbers with any number of digits

idea for adding two 4 bit numbers

▶ use sequence of 4 full adders, one for each pair of digits of
inputs A and B

▶ each full adder generates one bit of sum S
▶ connect carry-out of each full adder with carry-in of next full

adder in sequence
▶ last carry-out is most-significant bit of the sum
▶ we can set carry-in of first full adder to zero

▶ we call this design a carry-ripple adder

B0 A0

S0

Full-
Adder

Co

B1 A1

S1

Full-
Adder

Co...
Ci 0

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 27

Notes:

Computation time of Carry-Ripple Adder
▶ what is the computation time of a carry-ripple adder?

▶ after setting input bits, we must wait until all carry bits
have “rippled” through sequence of full adders

▶ “‘gate delay” until sum is computed corresponds to
number of full adders in sequence

▶ assume that it takes full adder one nanosecond (= 10−9

= 1 billionth of a second) to compute sum of two bits

▶ adding two 32 bit numbers with carry-ripple adder would
then take 32 nanoseconds, i.e. approx. 31 million
additions per second

▶ in practice we use other designs like carry-lookahead or
carry-select adder that speed up computation

B0 A0

S0

Full-
Adder

Co

B1 A1

S1

Full-
Adder

Co...
Ci 0

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 28

Notes:

Conclusion
▶ we have shown how we can digitally represent data like

numbers, text, or images

▶ we introduced basic operations in Boolean logics like
AND, OR, NOT, and XOR

▶ we expressed Boolean functions given in a truth table
using basic Boolean operations

▶ we demonstrated how to implement arithmetic
operations on binary representations of numbers using
digital circuits

▶ digital logics is the foundation of all digital computers
and technology

ASCII code table

image credit: public domain

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 29

Notes:

Self-study questions
1. What is a bit?
2. Give and example for a positional and a non-positional numeral system to represent numbers.
3. Convert the decimal number 42 into the binary numeral system.
4. Convert the binary number 101010 into the decimal numeral system.
5. Convert the hexadecimal number 0x2A into the decimal and the binary numeral system.
6. Explain how you can use electronic switches to implement the basic logical operations AND, OR,

and NOT.
7. Use a truth table to explain the difference between the OR and the XOR operation.
8. Give the truth table for the Boolean formula [A OR NOT B] AND C .
9. Use a truth table to show that the logical operator X OR Y corresponds to NOT (NOT X AND NOT Y).

10. Give the truth table for the outputs of a half and a full adder.
11. Explain the difference between a half and a full adder.
12. What is the largest output that a carry-select adder for two four-bit inputs and a carry-in input

can produce?
13. Draw a diagram of the digital circuit implementation of a full adder.

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 30

Notes:

Literature

reading list

▶ A Anand Kumar: Fundamentals of Digital Circuits, PHI Learning, 2016
▶ K Fricke: Digitaltechnik, Springer Vieweg, 2018
▶ U Schöningh: Logik für Informatiker, Spektrum, 2005
▶ C Meinel, M Mundhenk: Mathematische Grundlagen der Informatik, BG Teubner, 2000

Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 31

Notes:

	Digital Representation of Data
	Digital Logics and Digital Circuits
	From Logics to Arithmetics
	Self-study questions and References

