Theory of Machine Learning

Prof. Damien Garreau

Julius-Maximilians-Universität Würzburg

Winter term 2024-2025

1

1. Course organization

Organization of the course

- Wuestudy Course ID: 08134700
- Name on Wuecampus: Theory of Machine Learning
- Who?
 - Lectures: myself
 - Exercises: M. Taimeskhanov
- **Format** = slides (available on Moodle after each lecture)
- **Exercises** = mostly pen and paper, regular coding (in Python)
- Schedule:
 - 1. lectures on Fridays, 4-5:30pm
 - 2. exercise sessions on Fridays, 2-3:30pm (starting next week)
- Room: SE 2, CAIDAS building

Evaluation

do not forget to register to the exam

Evaluation:

- written exam at the end of the semester
- content = definitions, similar derivations to the exercises, more ambitious problem
- exercises sessions \rightarrow bonus points

How does the bonus work?

- attend the sessions
- send your work to Magamed at the end of the session
- \blacktriangleright global grade ightarrow up to 10% bonus
- **Examples:** (based on 10 sessions)
 - exam = 76%, I attended all exercise sessions and made a good effort for each: I get full bonus and my final grade is 76 + 10 = 86%
 - ▶ exam = 96%, I attended all exercise sessions and made a good effort for each: I get full bonus and my final grade is 96 + 10 = 100%
 - exam = 76%, I skipped two sessions and during one session I was not paying attention and handed out something subpar: bonus = 7.5%, final grade = 83.5%

Goals and pre-requisites

Pre-requisites:

- linear algebra (matrix, eigenvectors, diagonalization)
- analysis (derivative, gradient, global maximum)
- probability theory (random variable, density, expectation)
- I am glad to interrupt the lecture if some maths notion is not clear

Goals of the lecture:

- know about the basic vocabulary
- look into the details of the fundamental machine learning algorithms (linear regression, gradient descent, etc.)
- prove key easy theoretical results (e.d., convergence rate for least squares)
- check experimentally that these results hold

Outline I

1. Course organization

2. Introduction

First concepts Empirical risk minimization

3. Linear least-square regression

Framework Ordinary least-squares Fixed design analysis Ridge least-squares regression Random design analysis

4. Generalization bounds

Uniform bounds via concentration Rademacher complexity

5. Approximation error

6. Optimization

Gradient descent

Outline II

Gradient descent for OLS Gradient descent for convex functions

7. Kernel methods

Positive semi-definite kernels Reproducing kernel Hilbert spaces More examples The kernel trick and applications The representer theorem Kernel ridge regression Kernel logistic regression

Useful resources

Main references:

- ▶ for general learning theory: Francis Bach, Learning Theory from First Principles, 2023
- for methodology: Hastie, Tibshirani, Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, 2001 (second edition: 2009)
- for kernel methods specifically: Bernhard Schölkopf, Alexander Smola, Learning with kernels, MIT Press, 2002
- **Wikipedia:** as good as ever.
- Wolfram alpha: if you have computations to make and you do not know want to use a proper language: https://www.wolframalpha.com/

Remedials:

- Iinear algebra: Gilbert Strang, Introduction to Linear Algebra, Cambridge Press, 2009
- probability theory: William Feller, An introduction to probability theory and its applications, Wiley, 1950

2. Introduction

2.1. First concepts

Fundamental example

- **Fundamental example:** image classification
- ▶ input = image x
- ▶ Goal: given any input, we want to predict which object / animal is in the image
- output = label y

 $\longmapsto ``\mathsf{lion''}$

Successful philosophy: instead of defining the function f ourselves, we are going to learn it from data

Supervised learning

Definition: we call predictor (or model) any mapping between inputs and outputs.

- supervised learning \rightarrow we will find a good predictor using *annotated* examples
- Remark (i): why is it difficult?
 - output may not be a deterministic function of input
 - link between the two may be incredibly complex
 - only a few observations available, potentially not where we want them
 - high dimensionality
 - ► ...
- **Remark (ii):** large part of machine learning: *unsupervised learning* (no annotations)
- **Examples:** clustering, dimension reduction, etc.
- out of the scope of this lecture

Input space

Definition: we call *input space* (or *domain*, or *domain set*) the set of all possible inputs of our machine learning model. We will denote it by \mathcal{X} .

- Example (i): tabular data = spreadsheet data; x has well-defined *features* such as age, income, has_a_car
- Example (ii): text data = ordered sequence of tokens; generally have to be pre-processed to be understood by our computer
- **Example (iii):** images = $H \times W \times C$ arrays of numbers

 $\in [\![0,255]\!]^{299\times 299\times 3}$

Input space as vector space

- **Remark:** elements $x \in \mathcal{X}$ are usually described as *vectors*
- Reminder: vectors are 1D arrays of number, here are two vectors with three coordinates:

$$u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}, \qquad v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}.$$

they can be

- added: $(u + v)_i = u_i + v_i$
- multiplied by a number: $(\lambda u)_i = \lambda u_i$

vectors belong to a vector space, its dimension is the number of coordinates

- dim = $d \Rightarrow$ canonical identification with \mathbb{R}^d
- **Intuition:** d copies of \mathbb{R} with a special structure
- **Remark:** *d* typically high in modern machine learning
- **Example:** ImageNet images \rightarrow 299 \times 299 \times 3 = 268, 203

Classification and regression

we will consider two fundamental tasks: classification and regression

- ▶ in classification, we want to associate to each $x \in \mathcal{X}$ a given *class*
- in regression, we want to associate to each $x \in \mathcal{X}$ a given *value*

Example (i): for each image on my hard drive, I want to predict what appears in it

- 1 {0: 'tench, Tinca tinca',
- 1: 'goldfish, Carassius auratus',
- 2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias',
- 3: 'tiger shark, Galeocerdo cuvieri',
- 5 4: 'hammerhead, hammerhead shark',
- 5: 'electric ray, crampfish, numbfish, torpedo',
- 7 6: 'stingray',
- 8 7: 'cock',
- 9 8: 'hen',
- 10 9: 'ostrich, Struthio camelus',

Example (ii): for each customer in my database, I want to predict how many euros he will spend next year

Definition: we call *target space* (or *output space*) the set of all possible outputs of our machine learning model. We will denote it by \mathcal{Y} .

- Example (i): in image classification, Y is the set of all names of object and animals of the dataset
- we identify it with $\{1, 2, ..., 1000\} = [1000]$
- **Remark (i):** no notion of order (3 is not better than 2)
- **Remark (ii):** we will often restrict ourselves to $\mathcal{Y} = \{0,1\}$ or $\{-1,+1\}$ for simplicity
- ► Example (ii): in regression, 𝒴 = ℝ (or ℝ^k if we want to predict several targets simultaneously)

Training data

Definition: we call *training data* (or *training set*) a *finite* sequence of elements of $\mathcal{X} \times \mathcal{Y}$, denoted as

$$S = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$$

Here, n is the size of the training set.

- **Example (i):** S is a collection of 10^6 images, each associated to the correct label
- **Example (ii):** S is a spreadsheet with the customer data from the last 25 years
- Remark: in real-life, there are many complications:
 - labels may be corrupt
 - some data (= feature value for some observations) may be missing
- we do not consider these complications in this lecture

Machine learning algorithm

we can now be a bit more precise:

Definition: we call machine learning algorithm a mapping A transforming a training set $S \in (\mathcal{X} \times \mathcal{Y})^n$ into a predictor $f : \mathcal{X} \to \mathcal{Y}$. Thus f = A(S).

- of course, we want to devise a "good" algorithm
- Question: what does good even mean?
- Definition that machine learning uses: performance on new, unseen data
- there are two difficulties here: we need to define
 - 1. performance
 - 2. new, unseen data

Loss functions

Definition: we call loss function any mapping $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.

- Intuitively: l(y, y') measures the cost of predicting y' whereas the true target is y
 generally, we require that:
 - \triangleright ℓ is symmetric;
 - l has non-negative (≥ 0) values
 - $\ell(y,y) = 0.$

Example (i): classification $\rightarrow 0-1$ loss

$$\ell(y,y')=\mathbb{1}_{y\neq y'}.$$

▶ here, $\mathbb{1}_E = 1$ if *E* is true, 0 otherwise

Remark: does not matter how many classes

Loss functions

Example (ii): regression $\rightarrow \mathcal{Y} \subseteq \mathbb{R} \rightarrow$ square loss

$$\ell(y,y')=(y-y')^2$$

other possibility: absolute loss

$$\ell(y,y')=|y-y'|.$$

- Other examples: structured prediction,¹ functional regression, etc.
- **Remark (i):** in addition to the properties already lister, regression loss tend to tend to ∞ when the prediction errs far away from the ground truth
- Remark (ii): loss function also tend to be convex, but there are exceptions

¹Osokin, Bach, Lacoste-Julien, On structured prediction theory with calibrated convex surrogate losses, NeurIPS, 2017

Expected risk: informal definition

- ▶ we model new, unseen data by a random variable $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ with distribution p
- Intuition: new annotated data coming from the same distribution as the training data
- Informal definition: expected risk is the expected loss on new data
- Reminder: expectation = average value of a random variable
- ▶ in the discrete case, $X \in \{x_1, \ldots, x_p\}$,

$$\mathbb{E}[X] = \sum_{i=1}^{p} x_i \cdot \mathbb{P}(X = x_i) \;.$$

Intuition: sum of outcome values weighted by how often they occur

Expected risk

let us give a formal definition:

Definition: for a given data distribution p and loss function $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$, we define the *expected risk* (or *test error*) of a predictor $f : \mathcal{X} \to \mathcal{Y}$ as

 $\mathcal{R}(f) := \mathbb{E}\left[\ell(Y, f(X))\right]$.

Remark (i): depends on both the loss function and the data distribution *p*

- Remark (ii): hidden assumption: data distribution is equal to p...
- unfortunately, we do not know the data distribution...
- \blacktriangleright expected risk is the key quantity: ideally, we want to find f such that it is minimal

Special cases

general definition, often specified in two key examples:

▶ Binary classification: $\mathcal{Y} = \{0,1\}$ and $\ell(y,y') = \mathbb{1}_{y \neq y'}$, risk can be rewritten as

$$\mathcal{R}(f) = \mathbb{E}\left[\mathbbm{1}_{Y \neq f(X)}
ight] = 0 \cdot \mathbb{P}\left(Y = f(X)\right) + 1 \cdot \mathbb{P}\left(f(X) \neq Y
ight) \ = \mathbb{P}\left(f(X) \neq Y
ight) \ .$$

Remark: probability of disagreement = 1- accuracy

• Regression: $\mathcal{Y} = \mathbb{R}$ and $\ell(y, y') = (y - y')^2$

$$\mathcal{R}(f) = \mathbb{E}\left[(Y - f(X))^2\right]$$

also known as mean squared error (= MSE)

▶ in any case, *lower is better*

Expected risk

Example (i): in the classification setting, consider the following predictor:

$$\forall x \in \mathcal{X}, \qquad f(x) = 1.$$

▶ let us assume balanced data, that is, $\mathbb{P}(Y = 0) = \mathbb{P}(Y = 1) = 1/2$

then the expected risk of f is

$$\mathcal{R}(f) = \mathbb{P}\left(f(X)
eq Y
ight) = \mathbb{P}\left(Y
eq 1
ight) = \mathbb{P}\left(Y
eq 0
ight) = 1/2$$

Example (ii): regression setting, assume that Y = X + ε, with ε ~ N (0, σ²)
 consider f(x) = x (perfect predictor!)

$$\mathcal{R}(f) = \mathbb{E}\left[(Y - f(X))^2
ight] = \mathbb{E}\left[(X + \varepsilon - X)^2
ight] = \mathbb{E}\left[\varepsilon^2
ight] = \sigma^2 > 0\,.$$

• Reminder: Var $(\varepsilon) = \mathbb{E} \left[(\varepsilon - \mathbb{E} [\varepsilon])^2 \right]$

Bayes risk

Question: what is the best prediction function for our criterion (expected risk)?

Intuitively: we want to find f that minimizes expected risk

Definition: we define the *Bayes risk* as the minimal possible risk over all possible predictors, for a given loss function and data distribution. Formally,

$$\mathcal{R}^{\star} := \inf_{f} \mathcal{R}(f) = \inf_{f} \mathbb{E} \left[\ell(Y, f(X)) \right] .$$

- **Reminder:** $\inf_{x \in E} r(x)$ is the minimal value of r(x) on the set E
- **Remark (i):** this is not necessarily = 0
- **Remark (ii):** \mathcal{R}^* is our true yardstick

Bayes predictors

 \blacktriangleright in some cases, one can actually give predictors achieving \mathcal{R}^{\star}

Definition: we call *Bayes predictor* any predictor with minimal risk and denote it by f^* . Formally,

$$\mathcal{R}(f^*) = \mathcal{R}^* \left(= \inf_f \mathcal{R}(f) = \inf_f \mathbb{E} \left[\ell(Y, f(X)) \right] \right)$$

Question: how do we do that?

first step = using the tower property: let g be a predictor,

$$\mathcal{R}(g) = \mathbb{E}_{x \sim \rho}[\mathbb{E}\left[\ell(Y, g(x)) \mid X = x\right]]$$

Reminder: conditional probability

Proposition: given two events A and B such that $\mathbb{P}(B) \neq 0$, we define the *conditional* probability of A "given" B by

$$\mathbb{P}\left(A \,|\, B
ight) := rac{\mathbb{P}\left(A ext{ and } B
ight)}{\mathbb{P}\left(B
ight)}\,.$$

- **Example:** let us consider two Bernoulli with parameter 1/2, A_1 and A_2
- we can compute

$$\mathbb{P}(A_1 + A_2 = 1 | A_1 = 0) = \frac{\mathbb{P}(A_1 + A_2 = 1 \text{ and } A_1 = 0)}{\mathbb{P}(A_1 = 0)} = \frac{\mathbb{P}(A_1 = 0 \text{ and } A_2 = 1)}{\mathbb{P}(A_1 = 0)}$$
$$= \frac{1/4}{1/2} = \frac{1}{2}.$$

Reminder: conditional expectation

Proposition: let X and Y be discrete rndom variables. The *conditional expectation* of X given Y is given by

$$\mathbb{E}\left[X \mid Y=y\right] = \sum_{x} x \cdot \mathbb{P}\left(X=x \mid Y=y\right).$$

Remark: undefined if P (Y = y) = 0 (but still possible for continuous random variables)
 Example:

$$\mathbb{E} \left[A_1 + A_2 \mid A_1 = 0 \right] = 0 \cdot \mathbb{P} \left(A_1 + A_2 = 0 \mid A_1 = 0 \right) + 1 \cdot \mathbb{P} \left(A_1 + A_2 = 1 \mid A_1 = 0 \right) \\ + 2 \cdot \mathbb{P} \left(A_1 + A_2 = 2 \mid A_1 = 0 \right) \\ = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} + 2 \cdot 0 = \frac{1}{2} \,.$$

Reminder: tower property

Proposition: Let *X* and *Y* be two random variables. Then $\mathbb{E}_{Y}[\mathbb{E}[X | Y]] = \mathbb{E}[X]$.

Proof (in the discrete case): using the previous slide:

$$\mathbb{E}_{Y}[\mathbb{E}[X \mid Y]] = \sum_{y} \left(\sum_{x} x \cdot \mathbb{P}(X = x \mid Y = y) \right) \mathbb{P}(Y = y)$$
$$= \sum_{x} x \cdot \sum_{y} \mathbb{P}(X = x \mid Y = y) \mathbb{P}(Y = y)$$
$$= \sum_{x} x \cdot \sum_{y} \mathbb{P}(X = x, Y = y)$$
$$= \sum_{x} x \cdot \mathbb{P}(X = x)$$
$$\mathbb{E}_{Y}[\mathbb{E}[X \mid Y]] = \mathbb{E}[X] \quad \Box$$

Back to Bayes predictors

according to the tower property:

$$\mathcal{R}(g) = \mathbb{E}_{x \sim \rho}[\mathbb{E}\left[\ell(Y, g(x)) \mid X = x\right]]$$

Remark: E[ℓ(Y,g(x)) | X = x] is also sometimes called the *conditional risk* we can *define* f* such that, for all x ∈ X, it minimizes

$$C(g,x) := \mathbb{E}\left[\ell(Y,g(x)) \mid X = x\right]$$

by positivity of the integral, this gives us the best possible risk

Bayes predictors

summarizing everything:

Proposition: The expected risk is minimized at a *Bayes predictor* $f^* : \mathcal{X} \to \mathcal{Y}$ satisfying for all $x \in \mathcal{X}$ $f^*(x) \in \underset{z \in \mathcal{Y}}{\operatorname{arg\,min}} \mathbb{E}\left[\ell(Y, z) \mid X = x\right]$.

All Bayes predictor have the same risk, equal to the Bayes risk. It can be computed as

$$\mathcal{R}^{\star} = \mathbb{E}_{x \sim p} \left[\inf_{z \in \mathcal{Y}} \mathbb{E} \left[\ell(Y, z) \mid X = x \right] \right]$$

Remark: f^* seems complicated to compute... and it is

we can still get some interesting statements

Examples

Binary classification: for the 0 - 1 loss, Bayes predictor can be written

$$f^{\star}(x) \in \operatorname*{arg\,min}_{z \in \{0,1\}} \mathbb{P}\left(Y \neq z \,|\, X = x
ight) = \operatorname*{arg\,max}_{z \in \{0,1\}} \mathbb{P}\left(Y = z \,|\, X = x
ight)$$
 .

▶ set
$$\eta(x) = \mathbb{P}(Y = 1 | X = x)$$
, then $f^*(x) = \mathbb{1}_{\eta(x) > 1/2}$

Bayes risk is equal to

$$\mathcal{R}^{\star} = \mathbb{E}\left[\min(\eta(x), 1 - \eta(x))
ight]$$
 .

Regression: for the square loss, Bayes predictor is such that

$$f^{\star}(x) \in \operatorname*{arg\,min}_{z \in \mathbb{R}} \mathbb{E}\left[(Y - z)^2 \mid X = x
ight] = \mathbb{E}\left[Y \mid X = x
ight]$$