

Encoding numbers with numeral sys	stems	Binary numeral system		
definition A numeral system is a system that can be used to consistently encode numbers based on a set of symbols that are called digits. In a positional numeral system the contribution of a digit to the value of the encoded number depends on the position of the digit.	MMXXIV number 2024 represented in the Roman numeral system, where M represents thousand, X represents ten, V represents five and I represents one	 in a digital electronic computer we can use voltage levels to encode two symbols 0 and 1 low or no voltage = 0 high voltage = 1 voltage levels can be used to encode binary digits or 2³ 2² 2¹ 2⁰ 		
 example: decimal numeral system digits represent different powers of ten depending on their position we call ten base of the decimal number system rightmost position represents power of zero, i.e. 10⁰ = 1 powers of ten associated with a position increase from right to left 	10^3 10^2 10^1 10^0	 "bits" (0 or 1) of the binary numeral system positional encoding analogous to decimal system, but using base two instead of ten 1 0 1 1 1 ⋅ 8 + 1 ⋅ 2 + 1 ⋅ 1 = 11 image credit: Wikipedia, CC-By-SA 		
 value of encoded number is given by the sum of contributions of individual digits left-most digit is called most-significant digit 	$2 0 2 4$ $2 \cdot 1000 + 2 \cdot 10 + 4 \cdot 1 = 1011$ number 2024 represented in the decimal represented in the decimal	 depending on their position digits represent powers of two, where the least-significant bit represents 2⁰ = 1 value of an encoded number is given as the sum of neuron of two. 		
 right-most digit is called least-significant digit Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and D 	depends on its position ata Representation October 29, 2024 2	powers of two Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 3		
Notes:		Notes:		

Hexadecimal numbers	Group Exercise 02-01 1/2
 long binary numbers are difficult to read and memorize 0101101011110011 for humans 	Convert the following decimal numbers into the hexadecimal and binary numeral system . 3
 hexadecimal numeral system (base 16) yields human-friendly representation of large (binary) numbers 16³ 16² 16¹ 16⁰ 0x 5 A F 3 	3 = 0x3= 0011 ► 4
► to distinguish 16 numbers from 0 to 15 with single digit, we extend the symbols 0,, 9 by letters A , F 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 A B C D E F	4 = 0x4 = 0100 ► 19 19 = 0x13 = 0001 0011
prefix 0x used to denote hexadecimal number, e.g. 0x10 = 16 0x 5 A F 3	► 64 64 = 0x40 = 0100 0000
 sice 2⁴ = 16, each hexadecimal digit corresponds to four bits, i.e. easy to convert binary/hexadecimal numbers 	255 255 = 0xFF = 1111 1111
Notes:	Notes:

Group Exercise 02-02 2/2	Encoding text
 Convert the following hexadecimal numbers into the decimal and the binary numeral system. 0x10 0x10 = 16 = 0001 0000 0xF0 0xF0 0xF0 = 240 = 1111 0000 0xAA 	 how can we encode text in a digital computer? idea: use numbers to encode text characters and represent each number by group of bits ASCII encoding American Standard Code for Information Interchange (ASCII) defines a 7-bit encoding of 128 different characters. USASCI code chart USAS
0xAA = 170 = 1010 1010 0x0100 0x100 = 256 = 0001 0000 0000 0xEEEE	 Code table maps numbers 0 to 127 (represented by 7 bits) to characters and vice-versa example Binary ASCII-encoded text "Jurist" 1001010 1110010 1110010 1110010 1110000 Hexadecimal ASCII-encoded text "Jurist"
OxFFFF = 65535 = 1111 1111 1111 Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 8	UX 44 /5 /2 59 /3 /4 ASCII code table from printer nandbook, 19/1 UNICODE text encoding supports all writing systems in the world image credit: public domain Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation Notes: Notes:

Encoding images

how can we represent image data in a digital computer?

digital images

Ingo Scholtes

Notes:

A digital (raster) image is a picture that is composed of a **rectangular arrangement of pixels**, where each pixel either represents a brightness and (possibly a color value).

- idea: use numbers to represent birghtness (and colors) of pixels
 - grayscale pixels: 8 bits encoding 255 brightness levels from black (0) to white (255)
 - color pixels: 3 × 8 bits encoding 255 brightness levels of red (R), green (G), blue (B)
- image can be digitally encoded by sequence of bits, where groups of 8 or 24 bits represent grayscale or color pixels in rectangular grid

Introduction to Informatics

a an
n an
a and and and and an an and and and an and and
a na ana ana ana ana ana ana ana ana an
a and and and and a second and and and and and and an an and an and an and and

Closeup of pixels (consisting of a red, green, and blue subpixel) on a liquid crystal display (LCD) laptop screen

image credit: Wikimedia Commons, User Kprateek88, CC-BY-SA 4.0

October 29, 2024

Lecture 01: Digital Logics and Data Representation

From binary numbers to arithmetics

- we introduced the digital representation of numbers, text, and images by bits
- how can a digital computer perform arithmetic operations like addition, multiplication, etc.?

Introduction to Informatics

- as example, consider addition of two binary numbers with 4 bits each
- given input of 8 bits (i.e. binary numbers A and B with 4 bits each), we must compute 5 bits of output that encode the sum A + B

A₃ A₂ A₁ A₀ B₃ B₂ B₁ B₀ Adder Circuit S₄ S₃ S₂ S₁ S₀

October 29, 2024

Notes:

Ingo Scholtes

10

- Why do we need five bits for the sum of two four bit binary numbers?
- The largest sum that we can have for two four bit binary numbers is the sum of $1111_b = 15$ and $1111_b = 15$ which is $30 = 1110_b$. This requires 5 bits.

Lecture 01: Digital Logics and Data Representation

Truth tables

Notes:

- truth tables define output of logical operations
- each row in the truth table is one possible combination of inputs
- we use 0 and 1 to represent logical values False and True

Notes:

Boolean functions and digital circuits

В

Α

С

В

Α

С

basic Boolean logical operations NOT, AND, OR and XOR

are defined for one or two inputs, respectively

b we the truth table for the Boolean function $A OR [B AND NOT C]$ with three inputs A, B, C . Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C] Image: A B C A OR (B and NOT C) Image: A B C A OR (B AND C) Image: A B C A OR (B AND A D A OR (B AND C) Image: A B C A OR (B AND A D A D A D A D A D A D A D A D A D	Group Exercise 02-0	03					1/4	Group	Exercise 02-03			2/4
Important	Give the truth table for the Bo	oolear	n fun	ction	$A ext{ or } [B ext{ and } ext{ not } C]$] with three inputs A, B	, C .	► Give a	formula for the Boolean fu	nction represented by the following	truth table.	
Imposed of the control of the contr		Α	В	c	A OR [B and NOT C]							
 0 0		0	0	0	0							
 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 linit linit linit linit		0	0	1	0					0 1 0 1		
i 0 1 0 1 1 1 0 1		0	1	0	1					0 1 1 0		
 1 0		0	1	1	0					1 0 0 0		
1 0 1		1	0	0	1					1 0 1 1		
1 1		1	0	1	1					1 1 0 1		
I I I intege statutes texteered: Digital largies and facto hypersentation intege statutes texteered: Digital largies and facto hypersentation intege statutes texteered: Digital largies and facto hypersentation Notes:		1	1	0	1							
ingo Solution Introduction to informatica Lecture 00. Sigista Lagrica and Bata Representation October 23, 202 Notes: Notes:		1	1	1	1			This	can be expressed as [P vo			
inspectentes inspectentes Castere 20. Digital lagies and Data Representation Occoler 22, 223. 0 inspectentes Contre 27, 223. 0 inspectentes									call be expressed as [D AO	RCJOR [A AND B AND C]		
instruction to informatics Lecture 01: Digital Lagica and Data Representation October 23, 202. 10 Instruction to informaticic Lecture 01: Digital Lagica and Data Representation October 23, 202. 17												
into double to informatio texture 40. Eighti Ligici and Data Representation October 28, 2024 10												
introduction to informatica Lecture 02. Digital Logica and Bata Representation O cabler 23, 2024 1 Notes:												
Notes: Notes:	Ingo Scholtes Introduction to Informatics			Lecture 0	1: Digital Logics and Data Representati	on October 29, 2024	16	Ingo Scholtes	Introduction to Informatics	Lecture 01: Digital Logics and Data Representation	October 29, 2024	17
	Notes:							Notes:				

Group Exercise 02-03

3/4

Show that the **logical operation** XOR (with two inputs *A* and *B*) can be constructed as Boolean function that only uses AND, OR and NOT operations.

Α	В	A OR B	NOT [A AND B]	[A OR B] AND NOT [A AND B] = A XOR B
0	0	0	1	0
0	1	1	1	1
1	0	1	1	1
1	1	1	0	0

Group Exercise 02-03

Show that the **logical operation** OR (with two inputs *A* and *B*) can be constructed as Boolean function that only uses AND and NOT operations.

А	В	NOT A	NOT B	NOT [[NOT A] AND [NOT B]] = A OR B
0	0	1	1	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1

Ingo Scholtes	Introduction to Informatics	Lecture 01: Digital Logics and Data Representation	October 29, 2024	18	Ingo Scholtes	Introduction to Informatics	Lecture 01: Digital Logics and Data Representation	October 29, 2024	19
Notes:					Notes:				

4/4

Adding binary numbers		Half adder circuit	
 how does pencil-and-paper addition work for two binary numbers with arbitrary number of digits? we can apply the same algorithm but we only have 	$\begin{array}{cccccccc} 0 & 1 & 1 & 0 \\ 0_1 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 \end{array}$	$\begin{array}{ c c c c c c c } \hline A & B & S \\ \hline A & B & S \\ \hline a & b & can write down the truth table of a Boolean function that generates the sum S for two binary digits A and B \\ \hline a & b & can be generated by a circle XOP \\ \hline a & b & can be generated by a circle XOP \\ \hline a & b & can be generated by a circle XOP \\ \hline a & b & can be generated by a circle XOP \\ \hline a & b & can be generated by a circle XOP \\ \hline a & b & can be generated by a circle XOP \\ \hline a & b & can be generated by a circle XOP \\ \hline a $	
binary digits (bits) 0 and 1 pecil-and-paper algorithm to add two numbers step 1 start at right-most position step 2 add digits at current position step 3 write last digit of sum below current position step 4 for sums ≥ 2 additionally carry over 1 to position on the left		 Sum bit can be generated by a single XDR operation on A and B we can further write a Boolean function that generates the carry-over bit C_o carry bit can be generated by a single AND operation on A and B 	B
 step 5 move one position to left and go to step 2 carry bit of one is created whenever the sum is larger than base two of the binary numeral system Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Da 	ta Representation October 29, 2024	 we call the resulting digital circuit a half adder is this enough to add two binary numbers with any number of digits? Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 	23

Group Exercise 02-04

- Write down truth tables for the sum and carry-out bit of a full-adder.
- Give formulas for Boolean functions for the sum and the carry-out bit of a full-adder.

Carry-Ripple Adder

• we can now construct a **full adder** based on logical

Notes:	Notes:

Computation time of Carry-Ripple Adder Conclusion USASCII code chart • we have shown how we can **digitally represent data like** what is the computation time of a carry-ripple adder? B numbers, text, or images 0 3 after setting input bits, we must wait until all carry bits SOH have "rippled" through sequence of full adders • we introduced **basic operations in Boolean logics** like Full-С Full-AND, OR, NOT, and XOR "gate delay" until sum is computed corresponds to Adder Adder number of full adders in sequence • we expressed **Boolean functions** given in a truth table BS O IO LE SUB using basic Boolean operations • assume that it takes full adder **one nanosecond** (= 10^{-9} II VT ESC S₀ S₁ = 1 billionth of a second) to compute sum of two bits 0 14 SO we demonstrated how to implement arithmetic operations on binary representations of numbers using adding two 32 bit numbers with carry-ripple adder would then take 32 nanoseconds, i.e. approx. 31 million digital circuits ASCII code table additions per second digital logics is the foundation of all digital computers image credit: public domain ▶ in practice we use other designs like carry-lookahead or and technology carry-select adder that speed up computation October 29, 2024 Ingo Scholtes October 29, 2024 Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation 28 Introduction to Informatics Lecture 01: Digital Logics and Data Representation 29 Notes: Notes:

Self-study questions	Literature
 What is a bit? Give and example for a positional and a non-positional numeral system to represent numbers. Convert the decimal number 42 into the binary numeral system. Convert the binary number 101010 into the decimal numeral system. Convert the hexadecimal number 0x2A into the decimal and the binary numeral system. Explain how you can use electronic switches to implement the basic logical operations AND, OR, and NOT. 	reading list A Anand Kumar: Fundamentals of Digital Circuits, PHI Learning, 2016
 7. Use a truth table to explain the difference between the OR and the XOR operation. 8. Give the truth table for the Boolean formula [A OR NOT B] AND C. 9. Use a truth table to show that the logical operator X OR Y corresponds to NOT (NOT X AND NOT Y). 10. Give the truth table for the outputs of a half and a full adder. 11. Explain the difference between a half and a full adder. 12. What is the largest output that a carry-select adder for two four-bit inputs and a carry-in input can produce? 13. Draw a diagram of the digital circuit implementation of a full adder. 	 K Fricke: Digitaltechnik, Springer Vieweg, 2018 U Schöningh: Logik für Informatiker, Spektrum, 2005 C Meinel, M Mundhenk: Mathematische Grundlagen der Informatik, BG Teubner, 2000 A. Anand Kumar
Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 30	Ingo Scholtes Introduction to Informatics Lecture 01: Digital Logics and Data Representation October 29, 2024 31
Notes:	Notes: