
4. Interpretable-by-design models
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Introduction
▶ for some models, interpretability not an issue
▶ Examples:

▶ linear models
▶ decision trees

y = 0.5 · x1 − 0.2 · x2

x1

y

−x2

Loan Application

Credit Risk

High

Reject

Medium

Income

High

Accept

Medium

Review

Low

Reject

Low

Accept

35



4.1. Linear models
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Linear models: quick recap

▶ Linear models: output depends linearly on each feature
▶ mathematically, in the regression setting:

f (x) = β0 + β1x1 + β2x2 + · · · + βdxd ,

▶ given training data (X (1), Y (1)), . . . , (X (n), Y (n)), model is fitted by ordinary least squares

min
β


n∑

i=1

(
Y (i) − β0 −

d∑
j=1

βjX (i)
j

)2
▶ Intuition: minimize the sum of squares of prediction errors
▶ usual ways to control the size / number of non-zeros coefficients: ridge15 and LASSO16

15Hoerl and Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 1970
16Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society Series

B: Statistical Methodology, 1996
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Linear regression: example

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

▶ Figure: ordinary linear regression (in 1D)
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Linear models: quick recap

▶ Ridge regression: adding a L2 penalty in the optimization:

min
β


n∑

i=1

(
Y (i) − β0 −

d∑
j=1

βjX (i)
j

)2

+ λ

d∑
j=1

β2
j

 ,

where λ > 0 is a hyperparameter
▶ Least Absolute Shrinkage and Selection Operator (LASSO): adding a L1 penalty:

min
β


n∑

i=1

(
Y (i) − β0 −

d∑
j=1

βjX (i)
j

)2

+ λ

d∑
j=1

|βj |

 ,

where λ > 0 is a hyperparameter
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Linear models: interpretability

▶ Why are these models interpretable? increasing xj by one unit increases f (x) by βj

▶ let us look at a concrete example: regression task on the California housing dataset17

▶ we run LASSO on a train set (75% of the data)
▶ RMSE on the test is 0.83 (not too bad!)
▶ we can read the coefficients:

▶ Mathematically: our model is given by

f (x) = 0.285 + 0.346 · xMedInc + 0.015 · xHouseAge − 0.001 · xAveOccup .

▶ we can directly read in these coefficients what our model is doing!

17Pace and Barry, Sparse Spatial Autoregressions, Statistics & Probability Letters, 1997
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Logistic regression: quick recap

▶ Logistic regression: linear model in the classification setting
▶ Quick reminder: logistic function is defined as

σ(z) ··=
1

1 + e−z .
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▶ logistic regression models P (Y = 1 | X = x) by σ(β⊤x)
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Logistic regression: quick recap

▶ given train data (X (1), Y (1)), . . . , (X (n), Y (n)), we fit the model by solving

min
β

{ n∑
i=1

ℓ(Y (i), σ(β⊤X (i)))
}

,

where ℓ is the cross-entropy loss

ℓ(y , y ′) ··= −y log y ′ − (1 − y) log(1 − y ′) .

▶ Intuition: find coefficients such that prediction score is high when true label is 1
▶ In any case: our model is given by

f (x) = 1
1 + exp (−β0 − β1x1 − · · · − βpxp) .
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Cross-entropy loss
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▶ Figure: the cross-entropy loss
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Logistic regression: example

▶ Figure: logistic regression in 2D for separable data
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Logistic regression: interpretability

▶ Why is this interpretable? σ is monotonous
▶ thus, if βj > 0, increase in xj means higher score
▶ more convenient to reason in terms of log-odds:

log-odds(x) = log P (Y = 1 | X = x)
P (Y = 0 | X = x)

= log
1

1+exp(−β0−β1x1−···−βpxp)

1 − 1
1+exp(−β0−β1x1−···−βpxp)

= log 1
exp (−β0 − β1x1 − · · · − βpxp)

= β0 + β1x1 + · · · + βpxp .

▶ thus increase of xj by one unit means increase of log-odds by βj
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Summary

▶ linear models are light-weight models
▶ model either the output as a linear transformation of the input...
▶ ...or probability of belonging to a given class
▶ They are interpretable: directly looking at the coefficients
▶ Limitations:

▶ accuracy far from state-of-the-art (model too simple)
▶ need meaningful features...
▶ and not too many of them
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4.2. Decision trees
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Decision tree: quick recap

▶ What is a decision tree?
▶ tree with root = X and leaves = cells
▶ iterative binary decisions based on feature values
▶ node of the tree: “is feature j smaller than x?”
▶ if yes, go left, if not, go right
▶ Can also be visualized as partition of the input space X
▶ each query point falls into a cell, constant prediction on each cell
▶ two different modes:

▶ classification → class label → majority vote
▶ regression → real number → empirical average
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Decision tree: example

X[0] <= 3.08

X[1] <= 1.20

X[1] <= 0.40

value = 1.68 value = 1.28

X[1] <= 1.99

value = 0.57 value = -0.00

X[1] <= 2.09

X[1] <= 0.71

value = -0.10 value = -0.60

X[1] <= 3.82

value = -1.64 value = -0.97

▶ Figure: example of a decision tree for regression in 2D
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Decision tree: example
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▶ Figure: associated partition of the space
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Decision trees: interpretability
▶ Why is this model interpretable?
▶ let us look at a concrete example: the Wine dataset18

18Cortez et al., Modeling wine preferences by data mining from physicochemical properties, Decision Support
Systems, 1998
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Decision trees: interpretability
▶ for a specific example, we can run down the path to understand the decision
▶ we can also infer global rules
▶ for instance, we know that

{proline ≤ 755.0, per. dil ≤ 2.115} → class 2 .
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Summary

▶ decision trees are light-weight models
▶ recursively splitting the input space according to a numerical criterion
▶ They are interpretable: either tracing down the decision or deducing global rules
▶ Limitations:

▶ accuracy far from state-of-the-art (model too simple)
▶ interpretability decreases with number of leaves (see next section)
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5. Ad-hoc methods
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Ad-hoc methods

▶ even interpretable-by-design models can become un-interpretable
▶ Typical scenario: too many parameters
▶ Example: tree with large width / depth

▶ we can still leverage the particular structure of the model
▶ → ad-hoc importance measures
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5.1. Mean decrease impurity
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Impurity: classification
▶ Key notion for tree construction: impurity
▶ Informally, quantity measuring how homogeneous a node is
▶ Notation: (X (1), Y (1)), (X (2), Y (2)), . . . , (X (n), Y (n)) training points, Y (i) ∈ [K ]
▶ for each node m and label k, define label proportion

pk(m) ··=
∣∣{i ∈ [n], X (i) ∈ m and Y (i) = k}

∣∣
N(m) , where N(m) ··=

∣∣∣{i ∈ [n], X (i) ∈ m}
∣∣∣ .

Definition: for a given node m, we define Gini impurity as

i(m) ··=
1
2

K∑
k=1

pk(1 − pk) .

▶ Intuition: “lower is better” (one class in node ⇒ i(m) = 0)
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Impurity decrease: classification

▶ Tree construction: recursively split according to maximal impurity decrease

Definition: consider a node m and a possible split along coordinate j with level z . We call
mL and mR the two new sub-cells (mL corresponds to X (j) < z). The impurity decrease is
defined as

L(j , z) ··= i(m) − pLi(mL) − pR i(mR) ,

where pL (resp. pR) is the proportion of observations in m falling into mL (resp. mR).

▶ Intuition: start with large i(m) and imagine a split producing two “pure” cells
▶ in that event, i(mL) = i(mR) = 0 ⇒ large impurity decrease
▶ in the other direction, “bad” splits produce cells with i(mL) ≈ i(mR) ≈ i(m)
▶ which yields small impurity decrease
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Quick recap: impurity decrease

1
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0

1

0

1

0

0

▶ Example: current cell m has ten points
▶ p0 = 0.6, p1 = 0.4
▶ we compute

i(m) = 1
2 (0.4 · (1 − 0.4) + 0.6 · (1 − 0.6)) = 0.24 .
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Quick recap: impurity decrease

1
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0

0

1

0

1
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0

mL mR
▶ let us look at a first split
▶ we compute

i(mL) = 0 ,

i(mR) = 1
2

(
6
8 ·
(

1 − 6
8

)
+ 2

8 ·
(

1 − 2
8

))
≈ 0.19

▶ proportion of observations are

pL = 0.2 and pR = 0.8 .

▶ we deduce

∆I(m) ≈ 0.24 − 0.2 · 0 − 0.8 · 0.19 = 0.09 .
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Quick recap: impurity decrease

1

10
0

0

1

0

1

0

0

mL mR ▶ let us look at another candidate
▶ we compute

i(mL) = 0 ,

i(mR) = 1
2

(
6
7 ·
(

1 − 6
7

)
+ 1

7 ·
(

1 − 1
7

))
≈ 0.12

▶ proportion of observations are

pL = 0.3 and pR = 0.7 .

▶ we deduce

∆I(m) ≈ 0.24 − 0.3 · 0 − 0.7 · 0.12 = 0.16 .

▶ this split is much better
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Impurity decrease: regression

▶ slightly different definition in the regression case
▶ in that case, Yi ∈ R and we look at the (weighted) variances
▶ more precisely:

Definition:19 For a given node m and split z across feature j , we define

L(j , z) ··=
1

N(m)
∑

i :Xi ∈m
(Yi − Y m)2 − 1

N(m)
∑

i :Xi ∈m
(Yi − Y mL1X (j)

i <z − Y mR1X (j)
i ≥z)2 ,

where Y m is the average response on cell m.

▶ Intuition: good split produces cells with constant responses

19Scornet, Biau, Vert, Consistency of random forests, The Annals of Statistics, 2015
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Decision trees: quick recap

▶ many options for impurity choice / which features are explored
▶ popular method: classification and regression trees (CART20)
▶ informally, at a given depth:

1: for m in nodes do
2: for j ∈ [d ] do
3: for split ∈ possible splits do
4: compute and store L(j , z)
5: end for
6: end for
7: split according to (j⋆, z⋆) maximizing L(j , z)
8: end for

▶ Stopping criterion: usually max_depth / pure leaves

20Breiman, Friedman, Olshen, and Stone Classification and regression trees, Chapman & Hall, 1984
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Mean decrease impurity

▶ General idea: use the numerical criterion to give feature importance

Definition: Let j ∈ [d ]. Let T be a CART tree, Tj the set of nodes with splits according
to feature j . The mean decrease impurity21 is defined as

M̂DIj ··=
∑
m∈Tj

pm∆I(m) ,

where pm is the proportion of data points falling into cell m, and ∆I(m) is the decrease in
impurity at node n.

▶ In other words: M̂DIj = weighed decrease in impurity related to splits along j
▶ Intuition: high if tree uses feature to efficiently split
21Breiman, Random Forests, Machine Learning, 2001
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Nice properties of MDI
▶ Empirical variance of the observations:

V̂ar(Y ) ··=
1
n

n∑
i=1

(Yi − Y )2 .

▶ for a function f : [0, 1] → R, train error

Rn(f ) ··=
1
n

n∑
i=1

(Yi − f (Xi))2 .

Proposition:22 Let T be a CART tree. Then

V̂ar(Y ) =
d∑

j=1
M̂DIj + Rn(T ) .

22Scornet, Trees, forests, and impurity-based variable importance, Annales de l’Institut Henri Poincaré (B)
Probabilités et Statistiques, 2023 65



Nice properties of MDI
▶ Reminder: R2 = percentage of the variance explained by the model
▶ Consequence of previous slide:

R2 =
∑d

j=1 M̂DIj
V̂ar(Y )

.

▶ Other consequence: if tree fully-grown, Rn = 0 and

V̂ar(Y ) =
d∑

j=1
M̂DIj .

▶ For linear models (f (x) = β0 + β1x1 + · · · + βdxd) and uniform inputs:

M̂DIj ≈
β2

j
12 .
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Limitations of MDI

▶ Assume: Y = f (X ) + ε, Var (ε) = σ2

▶ then

lim
n→+∞

d∑
j=1

M̂DIj = Var (f (X )) + σ2 .

▶ the sum of MDIs contains not only all available information Var (f (X ))...
▶ ...but also noise of the data
▶ MDI of some variables are higher than expected
▶ Other issue: MDI favors variables with many categories23

23Strobl et al., Bias in random forest variable importance measures: illustration, sources and a solution, BMC
Bioinformatics, 2007
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Random Forests: quick recap

▶ Random forests:24 aggregate several trees together
▶ prediction = mean (regression) or majority vote (classification)

Tree 1 Tree 2 Tree 3 · · · Tree 5

Majority vote

Final Decision

24Breiman, ibid.
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Random forests: quick recap

▶ the random aspect comes from the construction of each individual tree
▶ Tree construction: for each tree,

1. sample (with replacement) m points
2. build a CART tree on these points

▶ Additional caveat: explore only a strict subset of the features at each split
▶ the points which are not considered in the construction of tree t are called Out-of-bag

(OOB) points
▶ typical value: T = 200 trees → not so interpretable anymore
▶ the user is not going to look at 200 traces
▶ + potentially conflicting...
▶ one can still propose simple mechanisms to get interpretability
▶ let us look into 2 ad-hoc methods for random forests
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Mean decrease impurity for random forests

▶ Idea: average for all trees in the forest
▶ Recall: for any tree t, we defined

M̂DIj(t) ··=
∑
m∈tj

pm∆I(m) ,

where pm is the proportion of data points falling into cell m, and ∆I(m) is the decrease in
impurity at node n

▶ For random forests: let F be a forest

M̂DIj(F) ··=
1
T
∑
t∈F

M̂DIj(T ) .

▶ since taking average, same properties
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Mean Decrease Impurity: example
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Feature importances using MDI

▶ Figure: computing the MDI on the diabetes dataset25

25Efron et al., Least Angle Regression, Annals of Statistics, 2004
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Summary

▶ CART trees: iterative splitting according to impurity
▶ Mean Decrease Impurity looks at average decrease for each feature
▶ gives feature importance of our model
▶ can be connected to variance of the observations
▶ can be extended to random forests
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5.2. Mean decrease accuracy
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Mean decrease accuracy

▶ Recall: in the random forest procedure, each tree is build on a subset of the data
▶ thrown-away points = out-of-bag (OOB) samples
▶ Natural idea:26 take advantage of these points
▶ Mean decrease accuracy, a.k.a. permutation-based feature importance
▶ More precisely: for each tree t, for each feature j ,

1. permute values of column j for the OOB samples
2. compute prediction of tree t for these new points

▶ we then compare the predictions with the ground-truth
▶ report the increase in misclassification per feature
▶ Intuition: if j important in every tree, permuting the values breaks the predictor

26Breiman, Random Forests, Machine Learning, 2001
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MDA: formal definition

▶ we can be more formal:

Definition (Breiman-Cutler MDA):27 Let Xi,πj,t be the ith permuted OOB sample for
tree t. We define

M̂DAj ··=
1
T
∑
t∈F

1
N(t)

∑
i∈OOB(t)

[
(Yi − t(Xi,πj,t ))2 − (Yi − t(Xi))2] ,

where N(t) is the size of the OOB sample for tree t.

▶ Remark: other definitions are possible

27Bénard et al., Mean decrease accuracy for random forests: inconsistency, and a practical solution via the
Sobol-MDA, Biometrika, 2022
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Permutation-based feature importance: example
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Feature importances using permutation

▶ Figure: computing permutation-based importance on the diabetes dataset
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Properties of MDA

▶ assume Y = f (X ) + ε

▶ For large n:
M̂DAj −→ Var (Y ) × STj + Var (Y ) × STmg

j + rest ,

where ST is the Sobol total index28

▶ Sobol index ≈ contribution to the output variance of the main effect feature j
▶ Problem: “rest” can be large and does not correspond to anything meaningful...

28Sobol, Sensitivity estimates for nonlinear mathematical models, Math. Mod. Comp. Exp., 1993
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Summary

▶ for some models, we can take advantage of the internal mechanics
▶ still no obvious choice (many possibilities!)
▶ in the case of random forests, we have seen two possibilities:

▶ Mean Decrease Impurity averages decrease in impurity for nodes containing the feature
▶ Permutation-based feature importance permutes inspected feature values and looks at

drop in accuracy
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