Theory of Machine Learning

Prof. Damien Garreau

Julius-Maximilians-Universität Würzburg

Winter term 2024–2025

1

1. [Course organization](#page-1-0)

Organization of the course

- ▶ **Wuestudy Course ID:** 08134700
- ▶ **Name on Wuecampus:** Theory of Machine Learning
- ▶ **Who?**
	- ▶ **Lectures:** myself
	- ▶ **Exercises:** M. Taimeskhanov
- \triangleright **Format** = slides (available on Moodle after each lecture)
- ▶ **Exercises** = mostly pen and paper, regular coding (in Python)
- ▶ **Schedule:**
	- 1. lectures on Fridays, 4-5:30pm
	- 2. exercise sessions on Fridays, 2-3:30pm (starting next week)
- ▶ **Room:** SE 2, CAIDAS building

Evaluation

▶ do not forget to register to the exam

▶ **Evaluation:**

- ▶ written exam at the end of the semester
- \triangleright content $=$ definitions, similar derivations to the exercises, more ambitious problem
- ▶ exercises sessions $→$ bonus points

▶ How does the bonus work?

- ▶ attend the sessions
- ▶ send your work to Magamed at the end of the session
- ▶ global grade \rightarrow up to 10% bonus
- ▶ **Examples:** (based on 10 sessions)
	- \triangleright exam $= 76\%$, I attended all exercise sessions and made a good effort for each: I get full bonus and my final grade is $76 + 10 = 86\%$
	- \triangleright exam $= 96\%$. I attended all exercise sessions and made a good effort for each: I get full bonus and my final grade is $96 + 10 = 100\%$
	- \triangleright exam $= 76\%$, I skipped two sessions and during one session I was not paying attention and handed out something subpar: bonus $= 7.5\%$, final grade $= 83.5\%$

Goals and pre-requisites

▶ **Pre-requisites:**

- \blacktriangleright linear algebra (matrix, eigenvectors, diagonalization)
- \blacktriangleright analysis (derivative, gradient, global maximum)
- \triangleright probability theory (random variable, density, expectation)
- ▶ I am glad to interrupt the lecture if some maths notion is not clear

▶ **Goals of the lecture:**

- ▶ know about the **basic vocabulary**
- ▶ look into the **details of the fundamental machine learning algorithms** (linear regression, gradient descent, etc.)
- ▶ prove **key easy theoretical results** (*e.d.*, convergence rate for least squares)
- ▶ **check experimentally** that these results hold

Outline I

1. [Course organization](#page-1-0)

2. [Introduction](#page-8-0)

[First concepts](#page-9-0) [Empirical risk minimization](#page--1-0)

3. [Linear least-square regression](#page--1-0)

[Framework](#page--1-0) [Ordinary least-squares](#page--1-0) [Fixed design analysis](#page--1-0) [Ridge least-squares regression](#page--1-0) [Random design analysis](#page--1-0)

4. [Generalization bounds](#page--1-0)

[Uniform bounds via concentration](#page--1-0) [Rademacher complexity](#page--1-0)

5. [Approximation error](#page--1-0)

6. [Optimization](#page--1-0) [Gradient descent](#page--1-0)

Outline II

[Gradient descent for OLS](#page--1-0) [Gradient descent for convex functions](#page--1-0)

7. [Kernel methods](#page--1-0)

[Positive semi-definite kernels](#page--1-0) [Reproducing kernel Hilbert spaces](#page--1-0) [More examples](#page--1-0) [The kernel trick and applications](#page--1-0) [The representer theorem](#page--1-0) [Kernel ridge regression](#page--1-0) [Kernel logistic regression](#page--1-0)

Useful resources

▶ **Main references:**

- ▶ for general learning theory: Francis Bach, Learning Theory from First Principles, 2023
- ▶ for methodology: Hastie, Tibshirani, Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, 2001 (second edition: 2009)
- ▶ for kernel methods specifically: Bernhard Schölkopf, Alexander Smola, Learning with kernels, MIT Press, 2002
- ▶ **Wikipedia:** as good as ever.
- ▶ **Wolfram alpha:** if you have computations to make and you do not know want to use a proper language: <https://www.wolframalpha.com/>

▶ **Remedials:**

- ▶ linear algebra: Gilbert Strang, Introduction to Linear Algebra, Cambridge Press, 2009
- ▶ probability theory: William Feller, An introduction to probability theory and its applications, Wiley, 1950

2. [Introduction](#page-8-0)

2.1. [First concepts](#page-9-0)

Fundamental example

- ▶ **Fundamental example:** image classification
- \blacktriangleright input = image x

▶ Goal: given any input, we want to predict which object / animal is in the image

 \triangleright output = label y

7−→ "lion"

▶ **Successful philosophy:** instead of defining the function f ourselves, we are going to learn it from data

Supervised learning

Definition: we call *predictor* (or *model*) any mapping between inputs and outputs.

- **▶ supervised learning** \rightarrow **we will find a good predictor using annotated examples**
- ▶ **Remark (i)**: why is it difficult?
	- ▶ output may not be a deterministic function of input
	- \blacktriangleright link between the two may be incredibly complex
	- ▶ only a few observations available, potentially not where we want them
	- \blacktriangleright high dimensionality
	- \blacktriangleright ...
- ▶ **Remark (ii):** large part of machine learning: *unsupervised learning* (no annotations)
- **Examples:** clustering, dimension reduction, etc.
- \triangleright out of the scope of this lecture

Input space

Definition: we call *input space* (or *domain*, or *domain set*) the set of all possible inputs of our machine learning model. We will denote it by X .

- **Example (i):** tabular data $=$ spreadsheet data; x has well-defined *features* such as age, income, has_a_car
- **► Example (ii):** text data = ordered sequence of tokens; generally have to be pre-processed to be understood by our computer
- **Example (iii):** images $= H \times W \times C$ arrays of numbers

 $\in [0, 255]^{299 \times 299 \times 3}$

Input space as vector space

- **▶ Remark:** elements $x \in \mathcal{X}$ are usually described as vectors
- **Reminder:** vectors are 1D arrays of number, here are two vectors with three *coordinates*:

$$
u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} , \qquad v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} .
$$

 \blacktriangleright they can be

- \blacktriangleright added: $(u + v)_i = u_i + v_i$
- **•** multiplied by a number: $(\lambda u)_i = \lambda u_i$

▶ vectors belong to a **vector space**, its dimension is the number of coordinates

- ▶ dim = $d \Rightarrow$ canonical identification with \mathbb{R}^d
- **Intuition:** d copies of $\mathbb R$ with a special structure
- **Remark:** d typically high in modern machine learning
- **Example:** ImageNet images \rightarrow 299 \times 299 \times 3 = 268, 203

Classification and regression

▶ we will consider two fundamental tasks: **classification** and **regression**

- **▶** in classification, we want to associate to each $x \in \mathcal{X}$ a given class
- **▶** in regression, we want to associate to each $x \in \mathcal{X}$ a given value

▶ **Example (i):** for each image on my hard drive, I want to predict what appears in it

- {0: 'tench, Tinca tinca', $\mathbf{1}$
- 2 1: 'goldfish, Carassius auratus',
- 3 2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias',
- 4 3: 'tiger shark, Galeocerdo cuvieri',
- 5 4: 'hammerhead, hammerhead shark',
- 6 5: 'electric ray, crampfish, numbfish, torpedo',
- 7 6: 'stingray',
- 8 7: $' \text{cock}'$.
- $9 8$: 'hen'.
- 9: 'ostrich, Struthio camelus', 10

▶ Example (ii): for each customer in my database, I want to predict how many euros he will spend next year

Definition: we call *target space* (or *output space*) the set of all possible outputs of our machine learning model. We will denote it by \mathcal{Y} .

- **Example (i):** in image classification, \mathcal{Y} is the set of all names of object and animals of the dataset
- ▶ we identify it with ${1, 2, ..., 1000} = [1000]$
- ▶ **Remark (i):** no notion of order (3 is not better than 2)
- **► Remark (ii):** we will often restrict ourselves to $\mathcal{Y} = \{0, 1\}$ or $\{-1, +1\}$ for simplicity
- **Example (ii):** in regression, $\mathcal{Y} = \mathbb{R}$ (or \mathbb{R}^k if we want to predict several targets simultaneously)

Training data

Definition: we call training data (or training set) a finite sequence of elements of $X \times Y$. denoted as

$$
S = \{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\}.
$$

Here, n is the size of the training set.

- ▶ Example (i): S is a collection of 10⁶ images, each associated to the correct label
- **Example (ii):** S is a spreadsheet with the customer data from the last 25 years
- **Remark:** in real-life, there are many complications:
	- ▶ labels may be *corrupt*
	- \triangleright some data (= feature value for some observations) may be *missing*
- \triangleright we do not consider these complications in this lecture

Machine learning algorithm

 \triangleright we can now be a bit more precise:

Definition: we call *machine learning algorithm* a mapping A transforming a training set $S \in (\mathcal{X} \times \mathcal{Y})^n$ into a predictor $f : \mathcal{X} \to \mathcal{Y}$. Thus $f = A(S)$.

- \triangleright of course, we want to devise a "good" algorithm
- **Question:** what does good even mean?
- **Definition that machine learning uses:** performance on new, unseen data
- \blacktriangleright there are two difficulties here: we need to define
	- 1. performance
	- 2. new, unseen data

Loss functions

Definition: we call loss function any mapping $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.

- Intuitively: $\ell(y, y')$ measures the cost of predicting y' whereas the true target is y \blacktriangleright generally, we require that:
	- ▶ *ℓ* is symmetric;
	- ▶ *ℓ* has non-negative (≥ 0) values
	- \blacktriangleright $\ell(y, y) = 0.$

► Example (i): classification \rightarrow 0 – 1 loss

$$
\ell(y,y')=\mathbb{1}_{y\neq y'}\,.
$$

▶ here, $\mathbb{1}_F = 1$ if E is true, 0 otherwise

▶ **Remark:** does not matter how many classes

Loss functions

► Example (ii): regression \rightarrow $\mathcal{Y} \subseteq \mathbb{R}$ \rightarrow square loss

$$
\ell(y,y')=(y-y')^2.
$$

 \triangleright other possibility: absolute loss

$$
\ell(y,y')=|y-y'|.
$$

- ▶ Other examples: structured prediction,¹ functional regression, etc.
- **Remark (i):** in addition to the properties already lister, regression loss tend to tend to ∞ when the prediction errs far away from the ground truth
- ▶ **Remark (ii):** loss function also tend to be convex, but there are exceptions

 1 Osokin, Bach, Lacoste-Julien, On structured prediction theory with calibrated convex surrogate losses, NeurIPS, 2017

Expected risk: informal definition

- **▶ we model new, unseen data by a random variable** $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ **with distribution p**
- **Intuition:** new annotated data coming from the same distribution as the training data
- **Informal definition:** expected risk is the expected loss on new data
- \triangleright **Reminder:** expectation $=$ average value of a random variable
- **▶** in the discrete case, $X \in \{x_1, \ldots, x_n\}$,

$$
\mathbb{E}[X] = \sum_{i=1}^p x_i \cdot \mathbb{P}(X = x_i) .
$$

▶ Intuition: sum of outcome values weighted by how often they occur

Expected risk

▶ let us give a formal definition:

Definition: for a given data distribution p and loss function $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$, we define the expected risk (or test error) of a predictor $f: \mathcal{X} \rightarrow \mathcal{Y}$ as

 $\mathcal{R}(f) := \mathbb{E} \left[\ell(Y, f(X)) \right]$.

► Remark (i): depends on both the loss function and the data distribution p

- **Remark (ii):** hidden assumption: data distribution is equal to p...
- unfortunately, we do not know the data distribution...
- \triangleright expected risk is the key quantity: ideally, we want to find f such that it is minimal

Special cases

- \triangleright general definition, often specified in two key examples:
- ▶ Binary classification: $\mathcal{Y} = \{0, 1\}$ and $\ell(y, y') = 1_{y \neq y'}$, risk can be rewritten as

$$
\mathcal{R}(f) = \mathbb{E}\left[\mathbb{1}_{Y \neq f(X)}\right] = 0 \cdot \mathbb{P}\left(Y = f(X)\right) + 1 \cdot \mathbb{P}\left(f(X) \neq Y\right) \\ = \mathbb{P}\left(f(X) \neq Y\right).
$$

- ▶ **Remark:** probability of disagreement = 1− accuracy
- ▶ **Regression:** $\mathcal{Y} = \mathbb{R}$ and $\ell(y, y') = (y y')^2$

$$
\mathcal{R}(f) = \mathbb{E}\left[(Y - f(X))^2\right]
$$

- \blacktriangleright also known as **mean squared error** (= MSE)
- \blacktriangleright in any case, lower is better

Expected risk

▶ **Example (i):** in the classification setting, consider the following predictor:

$$
\forall x \in \mathcal{X}, \qquad f(x) = 1.
$$

 \blacktriangleright let us assume balanced data, that is, $\mathbb{P}(Y = 0) = \mathbb{P}(Y = 1) = 1/2$

 \blacktriangleright then the expected risk of f is

$$
\mathcal{R}(f) = \mathbb{P}\left(f(X) \neq Y\right) = \mathbb{P}\left(Y \neq 1\right) = \mathbb{P}\left(Y = 0\right) = 1/2.
$$

► Example (ii): regression setting, assume that $Y = X + \varepsilon$, with $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ \triangleright consider $f(x) = x$ (perfect predictor!)

$$
\mathcal{R}(f) = \mathbb{E}\left[(Y - f(X))^2 \right] = \mathbb{E}\left[(X + \varepsilon - X)^2 \right] = \mathbb{E}\left[\varepsilon^2 \right] = \sigma^2 > 0.
$$

► Reminder: $\text{Var}(\varepsilon) = \mathbb{E}[(\varepsilon - \mathbb{E}[\varepsilon])^2]$

Bayes risk

Question: what is the *best* prediction function for our criterion (expected risk)?

Intuitively: we want to find f that **minimizes** expected risk

Definition: we define the *Bayes risk* as the minimal possible risk over all possible predictors, for a given loss function and data distribution. Formally,

$$
\mathcal{R}^* := \inf_f \mathcal{R}(f) = \inf_f \mathbb{E} \left[\ell(Y, f(X)) \right].
$$

- **► Reminder:** $inf_{x \in F} r(x)$ is the minimal value of $r(x)$ on the set E
- **Remark (i):** this is not necessarily $= 0$
- ▶ **Remark (ii):** \mathcal{R}^* is our true yardstick

Bayes predictors

▶ in some cases, one can actually give predictors achieving R*[⋆]*

Definition: we call Bayes predictor any predictor with minimal risk and denote it by f^* . Formally,

$$
\mathcal{R}(f^*) = \mathcal{R}^* \left(= \inf_f \mathcal{R}(f) = \inf_f \mathbb{E} \left[\ell(Y, f(X)) \right] \right).
$$

▶ **Question:** how do we do that?

 \triangleright first step = using the **tower property**: let g be a predictor,

$$
\mathcal{R}(g) = \mathbb{E}_{x \sim p} [\mathbb{E} [\ell(Y, g(x)) \mid X = x]]
$$

Reminder: conditional probability

Proposition: given two events A and B such that $P(B) \neq 0$, we define the conditional probability of A "given" B by

$$
\mathbb{P}\left(\mathcal{A}\,|\, \mathcal{B}\right):=\frac{\mathbb{P}\left(\mathcal{A} \;\text{and}\; \mathcal{B}\right)}{\mathbb{P}\left(\mathcal{B}\right)}\,.
$$

Example: let us consider two Bernoulli with parameter $1/2$, A_1 and A_2 \blacktriangleright we can compute

$$
\mathbb{P}(A_1 + A_2 = 1 | A_1 = 0) = \frac{\mathbb{P}(A_1 + A_2 = 1 \text{ and } A_1 = 0)}{\mathbb{P}(A_1 = 0)} = \frac{\mathbb{P}(A_1 = 0 \text{ and } A_2 = 1)}{\mathbb{P}(A_1 = 0)} = \frac{1/4}{1/2} = \frac{1}{2}.
$$

Reminder: conditional expectation

Proposition: let X and Y be discrete rndom variables. The conditional expectation of X given Y is given by

$$
\mathbb{E}[X \mid Y = y] = \sum_{x} x \cdot \mathbb{P}(X = x \mid Y = y).
$$

• Remark: undefined if $\mathbb{P}(Y = y) = 0$ (but still possible for continuous random variables) ▶ **Example:**

$$
\mathbb{E}[A_1 + A_2 | A_1 = 0] = 0 \cdot \mathbb{P}(A_1 + A_2 = 0 | A_1 = 0) + 1 \cdot \mathbb{P}(A_1 + A_2 = 1 | A_1 = 0)
$$

+ 2 \cdot \mathbb{P}(A_1 + A_2 = 2 | A_1 = 0)
= 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} + 2 \cdot 0 = \frac{1}{2}.

Reminder: tower property

Proposition: Let X and Y be two random variables. Then $\mathbb{E}_Y[\mathbb{E}[X | Y]] = \mathbb{E}[X]$.

▶ **Proof (in the discrete case):** using the previous slide:

$$
\mathbb{E}_{Y}[\mathbb{E}[X | Y]] = \sum_{y} \left(\sum_{x} x \cdot \mathbb{P}(X = x | Y = y) \right) \mathbb{P}(Y = y)
$$

$$
= \sum_{x} x \cdot \sum_{y} \mathbb{P}(X = x | Y = y) \mathbb{P}(Y = y)
$$

$$
= \sum_{x} x \cdot \sum_{y} \mathbb{P}(X = x, Y = y)
$$

$$
= \sum_{x} x \cdot \mathbb{P}(X = x)
$$

$$
\mathbb{E}_{Y}[\mathbb{E}[X | Y]] = \mathbb{E}[X] \quad \Box
$$

Back to Bayes predictors

▶ according to the tower property:

$$
\mathcal{R}(g) = \mathbb{E}_{x \sim p} [\mathbb{E} [\ell(Y, g(x)) \mid X = x]]
$$

▶ **Remark:** \mathbb{E} $[\ell(Y, g(x)) | X = x]$ is also sometimes called the *conditional risk* ▶ we can *define* f^* such that, for all $x \in \mathcal{X}$, it minimizes

$$
C(g,x):=\mathbb{E}\left[\ell(Y,g(x))\mid X=x\right].
$$

 \triangleright by positivity of the integral, this gives us the best possible risk

Bayes predictors

 \blacktriangleright summarizing everything:

Proposition: The expected risk is minimized at a *Bayes predictor* f^{\star} : $\mathcal{X} \rightarrow \mathcal{Y}$ satisfying for all $x \in \mathcal{X}$ $f^*(x) \in \argmin_{z \in \mathcal{Y}} \mathbb{E}\left[\ell(Y, z) \mid X = x\right].$

All Bayes predictor have the same risk, equal to the Bayes risk. It can be computed as

$$
\mathcal{R}^{\star} = \mathbb{E}_{x \sim p} \left[\inf_{z \in \mathcal{Y}} \mathbb{E} \left[\ell(Y, z) \mid X = x \right] \right].
$$

▶ **Remark:** f^* seems complicated to compute... and it is

 \triangleright we can still get some interesting statements

Examples

▶ **Binary classification:** for the 0 − 1 loss, Bayes predictor can be written

$$
f^{\star}(x) \in \underset{z \in \{0,1\}}{\arg \min} \mathbb{P}(Y \neq z \mid X = x) = \underset{z \in \{0,1\}}{\arg \max} \mathbb{P}(Y = z \mid X = x).
$$

• set
$$
\eta(x) = \mathbb{P}(Y = 1 | X = x)
$$
, then $f^*(x) = 1_{\eta(x) > 1/2}$

 \blacktriangleright Bayes risk is equal to

$$
\mathcal{R}^{\star}=\mathbb{E}\left[\min(\eta(x),1-\eta(x))\right].
$$

▶ **Regression:** for the square loss, Bayes predictor is such that

$$
f^{\star}(x) \in \argmin_{z \in \mathbb{R}} \mathbb{E} \left[(Y - z)^2 \mid X = x \right] = \mathbb{E} \left[Y \mid X = x \right]
$$