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1. Course organization
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Organization of the course

▶ Wuestudy Course ID: 08134700
▶ Name on Wuecampus: Theory of Machine Learning
▶ Who?

▶ Lectures: myself
▶ Exercises: M. Taimeskhanov

▶ Format = slides (available on Moodle after each lecture)
▶ Exercises = mostly pen and paper, regular coding (in Python)
▶ Schedule:

1. lectures on Fridays, 4-5:30pm
2. exercise sessions on Fridays, 2-3:30pm (starting next week)

▶ Room: SE 2, CAIDAS building
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Evaluation
▶ do not forget to register to the exam
▶ Evaluation:

▶ written exam at the end of the semester
▶ content = definitions, similar derivations to the exercises, more ambitious problem
▶ exercises sessions → bonus points

▶ How does the bonus work?
▶ attend the sessions
▶ send your work to Magamed at the end of the session
▶ global grade → up to 10% bonus

▶ Examples: (based on 10 sessions)
▶ exam = 76%, I attended all exercise sessions and made a good effort for each: I get full

bonus and my final grade is 76 + 10 = 86%
▶ exam = 96%, I attended all exercise sessions and made a good effort for each: I get full

bonus and my final grade is 96 + 10 = 100%
▶ exam = 76%, I skipped two sessions and during one session I was not paying attention and

handed out something subpar: bonus = 7.5%, final grade = 83.5%
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Goals and pre-requisites

▶ Pre-requisites:
▶ linear algebra (matrix, eigenvectors, diagonalization)
▶ analysis (derivative, gradient, global maximum)
▶ probability theory (random variable, density, expectation)
▶ I am glad to interrupt the lecture if some maths notion is not clear

▶ Goals of the lecture:
▶ know about the basic vocabulary
▶ look into the details of the fundamental machine learning algorithms (linear regression,

gradient descent, etc.)
▶ prove key easy theoretical results (e.d., convergence rate for least squares)
▶ check experimentally that these results hold
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Outline I
1. Course organization
2. Introduction

First concepts
Empirical risk minimization

3. Linear least-square regression
Framework
Ordinary least-squares
Fixed design analysis
Ridge least-squares regression
Random design analysis

4. Generalization bounds
Uniform bounds via concentration
Rademacher complexity

5. Approximation error
6. Optimization

Gradient descent
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Outline II
Gradient descent for OLS
Gradient descent for convex functions

7. Kernel methods
Positive semi-definite kernels
Reproducing kernel Hilbert spaces
More examples
The kernel trick and applications
The representer theorem
Kernel ridge regression
Kernel logistic regression
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Useful resources

▶ Main references:
▶ for general learning theory: Francis Bach, Learning Theory from First Principles, 2023
▶ for methodology: Hastie, Tibshirani, Friedman, The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, Springer Series in Statistics, 2001 (second edition: 2009)
▶ for kernel methods specifically: Bernhard Schölkopf, Alexander Smola, Learning with kernels,

MIT Press, 2002
▶ Wikipedia: as good as ever.
▶ Wolfram alpha: if you have computations to make and you do not know want to use a

proper language: https://www.wolframalpha.com/
▶ Remedials:

▶ linear algebra: Gilbert Strang, Introduction to Linear Algebra, Cambridge Press, 2009
▶ probability theory: William Feller, An introduction to probability theory and its applications,

Wiley, 1950
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2. Introduction
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2.1. First concepts
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Fundamental example

▶ Fundamental example: image classification
▶ input = image x
▶ Goal: given any input, we want to predict which object / animal is in the image
▶ output = label y

7−→ “lion”

▶ Successful philosophy: instead of defining the function f ourselves, we are going to learn
it from data
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Supervised learning

Definition: we call predictor (or model) any mapping between inputs and outputs.

▶ supervised learning → we will find a good predictor using annotated examples
▶ Remark (i): why is it difficult?

▶ output may not be a deterministic function of input
▶ link between the two may be incredibly complex
▶ only a few observations available, potentially not where we want them
▶ high dimensionality
▶ ...

▶ Remark (ii): large part of machine learning: unsupervised learning (no annotations)
▶ Examples: clustering, dimension reduction, etc.
▶ out of the scope of this lecture
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Input space

Definition: we call input space (or domain, or domain set) the set of all possible inputs of
our machine learning model. We will denote it by X .

▶ Example (i): tabular data = spreadsheet data; x has well-defined features such as age,
income, has_a_car

▶ Example (ii): text data = ordered sequence of tokens; generally have to be pre-processed
to be understood by our computer

▶ Example (iii): images = H × W × C arrays of numbers

∈ J0, 255K299×299×3
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Input space as vector space
▶ Remark: elements x ∈ X are usually described as vectors
▶ Reminder: vectors are 1D arrays of number, here are two vectors with three coordinates:

u =

u1
u2
u3

 , v =

v1
v2
v3

 .

▶ they can be
▶ added: (u + v)i = ui + vi
▶ multiplied by a number: (λu)i = λui

▶ vectors belong to a vector space, its dimension is the number of coordinates
▶ dim = d ⇒ canonical identification with Rd

▶ Intuition: d copies of R with a special structure
▶ Remark: d typically high in modern machine learning
▶ Example: ImageNet images → 299 × 299 × 3 = 268, 203
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Classification and regression

▶ we will consider two fundamental tasks: classification and regression
▶ in classification, we want to associate to each x ∈ X a given class
▶ in regression, we want to associate to each x ∈ X a given value

▶ Example (i): for each image on my hard drive, I want to predict what appears in it

▶ Example (ii): for each customer in my database, I want to predict how many euros he
will spend next year
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Labels / responses

Definition: we call target space (or output space) the set of all possible outputs of our
machine learning model. We will denote it by Y.

▶ Example (i): in image classification, Y is the set of all names of object and animals of
the dataset

▶ we identify it with {1, 2, . . . , 1000} = [1000]
▶ Remark (i): no notion of order (3 is not better than 2)
▶ Remark (ii): we will often restrict ourselves to Y = {0, 1} or {−1, +1} for simplicity
▶ Example (ii): in regression, Y = R (or Rk if we want to predict several targets

simultaneously)
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Training data

Definition: we call training data (or training set) a finite sequence of elements of X × Y,
denoted as

S = {(x1, y1), (x2, y2), . . . , (xn, yn)} .

Here, n is the size of the training set.

▶ Example (i): S is a collection of 106 images, each associated to the correct label
▶ Example (ii): S is a spreadsheet with the customer data from the last 25 years
▶ Remark: in real-life, there are many complications:

▶ labels may be corrupt
▶ some data (= feature value for some observations) may be missing

▶ we do not consider these complications in this lecture
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Machine learning algorithm

▶ we can now be a bit more precise:

Definition: we call machine learning algorithm a mapping A transforming a training set
S ∈ (X × Y)n into a predictor f : X → Y. Thus f = A(S).

▶ of course, we want to devise a “good” algorithm
▶ Question: what does good even mean?
▶ Definition that machine learning uses: performance on new, unseen data
▶ there are two difficulties here: we need to define

1. performance
2. new, unseen data
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Loss functions

Definition: we call loss function any mapping ℓ : Y × Y → R.

▶ Intuitively: ℓ(y , y ′) measures the cost of predicting y ′ whereas the true target is y
▶ generally, we require that:

▶ ℓ is symmetric;
▶ ℓ has non-negative (≥ 0) values
▶ ℓ(y , y) = 0.

▶ Example (i): classification → 0 − 1 loss

ℓ(y , y ′) = 1y ̸=y ′ .

▶ here, 1E = 1 if E is true, 0 otherwise
▶ Remark: does not matter how many classes

19



Loss functions

▶ Example (ii): regression → Y ⊆ R → square loss

ℓ(y , y ′) = (y − y ′)2 .

▶ other possibility: absolute loss
ℓ(y , y ′) = |y − y ′| .

▶ Other examples: structured prediction,1 functional regression, etc.
▶ Remark (i): in addition to the properties already lister, regression loss tend to tend to ∞

when the prediction errs far away from the ground truth
▶ Remark (ii): loss function also tend to be convex, but there are exceptions

1Osokin, Bach, Lacoste-Julien, On structured prediction theory with calibrated convex surrogate losses,
NeurIPS, 2017
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Expected risk: informal definition

▶ we model new, unseen data by a random variable (X , Y ) ∈ X × Y with distribution p
▶ Intuition: new annotated data coming from the same distribution as the training data
▶ Informal definition: expected risk is the expected loss on new data
▶ Reminder: expectation = average value of a random variable
▶ in the discrete case, X ∈ {x1, . . . , xp},

E [X ] =
p∑

i=1
xi · P (X = xi) .

▶ Intuition: sum of outcome values weighted by how often they occur
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Expected risk

▶ let us give a formal definition:

Definition: for a given data distribution p and loss function ℓ : Y × Y → R, we define the
expected risk (or test error) of a predictor f : X → Y as

R(f ) ··= E [ℓ(Y , f (X ))] .

▶ Remark (i): depends on both the loss function and the data distribution p
▶ Remark (ii): hidden assumption: data distribution is equal to p...
▶ unfortunately, we do not know the data distribution...
▶ expected risk is the key quantity: ideally, we want to find f such that it is minimal

22



Special cases

▶ general definition, often specified in two key examples:
▶ Binary classification: Y = {0, 1} and ℓ(y , y ′) = 1y ̸=y ′ , risk can be rewritten as

R(f ) = E
[
1Y ̸=f (X)

]
= 0 · P (Y = f (X )) + 1 · P (f (X ) ̸= Y )

= P (f (X ) ̸= Y ) .

▶ Remark: probability of disagreement = 1− accuracy
▶ Regression: Y = R and ℓ(y , y ′) = (y − y ′)2

R(f ) = E
[
(Y − f (X ))2]

▶ also known as mean squared error (= MSE)
▶ in any case, lower is better
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Expected risk

▶ Example (i): in the classification setting, consider the following predictor:

∀x ∈ X , f (x) = 1 .

▶ let us assume balanced data, that is, P (Y = 0) = P (Y = 1) = 1/2
▶ then the expected risk of f is

R(f ) = P (f (X ) ̸= Y ) = P (Y ̸= 1) = P (Y = 0) = 1/2 .

▶ Example (ii): regression setting, assume that Y = X + ε, with ε ∼ N
(
0, σ2)

▶ consider f (x) = x (perfect predictor!)

R(f ) = E
[
(Y − f (X ))2] = E

[
(X + ε − X )2] = E

[
ε2] = σ2 > 0 .

▶ Reminder: Var (ε) = E
[
(ε − E [ε])2]
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Bayes risk

▶ Question: what is the best prediction function for our criterion (expected risk)?
▶ Intuitively: we want to find f that minimizes expected risk

Definition: we define the Bayes risk as the minimal possible risk over all possible
predictors, for a given loss function and data distribution. Formally,

R⋆ ··= inf
f

R(f ) = inf
f
E [ℓ(Y , f (X ))] .

▶ Reminder: infx∈E r(x) is the minimal value of r(x) on the set E
▶ Remark (i): this is not necessarily = 0
▶ Remark (ii): R⋆ is our true yardstick
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Bayes predictors

▶ in some cases, one can actually give predictors achieving R⋆

Definition: we call Bayes predictor any predictor with minimal risk and denote it by f ⋆.
Formally,

R(f ⋆) = R⋆

(
= inf

f
R(f ) = inf

f
E [ℓ(Y , f (X ))]

)
.

▶ Question: how do we do that?
▶ first step = using the tower property: let g be a predictor,

R(g) = Ex∼p[E [ℓ(Y , g(x)) | X = x ]]
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Reminder: conditional probability

Proposition: given two events A and B such that P (B) ̸= 0, we define the conditional
probability of A “given”B by

P (A | B) ··=
P (A and B)

P (B) .

▶ Example: let us consider two Bernoulli with parameter 1/2, A1 and A2
▶ we can compute

P (A1 + A2 = 1 | A1 = 0) = P (A1 + A2 = 1 and A1 = 0)
P (A1 = 0) = P (A1 = 0 and A2 = 1)

P (A1 = 0)

= 1/4
1/2 = 1

2 .
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Reminder: conditional expectation

Proposition: let X and Y be discrete rndom variables. The conditional expectation of X
given Y is given by

E [X | Y = y ] =
∑

x
x · P (X = x | Y = y) .

▶ Remark: undefined if P (Y = y) = 0 (but still possible for continuous random variables)
▶ Example:

E [A1 + A2 | A1 = 0] = 0 · P (A1 + A2 = 0 | A1 = 0) + 1 · P (A1 + A2 = 1 | A1 = 0)
+ 2 · P (A1 + A2 = 2 | A1 = 0)

= 0 · 1
2 + 1 · 1

2 + 2 · 0 = 1
2 .
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Reminder: tower property

Proposition: Let X and Y be two random variables. Then EY [E [X | Y ]] = E [X ].

▶ Proof (in the discrete case): using the previous slide:

EY [E [X | Y ]] =
∑

y

(∑
x

x · P (X = x | Y = y)
)
P (Y = y)

=
∑

x
x ·
∑

y
P (X = x | Y = y)P (Y = y)

=
∑

x
x ·
∑

y
P (X = x , Y = y)

=
∑

x
x · P (X = x)

EY [E [X | Y ]] = E [X ]
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Back to Bayes predictors

▶ according to the tower property:

R(g) = Ex∼p[E [ℓ(Y , g(x)) | X = x ]]

▶ Remark: E [ℓ(Y , g(x)) | X = x ] is also sometimes called the conditional risk
▶ we can define f ⋆ such that, for all x ∈ X , it minimizes

C(g , x) ··= E [ℓ(Y , g(x)) | X = x ] .

▶ by positivity of the integral, this gives us the best possible risk
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Bayes predictors

▶ summarizing everything:

Proposition: The expected risk is minimized at a Bayes predictor f ⋆ : X → Y satisfying
for all x ∈ X

f ⋆(x) ∈ arg min
z∈Y

E [ℓ(Y , z) | X = x ] .

All Bayes predictor have the same risk, equal to the Bayes risk. It can be computed as

R⋆ = Ex∼p

[
inf
z∈Y

E [ℓ(Y , z) | X = x ]
]

.

▶ Remark: f ⋆ seems complicated to compute... and it is
▶ we can still get some interesting statements
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Examples

▶ Binary classification: for the 0 − 1 loss, Bayes predictor can be written

f ⋆(x) ∈ arg min
z∈{0,1}

P (Y ̸= z | X = x) = arg max
z∈{0,1}

P (Y = z | X = x) .

▶ set η(x) = P (Y = 1 | X = x), then f ⋆(x) = 1η(x)>1/2
▶ Bayes risk is equal to

R⋆ = E [min(η(x), 1 − η(x))] .

▶ Regression: for the square loss, Bayes predictor is such that

f ⋆(x) ∈ arg min
z∈R

E
[
(Y − z)2 | X = x

]
= E [Y | X = x ]
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