
2.2. Empirical risk minimization
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Empirical risk

▶ Reminder: we do not have access to data distribution

Definition: for fixed training data (xi , yi) ∈ X × Y, i = 1, . . . , n, we define the empirical
risk of a predictor f : X → Y as

R̂(f ) ··=
1
n

n∑
i=1

ℓ(yi , f (xi)) .

▶ Intuition: good proxy for R if n is large enough:

R̂(f ) ≈ R(f ) .
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Empirical risk minimization

▶ let H be a class of models
▶ ideally, we would like to find

f ⋆ ∈ arg min
h∈H

R(h) .

▶ Problem: we do not know p... and even if we did it would still be a very difficult problem
▶ Idea: replace R by the empirical risk
▶ this leads to empirical risk minimization (ERM):2

f̂ ∈ arg min
f ∈H

R̂(f ) = arg min
f ∈H

1
n

n∑
i=1

ℓ(yi , f (xi)) .

2Vapnik, Principles of risk minimization for learning theory, NIPS, 1991
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Empirical risk minimization: example
▶ let us give a simple example
▶ take X = R, Y = {0, 1}, 0-1 loss, and “bump functions:”

H = {fa : R → R, ∀t ∈ R, fa(t) = 1t≥a} .

▶ Visually, elements of H look like:
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Empirical risk minimization: example

▶ take the following datapoints:

(X1, Y1) = (−4, 0), (X2, Y2) = (−1, 0), (X3, Y3) = (3, 1), (X4, Y4) = (4, 1) .
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Empirical risk minimization: example

▶ for each candidate fa, we can compute the associated empirical risk:
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fa(t) (with a = 3)

▶ here we have
R̂(fa) = 1

4(0 + 1 + 0 + 0) = 1
4 .
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Empirical risk minimization: example

▶ for each candidate fa, we can compute the associated empirical risk:
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fa(t) (with a = 3.5)

▶ here we have
R̂(fa) = 1

4(0 + 0 + 1 + 0) = 1
4 .
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Empirical risk minimization: example

▶ we notice that several candidates achieve empirical risk = 0:
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▶ here we have
R̂(fa) = 1

4(0 + 0 + 0 + 0) = 0 .
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Empirical risk minimization: example

▶ we notice that several candidates achieve empirical risk = 0:
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fa(t) (with a = 1)

▶ here we have
R̂(fa) = 1

4(0 + 0 + 0 + 0) = 0 .
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Empirical risk minimization: example
▶ fa with a ∈ (−1, 3) are all empirical risk minimizers
▶ we can pick any of them
▶ not always the case:
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▶ Question: can you find a candidate with empirical risk = 0?
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Generalization

▶ back to the “separable” case:
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▶ Question: does R̂(f ) = 0 say something about R(f )?
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Generalization

▶ Answer: it depends (on the true data distribution)
▶ Example: assume X ∼ N (0, 1), and Y = 1X≥0
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▶ we can compute the (true) risk for different candidates
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Generalization

▶ Example:

R(f1) = P (f1(X ) ̸= Y ) (definition of the risk)
= P (1X≥1 ̸= 1X≥0) (definition of fa and data distribution)
= P (X ∈ [0, 1])

= 1√
2π

∫ 1

0
e

−x2
2 dx (density of a N (0, 1))

R(f1) ≈ 0.34

▶ this is not zero!
▶ one predictor, though, has zero risk in that case: f0
▶ it is the Bayes predictor
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Overfitting
▶ Problem: in extreme cases, this can be a severe issue
▶ this is in particular true when the hypotheses class H is too large
▶ Example: assume H is the set of all measurable functions
▶ consider a fixed training set (xi , yi) and let

h(x) =
{

yi if ∃i ∈ {1, . . . , n} s.t. x = xi

0 otherwise.

▶ in particular, h ∈ H (since H contains all functions), and

∀i ∈ [n], h(xi) = yi .

▶ in that case,

R̂(h) = 1
n

n∑
i=1

1h(xi ) ̸=yi = 0 .

▶ empirical risk = 0 (interpolating)
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Overfitting, ctd.

▶ As in the previous example: assume Y = 1X≥0 and X ∼ N (0, 1)
▶ h looks like:
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▶ since X has a density, P (X = xi) = 0
▶ thus we will always predict 0 on new datapoints
▶ let us compute the true risk:

R(h) = P (h(X ) ̸= Y ) = P (0 ̸= 1X≥0) = 1/2 .

▶ this is essentially the worst we can get, despite having 0 training error
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How to prevent overfitting?

▶ Solution I: reduce size of H
▶ typical situation: parameterized space fθ : X → Y, with θ ∈ Θ
▶ in this situation, ERM becomes

θ̂ ∈ arg min
θ∈Θ

R̂(fθ) = arg min
θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(Xi))

▶ we can control the number of parameters
▶ Solution II: regularize (not exclusive), that is, minimize

R̂(fθ) + λΩ(θ) = 1
n

n∑
i=1

ℓ(Yi , fθ(Xi)) + λΩ(θ) .

▶ Example: Ω(θ) = λ ∥θ∥2 with λ > 0 some hyperparameter
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Empirical risk minimization: summary

▶ Pros:
▶ general framework
▶ can be solved approximately when H is parameterized

▶ Cons:
▶ non-separable data
▶ non-convexity → optimization problem can be hard
▶ overfitting

▶ Other approaches: local averaging
▶ Idea: we know E [Y | X = x ] or P (Y = 1 | X = x) are “the best we can do”
▶ → let us approximate them directly
▶ typical example = k-nearest neighbors3

3Fix, Hodges, Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties, USAF
report, 1951
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3. Linear least-square regression
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