2.2. Empirical risk minimization



Empirical risk

» Reminder: we do not have access to data distribution

Definition: for fixed training data (x;,y;) € X x Y, i =1,
risk of a predictor f : X — ) as

R(F) i= = 3ty £)).
i=1

..., n, we define the empirical

» Intuition: good proxy for R if n is large enough:
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Empirical risk minimization

v

let 4 be a class of models

v

ideally, we would like to find

f* € argminR(h).
her

» Problem: we do not know p... and even if we did it would still be a very difficult problem
» ldea: replace R by the empirical risk

v

this leads to empirical risk minimization (ERM):2

feH feH

. A 1
f € argminR(f) = arg mlnggﬁ(y,-,f(x,-)).

2Vapnik, Principles of risk minimization for learning theory, NIPS, 1991
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Empirical risk minimization: example

» let us give a simple example
» take X =R, Y ={0,1}, 0-1 loss, and “bump functions:”
H={H:R=>RVteR, (t)=1,}.

» Visually, elements of H look like:

1.0

0.8

0.6 fa(t)

0.4

0.2

0.0 a

—4 2 0 2 4



Empirical risk minimization: example

> take the following datapoints:

(X1, Y1) = (=4,0), (X2, Y2) = (=1,0), (X3, Y3) = (3, 1), (Xu, Ya) = (4,1).

1.0 0 0
(X3,Y3) (X4, Ya)
0.8
0.6

0.4

0.2

0.0




Empirical risk minimization: example

» for each candidate f;, we can compute the associated empirical risk:

» here we have

1.0

0.8

0.6

0.4

0.2

(X1, Y1)

(X3,Y3) (Xa,Ya)

fa(t) (witha= —3)

(X2, Y2)

-4

-2 0 2 4

A 1 1
R(fa):z(0+1+0+0)=1.
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Empirical risk minimization: example

» for each candidate f;, we can compute the associated empirical risk:

» here we have

1.0

0.8

0.6

0.4

0.2

(X1, Y1)

X

fa(t) (with a = 3.5)

(X2, Y2)

Y3) (Xa, Ya)

-4

A 1 1
R(fa):z(0+0+1+0)=1.
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Empirical risk minimization: example

» we notice that several candidates achieve empirical risk = 0:

1.0

0.8

0.6

0.4

0.2

f5(t) (with a=0)

(X1, Y1)

(X2, Y2)

» here we have

(X3,Y3) (Xa,Ya)

-4 -2

. 1
R(fa) = 7(0+0+0+0)=0.
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Empirical risk minimization: example

» we notice that several candidates achieve empirical risk = 0:

1.0

0.8

0.6

0.4

0.2

fo(t) (witha=1)

(X1, Y1)

(X2, Y2)

» here we have

(X3,Y3) (Xa,Ya)

-4 -2

. 1
R(fa) = 7(0+0+0+0)=0.
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Empirical risk minimization: example

> f, with a € (—1,3) are all empirical risk minimizers
> we can pick any of them
» not always the case:

10 . 0
(X2,Y2) (X4, Ya)
08
06

0.4

0.2

(X1, Y1) (X3,Y3)
0.0 . .

-4 -2 ] 2 4

» Question: can you find a candidate with empirical risk = 07
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Generalization

» back to the “separable” case:

1.0

(X3,Y3) (Xa,Ya)

0.8

06
fo(t) (witha=1)

0.4

0.2

(X1, Y1) (X2,Y2)

-4 -2 0 2 4

> Question: does (f) = 0 say something about R(f)?



Generalization

> Answer: it depends (on the true data distribution)
> Example: assume X ~ N (0,1), and Y = LI x>¢

1.0

0.8 (X,Y)

0.6

0.4

0.2 X~ N(0,1)

> we can compute the (true) risk for different candidates



> Example:

Generalization

R(f) =P(A(X) #Y) (definition of the risk)
=P(Ix>1 # 1x>0) (definition of f, and data distribution)
=P(X €0, 1])

%27r/ e dx (density of a N (0,1))
R(f) ~ 0.34

» this is not zero!

» one predictor, though, has zero risk in that case: f

> it is the Bayes predictor
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Overfitting

Problem: in extreme cases, this can be a severe issue

this is in particular true when the hypotheses class H is too large
Example: assume 7 is the set of all measurable functions
consider a fixed training set (x;,y;) and let

h(x) = Yi ifﬂie.{l,...7n} s.t. x = Xx;
0  otherwise.

in particular, h € H (since H contains all functions), and
Vie[n], h(x)=y.

in that case,
n

1

R(h) =~ Thixyzy =0
i=1

empirical risk = 0 (interpolating)
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v

Overfitting, ctd.

As in the previous example: assume Y = 1x>q and X ~ N (0,1)

h looks like:
1.0
0.8 O 1
0.6
0.4
0.2
il
0

0.0

-4 -3 -2 -1

since X has a density, P(X =x;) =0
thus we will always predict 0 on new datapoints

let us compute the true risk:
R(h) =P (h(X) #Y)=P(0# ]lxzo) =1/2.

this is essentially the worst we can get, despite having 0 training error
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v

How to prevent overfitting?

Solution I: reduce size of H
typical situation: parameterized space fp : X — ), with 6 € ©

in this situation, ERM becomes

0 € argmin R(fy) = arg min = LY, fo(
egee () (%ee ”Z( /(X))

we can control the number of parameters
Solution II: regularize (not exclusive), that is, minimize
A 1 <
R(fy) +A0) = — D UY fa(X0)) + AQ(0) -
i=1

Example: Q(0) = A ||0]|* with A > 0 some hyperparameter
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Empirical risk minimization: summary

» Pros:

» general framework
> can be solved approximately when 7 is parameterized

» Cons:

» non-separable data
»> non-convexity — optimization problem can be hard
> overfitting

» Other approaches: local averaging

> ldea: we know E[Y | X = x] or P(Y = 1| X = x) are “the best we can do”
> — let us approximate them directly
>

typical example = k-nearest neighbors3

3Fix, Hodges, Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties, USAF
report, 1951
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3. Linear least-square regression
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