2.2. [Empirical risk minimization](#page-0-0)

Empirical risk

▶ **Reminder:** we do not have access to data distribution

Definition: for fixed training data $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, we define the *empirical* risk of a predictor $f : \mathcal{X} \to \mathcal{Y}$ as

$$
\hat{\mathcal{R}}(f) := \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(x_i)).
$$

• Intuition: good proxy for R if *n* is large enough:

 $\hat{\mathcal{R}}(f) \approx \mathcal{R}(f)$.

Empirical risk minimization

- \blacktriangleright let H be a class of models
- \blacktriangleright ideally, we would like to find

$$
f^{\star} \in \argmin_{h \in \mathcal{H}} \mathcal{R}(h).
$$

- ▶ **Problem:** we do not know p... and even if we did it would still be a very difficult problem
- \blacktriangleright **Idea:** replace \mathcal{R} by the empirical risk
- \blacktriangleright this leads to empirical risk minimization (ERM):²

$$
\hat{f} \in \underset{f \in \mathcal{H}}{\arg \min} \hat{\mathcal{R}}(f) = \underset{f \in \mathcal{H}}{\arg \min} \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(x_i)).
$$

²Vapnik, Principles of risk minimization for learning theory, NIPS, 1991

 \blacktriangleright let us give a simple example

▶ take $\mathcal{X} = \mathbb{R}, \mathcal{Y} = \{0, 1\}, 0$ -1 loss, and "bump functions:"

$$
\mathcal{H} = \{f_a: \mathbb{R} \to \mathbb{R}, \forall t \in \mathbb{R}, f_a(t) = \mathbb{1}_{t \geq a}\}.
$$

 \triangleright Visually, elements of $\mathcal H$ look like:

 \blacktriangleright take the following datapoints:

$$
(X_1, Y_1) = (-4, 0), (X_2, Y_2) = (-1, 0), (X_3, Y_3) = (3, 1), (X_4, Y_4) = (4, 1).
$$

 \triangleright for each candidate f_a , we can compute the associated empirical risk:

 \blacktriangleright here we have

 \triangleright for each candidate f_a , we can compute the associated empirical risk:

$$
\hat{\mathcal{R}}(f_a) = \frac{1}{4}(0+0+1+0) = \frac{1}{4}.
$$

 \triangleright we notice that several candidates achieve empirical risk = 0:

 \blacktriangleright here we have

$$
\hat{\mathcal{R}}(f_a) = \frac{1}{4}(0+0+0+0) = 0.
$$

 \blacktriangleright we notice that several candidates achieve empirical risk = 0:

 \blacktriangleright here we have

$$
\hat{\mathcal{R}}(f_a) = \frac{1}{4}(0+0+0+0) = 0.
$$

- ▶ f_a with $a \in (-1, 3)$ are all **empirical risk minimizers**
- \blacktriangleright we can pick any of them
- ▶ not always the case:

 \blacktriangleright **Question:** can you find a candidate with empirical risk $= 0$?

Generalization

▶ back to the "separable" case:

▶ **Question:** does $\hat{\mathcal{R}}(f) = 0$ say something about $\mathcal{R}(f)$?

Generalization

▶ **Answer:** it depends (on the true data distribution)

▶ **Example:** assume $X \sim \mathcal{N}(0, 1)$, and $Y = 1_{X>0}$

 \blacktriangleright we can compute the (true) risk for different candidates

Generalization

▶ **Example:**

$$
\mathcal{R}(f_1) = \mathbb{P}(f_1(X) \neq Y)
$$

= $\mathbb{P}(1_{X \geq 1} \neq 1_{X \geq 0})$
= $\mathbb{P}(X \in [0, 1])$
= $\frac{1}{\sqrt{2\pi}} \int_0^1 e^{\frac{-x^2}{2}} dx$
 $\mathcal{R}(f_1) \approx 0.34$

(definition of the risk) (definition of f_a and data distribution)

(density of a $\mathcal{N}(0, 1)$)

- \blacktriangleright this is not zero!
- ▶ one predictor, though, has zero risk in that case: f_0
- ▶ it is the **Bayes predictor**

Overfitting

- ▶ **Problem:** in extreme cases, this can be a severe issue
- \triangleright this is in particular true when the hypotheses class $\mathcal H$ is too large
- **Example:** assume H is the set of all measurable functions
- \blacktriangleright consider a fixed training set (x_i, y_i) and let

$$
h(x) = \begin{cases} y_i & \text{if } \exists i \in \{1, \dots, n\} \text{ s.t. } x = x_i \\ 0 & \text{otherwise.} \end{cases}
$$

▶ in particular, $h \in \mathcal{H}$ (since \mathcal{H} contains all functions), and

$$
\forall i \in [n], \quad h(x_i) = y_i \, .
$$

 \blacktriangleright in that case.

$$
\hat{\mathcal{R}}(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{h(x_i) \neq y_i} = 0.
$$

 \triangleright empirical risk = 0 (interpolating)

Overfitting, ctd.

▶ **As in the previous example:** assume $Y = 1_{X>0}$ and $X \sim N(0, 1)$ \blacktriangleright h looks like:

- ▶ since X has a density, $\mathbb{P}(X = x_i) = 0$
- \blacktriangleright thus we will always predict 0 on new datapoints
- \blacktriangleright let us compute the true risk:

$$
\mathcal{R}(h) = \mathbb{P}\left(h(X) \neq Y\right) = \mathbb{P}\left(0 \neq 1_{X \geq 0}\right) = 1/2.
$$

▶ this is essentially the **worst we can get**, despite having 0 training error

How to prevent overfitting?

- ▶ **Solution I:** reduce size of H
- **►** typical situation: parameterized space $f_{\theta}: \mathcal{X} \rightarrow \mathcal{Y}$, with $\theta \in \Theta$
- \blacktriangleright in this situation. ERM becomes

$$
\hat{\theta} \in \argmin_{\theta \in \Theta} \hat{\mathcal{R}}(f_{\theta}) = \argmin_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(X_i))
$$

- \blacktriangleright we can control the number of parameters
- ▶ **Solution II:** regularize (not exclusive), that is, minimize

$$
\hat{\mathcal{R}}(f_\theta) + \lambda \Omega(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f_\theta(X_i)) + \lambda \Omega(\theta).
$$

► Example: $\Omega(\theta) = \lambda ||\theta||^2$ with $\lambda > 0$ some hyperparameter

Empirical risk minimization: summary

▶ **Pros:**

- ▶ general framework
- \triangleright can be solved approximately when H is parameterized

▶ **Cons:**

- \blacktriangleright non-separable data
- ▶ non-convexity \rightarrow optimization problem can be hard
- \blacktriangleright overfitting
- ▶ Other approaches: local averaging
- ▶ **Idea:** we know $\mathbb{E}[Y | X = x]$ or $\mathbb{P}(Y = 1 | X = x)$ are "the best we can do"
- $\blacktriangleright \rightarrow$ let us approximate them directly
- ▶ typical example = k -nearest neighbors³

³Fix, Hodges, Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties, USAF report, 1951

3. [Linear least-square regression](#page-17-0)