4. [Interpretable-by-design models](#page-0-0)

Introduction

- ▶ for some models, **interpretability not an issue** ▶ **Examples:**
	- \blacktriangleright linear models
	- decision trees

4.1. [Linear models](#page-2-0)

Linear models: quick recap

Linear models: output depends linearly on each feature

 \triangleright mathematically, in the regression setting:

$$
f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_d x_d,
$$

▶ given training data $(X^{(1)}, Y^{(1)}), \ldots, (X^{(n)}, Y^{(n)})$, model is fitted by *ordinary least squares*

$$
\min_{\beta} \left\{ \sum_{i=1}^{n} \left(Y^{(i)} - \beta_0 - \sum_{j=1}^{d} \beta_j X_j^{(i)} \right)^2 \right\}
$$

▶ **Intuition:** minimize the sum of squares of prediction errors

 \triangleright usual ways to control the size / number of non-zeros coefficients: ridge¹⁵ and LASSO¹⁶

¹⁵ Hoerl and Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 1970 ¹⁶Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996

Linear regression: example

▶ **Figure:** ordinary linear regression (in 1D)

Linear models: quick recap

 \triangleright **Ridge regression:** adding a L^2 penalty in the optimization:

$$
\min_{\beta} \left\{ \sum_{i=1}^n \left(Y^{(i)} - \beta_0 - \sum_{j=1}^d \beta_j X_j^{(i)} \right)^2 + \lambda \sum_{j=1}^d \beta_j^2 \right\},\,
$$

where $\lambda > 0$ is a hyperparameter

▶ Least Absolute Shrinkage and Selection Operator (LASSO): adding a L¹ penalty:

$$
\min_{\beta} \left\{ \sum_{i=1}^{n} \left(Y^{(i)} - \beta_0 - \sum_{j=1}^{d} \beta_j X_j^{(i)} \right)^2 + \lambda \sum_{j=1}^{d} |\beta_j| \right\},\,
$$

where $\lambda > 0$ is a hyperparameter

Linear models: interpretability

► Why are these models interpretable? increasing x_i by one unit increases $f(x)$ by β_i

- \blacktriangleright let us look at a concrete example: regression task on the California housing dataset¹⁷
- \triangleright we run LASSO on a train set (75% of the data)
- ▶ RMSE on the test is 0.83 (not too bad!)
- \blacktriangleright we can read the coefficients:

intercept: 0.285 coefficients: [0.346 0.015 -0. $-0.001 - 0.$ $\mathbf{0}$. θ . $-0.$

▶ **Mathematically:** our model is given by

 $f(x) = 0.285 + 0.346 \cdot x_{\text{MedInc}} + 0.015 \cdot x_{\text{HouseAge}} - 0.001 \cdot x_{\text{AveOccup}}$

 \triangleright we can directly read in these coefficients what our model is doing!

¹⁷ Pace and Barry, Sparse Spatial Autoregressions, Statistics & Probability Letters, 1997

Logistic regression: quick recap

- ▶ **Logistic regression:** linear model in the classification setting
- ▶ **Quick reminder:** logistic function is defined as

$$
\sigma(z):=\frac{1}{1+{\rm e}^{-z}}\,.
$$

▶ logistic regression models $\mathbb{P}(Y = 1 | X = x)$ by $\sigma(\beta^\top x)$

Logistic regression: quick recap

▶ given train data $(X^{(1)}, Y^{(1)}), \ldots, (X^{(n)}, Y^{(n)}),$ we fit the model by solving

$$
\min_{\beta} \left\{ \sum_{i=1}^{n} \ell(Y^{(i)}, \sigma(\beta^{\top} X^{(i)})) \right\},\,
$$

where $ℓ$ is the *cross-entropy loss*

$$
\ell(y, y') := -y \log y' - (1 - y) \log(1 - y').
$$

▶ Intuition: find coefficients such that prediction score is high when true label is 1 ▶ **In any case:** our model is given by

$$
f(x) = \frac{1}{1+\exp(-\beta_0-\beta_1x_1-\cdots-\beta_px_p)}
$$

.

Cross-entropy loss

▶ **Figure:** the cross-entropy loss

Logistic regression: example

▶ **Figure:** logistic regression in 2D for separable data

Logistic regression: interpretability

- \blacktriangleright **Why is this interpretable?** σ is monotonous
- **►** thus, if β _i > 0, increase in x_i means higher score

▶ more convenient to reason in terms of log-odds:

$$
\log - \text{odds}(x) = \log \frac{\mathbb{P}(Y = 1 | X = x)}{\mathbb{P}(Y = 0 | X = x)}
$$

=
$$
\log \frac{\frac{1}{1 + \exp(-\beta_0 - \beta_1 x_1 - \cdots - \beta_p x_p)}}{1 - \frac{1}{1 + \exp(-\beta_0 - \beta_1 x_1 - \cdots - \beta_p x_p)}}
$$

=
$$
\log \frac{1}{\exp(-\beta_0 - \beta_1 x_1 - \cdots - \beta_p x_p)}
$$

=
$$
\beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p.
$$

▶ thus increase of x_i by one unit means increase of log-odds by β_i

Summary

- ▶ linear models are light-weight models
- \blacktriangleright model either the output as a linear transformation of the input...
- ▶ ...or probability of belonging to a given class
- ▶ They are interpretable: directly looking at the coefficients
- ▶ **Limitations:**
	- ▶ accuracy far from state-of-the-art (model too simple)
	- \blacktriangleright need meaningful features...
	- ▶ and not too many of them

4.2. [Decision trees](#page-13-0)

Decision tree: quick recap

▶ **What is a decision tree?**

- \triangleright tree with root $=\mathcal{X}$ and leaves $=$ cells
- \blacktriangleright iterative binary decisions based on feature values
- \triangleright node of the tree: "is feature *j* smaller than x ?"
- \blacktriangleright if yes, go left, if not, go right
- \blacktriangleright **Can also be visualized as** partition of the input space X
- each query point falls into a cell, constant prediction on each cell
- ▶ two different modes:
	- ▶ classification → class label → **majority vote**
	- ▶ regression → real number → **empirical average**

Decision tree: example

▶ **Figure:** example of a decision tree for regression in 2D

Decision tree: example

▶ **Figure:** associated partition of the space

Decision trees: interpretability

▶ **Why is this model interpretable?**

 \blacktriangleright let us look at a concrete example: the Wine dataset¹⁸

¹⁸Cortez et al., Modeling wine preferences by data mining from physicochemical properties, Decision Support Systems, 1998

Decision trees: interpretability

▶ for a specific example, we can **run down the path** to understand the decision

- ▶ we can also infer **global rules**
- \blacktriangleright for instance, we know that

 ${prodine < 755.0, per. \text{ dil} < 2.115} \rightarrow class 2.$

Summary

- ▶ decision trees are light-weight models
- \blacktriangleright recursively splitting the input space according to a numerical criterion
- ▶ **They are interpretable:** either tracing down the decision or deducing global rules
- ▶ **Limitations:**
	- ▶ accuracy far from state-of-the-art (model too simple)
	- \blacktriangleright interpretability decreases with number of leaves (see next section)

5. [Ad-hoc methods](#page-20-0)

Ad-hoc methods

- even interpretable-by-design models can become un-interpretable
- **Typical scenario:** too many parameters
- **Example:** tree with large width / depth

- we can still leverage the **particular structure of the model**
- \rightarrow ad-hoc importance measures

5.1. [Mean decrease impurity](#page-22-0)

Impurity: classification

- ▶ **Key notion for tree construction:** impurity
- ▶ Informally, quantity measuring how homogeneous a node is
- ▶ **Notation:** $(X^{(1)}, Y^{(1)}), (X^{(2)}, Y^{(2)}), \ldots, (X^{(n)}, Y^{(n)})$ training points, $Y^{(i)} \in [K]$
- \triangleright for each node m and label k, define label proportion

$$
p_k(m) := \frac{\left|\{i \in [n], X^{(i)} \in m \text{ and } Y^{(i)} = k\}\right|}{N(m)}, \quad \text{where} \quad N(m) := \left|\{i \in [n], X^{(i)} \in m\}\right|.
$$

Definition: for a given node m, we define *Gini impurity* as

$$
i(m) := \frac{1}{2} \sum_{k=1}^{K} p_k (1-p_k).
$$

Intuition: "lower is better" (one class in node $\Rightarrow i(m) = 0$)

Impurity decrease: classification

▶ **Tree construction:** recursively split according to maximal impurity decrease

Definition: consider a node m and a possible split along coordinate *j* with level *z*. We call m_L and m_R the two new sub-cells (m_L corresponds to $X^{(j)} < z$). The *impurity decrease* is defined as

$$
L(j,z):=i(m)-p_Li(m_L)-p_Ri(m_R),
$$

where p_L (resp. p_R) is the proportion of observations in m falling into m_L (resp. m_R).

▶ Intuition: start with large $i(m)$ and imagine a split producing two "pure" cells

- ▶ in that event, $i(m_l) = i(m_R) = 0 \Rightarrow$ large impurity decrease
- **▶** in the other direction, "bad" splits produce cells with $i(m_L) \approx i(m_R) \approx i(m)$
- \triangleright which yields small impurity decrease

Quick recap: impurity decrease

 \blacktriangleright **Example:** current cell m has ten points \blacktriangleright $p_0 = 0.6, p_1 = 0.4$ \blacktriangleright we compute $i(m) = \frac{1}{2} (0.4 \cdot (1 - 0.4) + 0.6 \cdot (1 - 0.6)) = 0.24$.

Quick recap: impurity decrease

Quick recap: impurity decrease

Impurity decrease: regression

- \blacktriangleright slightly different definition in the regression case
- $▶$ in that case, $Y_i \in \mathbb{R}$ and we look at the (weighted) **variances**

• more precisely:

Definition:¹⁹ For a given node m and split z across feature *i*, we define

$$
L(j,z):=\frac{1}{N(m)}\sum_{i:X_i\in m}(Y_i-\overline{Y}_m)^2-\frac{1}{N(m)}\sum_{i:X_i\in m}(Y_i-\overline{Y}_{m_L}\mathbb{1}_{X_i^{(j)}
$$

where \overline{Y}_m is the average response on cell m.

▶ **Intuition:** good split produces cells with constant responses

¹⁹Scornet, Biau, Vert, Consistency of random forests, The Annals of Statistics, 2015

Decision trees: quick recap

- \triangleright many options for impurity choice / which features are explored
- ▶ popular method: **classification and regression trees** (CART²⁰)
- \blacktriangleright informally, at a given depth:
- 1: **for** m in nodes **do**
- 2: **for** $j \in [d]$ **do**
- 3: **for** split ∈ possible splits **do**
- 4: compute and store $L(j, z)$
- 5: **end for**
- 6: **end for**
- 7: split according to (j^*, z^*) maximizing $L(j, z)$
- 8: **end for**

▶ Stopping criterion: usually max depth / pure leaves

 20 Breiman, Friedman, Olshen, and Stone Classification and regression trees, Chapman & Hall, 1984

Mean decrease impurity

General idea: use the numerical criterion to give feature importance

Definition: Let $j \in [d]$. Let \mathcal{T} be a CART tree, \mathcal{T}_i the set of nodes with splits according to feature j. The **mean decrease impurity**²¹ is defined as

$$
\widehat{\text{MDI}}_j := \sum_{m \in \mathcal{T}_j} p_m \Delta I(m),
$$

where p_m is the proportion of data points falling into cell m, and $\Delta I(m)$ is the decrease in impurity at node n.

- **In other words:** \widehat{MDl}_i = weighed decrease in impurity related to splits along *i*
- ▶ **Intuition:** high if tree uses feature to efficiently split

²¹ Breiman, Random Forests, Machine Learning, 2001

Nice properties of MDI

▶ **Empirical variance** of the observations:

$$
\widehat{\text{Var}}(Y) := \frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})^2.
$$

▶ for a function $f : [0,1] \rightarrow \mathbb{R}$, **train error**

$$
R_n(f) := \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2.
$$

Proposition:²² Let T be a CART tree. Then

$$
\widehat{\text{Var}}(Y) = \sum_{j=1}^d \widehat{\text{MDl}}_j + R_n(\mathcal{T}).
$$

 22 Scornet, Trees, forests, and impurity-based variable importance, Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2023 **65** formation et al. et a

Nice properties of MDI

• Reminder: R^2 = percentage of the variance explained by the model

▶ **Consequence of previous slide:**

$$
R^2 = \frac{\sum_{j=1}^d \widehat{MDI}_j}{\widehat{\text{Var}}(Y)}.
$$

 \triangleright Other consequence: if tree fully-grown, $R_n = 0$ and

$$
\widehat{\text{Var}}(Y) = \sum_{j=1}^d \widehat{\text{MD}}_j.
$$

For linear models $(f(x) = \beta_0 + \beta_1x_1 + \cdots + \beta_dx_d)$ and uniform inputs:

$$
\widehat{\text{MDI}}_j \approx \frac{\beta_j^2}{12}
$$

.

Limitations of MDI

• Assume: $Y = f(X) + \varepsilon$, Var $(\varepsilon) = \sigma^2$ \blacktriangleright then

$$
\lim_{n\to+\infty}\sum_{j=1}^d\widehat{\text{MDI}}_j=\text{Var}(f(X))+\sigma^2.
$$

- \blacktriangleright the sum of MDIs contains not only all available information $\text{Var}(f(X))...$
- \blacktriangleright but also noise of the data
- ▶ MDI of some variables are higher than expected
- \triangleright Other issue: MDI favors variables with many categories²³

 23 Strobl et al., Bias in random forest variable importance measures: illustration, sources and a solution, BMC Bioinformatics, 2007

Random Forests: quick recap

▶ **Random forests:**²⁴ aggregate several trees together

 \triangleright prediction = mean (regression) or majority vote (classification)

²⁴Breiman, ibid.

Random forests: quick recap

- ▶ the **random** aspect comes from the construction of each individual tree
- ▶ **Tree construction:** for each tree,
	- 1. sample (with replacement) m points
	- 2. build a CART tree on these points
- ▶ **Additional caveat:** explore only a strict subset of the features at each split
- ▶ the points which are not considered in the construction of tree t are called **Out-of-bag (OOB)** points
- ▶ typical value: $T = 200$ trees \rightarrow not so interpretable anymore
- \blacktriangleright the user is not going to look at 200 traces
- \blacktriangleright + potentially conflicting...
- ▶ one can still propose simple mechanisms to get interpretability
- ▶ let us look into 2 **ad-hoc methods for random forests**

Mean decrease impurity for random forests

- ▶ **Idea:** average for all trees in the forest
- \blacktriangleright **Recall:** for any tree t , we defined

$$
\widehat{\text{MDl}}_j(t) := \sum_{m \in t_j} p_m \Delta l(m),
$$

where p_m is the proportion of data points falling into cell m, and $\Delta I(m)$ is the decrease in impurity at node n

 \blacktriangleright **For random forests:** let \digamma be a forest

$$
\widehat{\text{MDl}}_j(\mathcal{F}) := \frac{1}{T} \sum_{t \in \mathcal{F}} \widehat{\text{MDl}}_j(\mathcal{T}).
$$

▶ since taking average, same properties

Mean Decrease Impurity: example

 \blacktriangleright **Figure:** computing the MDI on the diabetes dataset²⁵

²⁵Efron et al., Least Angle Regression, Annals of Statistics, 2004

Summary

- \triangleright CART trees: iterative splitting according to impurity
- ▶ **Mean Decrease Impurity** looks at average decrease for each feature
- ▶ gives feature importance of our model
- \triangleright can be connected to variance of the observations
- ▶ can be extended to random forests

5.2. [Mean decrease accuracy](#page-39-0)

Mean decrease accuracy

- ▶ **Recall:** in the random forest procedure, each tree is build on a subset of the data
- \blacktriangleright thrown-away points $=$ out-of-bag (OOB) samples
- ▶ **Natural idea:**²⁶ take advantage of these points
- ▶ **Mean decrease accuracy**, a.k.a. permutation-based feature importance
- **More precisely:** for each tree t , for each feature j ,
	- 1. permute values of column *for the OOB samples*
	- 2. compute prediction of tree t for these new points
- \triangleright we then compare the predictions with the ground-truth
- \blacktriangleright report the increase in misclassification per feature
- \triangleright **Intuition:** if *i* important in every tree, permuting the values *breaks* the predictor

²⁶Breiman, Random Forests, Machine Learning, 2001

MDA: formal definition

 \blacktriangleright we can be more formal:

Definition (Breiman-Cutler MDA):²⁷ Let $X_{i,\pi_{i,t}}$ be the *i*th permuted OOB sample for tree t. We define

$$
\widehat{\text{MDA}}_j := \frac{1}{T}\sum_{t\in\mathcal{F}}\frac{1}{N(t)}\sum_{i\in\text{OOB}(t)}\left[(Y_i-t(X_{i,\pi_{j,t}}))^2-(Y_i-t(X_i))^2\right],
$$

where $N(t)$ is the size of the OOB sample for tree t.

▶ **Remark:** other definitions are possible

 $27B$ énard et al., Mean decrease accuracy for random forests: inconsistency, and a practical solution via the Sobol-MDA, Biometrika, 2022

Permutation-based feature importance: example

▶ **Figure:** computing permutation-based importance on the diabetes dataset

Properties of MDA

- \blacktriangleright assume $Y = f(X) + \varepsilon$
- ▶ **For large** n**:** $\widehat{\mathsf{MDA}}_j \longrightarrow \mathrm{Var}\left(\mathsf{Y}\right) \times \mathsf{ST}_j + \mathrm{Var}\left(\mathsf{Y}\right) \times \mathsf{ST}_j^{\mathsf{mg}} + \mathsf{rest}\,,$

where ST is the Sobol total index²⁸

- **Sobol index** \approx contribution to the output variance of the main effect feature *i*
- **Problem:** "rest" can be large and does not correspond to anything meaningful...

²⁸Sobol, Sensitivity estimates for nonlinear mathematical models, Math. Mod. Comp. Exp., 1993

Summary

- ▶ for some models, we can **take advantage of the internal mechanics**
- \triangleright still no obvious choice (many possibilities!)
- ▶ in the case of **random forests**, we have seen two possibilities:
	- ▶ **Mean Decrease Impurity** averages decrease in impurity for nodes containing the feature
	- ▶ **Permutation-based feature importance** permutes inspected feature values and looks at drop in accuracy