4. Interpretable-by-design models



» for some models, interpretability not an issue

> Examples:
» linear models
» decision trees
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4.1. Linear models



Linear models: quick recap

» Linear models: output depends linearly on each feature
» mathematically, in the regression setting:

f(x) = Po+ Bixai+ Boxo + -+ + Baxd ,

> given training data (X, Y1) . (X" Y(") model is fitted by ordinary least squares

n 2

d
mﬁ!n Z y() — gy — ZBJXJ(’)

i=1 j=1

» Intuition: minimize the sum of squares of prediction errors

» usual ways to control the size / number of non-zeros coefficients: ridge!® and LASSO®

5 Hoerl and Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 1970
16Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society Series
B: Statistical Methodology, 1996
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Linear regression: example
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» Figure: ordinary linear regression (in 1D)
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Linear models: quick recap

> Ridge regression: adding a L2 penalty in the optimization:
n d 2 d
{35 (0= S0} a3t
j=1 j=1

i=1

where \ > 0 is a hyperparameter
> Least Absolute Shrinkage and Selection Operator (LASSO): adding a L! penalty:
n _ d N\ d
mBin Z (Y(') —ﬁo—Zﬁij(’)) +/\Z\ﬂj| )
=1 j=1

i=1

where \ > 0 is a hyperparameter
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Linear models: interpretability

Why are these models interpretable? increasing x; by one unit increases f(x) by 3;
let us look at a concrete example: regression task on the California housing dataset!’
we run LASSO on a train set (75% of the data)

RMSE on the test is 0.83 (not too bad!)

we can read the coefficients:

vvyYvyyvyy

intercept: ©.285

coefficients: [ 0.346 ©.815 -0. . 9. -0.001 -0.

» Mathematically: our model is given by
f(X) = 0.285 + 0.346 - Xpedinc + 0.015 - XHouseAge — 0.001 - XAveOccup -

» we can directly read in these coefficients what our model is doing!

17Pace and Barry, Sparse Spatial Autoregressions, Statistics & Probability Letters, 1997
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Logistic regression: quick recap

» Logistic regression: linear model in the classification setting

» Quick reminder: logistic function is defined as

—1o =5 [ H To

> logistic regression models P(Y = 1| X = x) by (8" x)
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Logistic regression: quick recap

> given train data (XM, Y1) ... (XM, Y(") we fit the model by solving
min oY o x0 ,
i {Z (Y0, (5 X))

where £ is the cross-entropy loss

Uy,y") == —ylogy’ —(1—y)log(1l—y').

» Intuition: find coefficients such that prediction score is high when true label is 1
» In any case: our model is given by

1
B 1+eXp(_ﬁ0_ﬁ1X1—"'_Bpo) ’

f(x)

42



Cross-entropy loss
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» Figure: the cross-entropy loss
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Logistic regression: example

» Figure: logistic regression in 2D for separable data
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Logistic regression: interpretability

> Why is this interpretable? o is monotonous
» thus, if 5; > 0, increase in x; means higher score

» more convenient to reason in terms of log-odds:
P(Y=1|X=x)

P(Y =0[X = x)
1

log-odds(x) = log

~ log 1+exp(—5o—ﬁ1Xi—'“—5po)
1- 1+exp(—PBo—Bixi—---—PBpXp)
| 1
= Og
exp (—fo — Bix1 — - — Bpxp)

:ﬁO+51X1+"'+ﬁpo-

» thus increase of x; by one unit means increase of log-odds by g;
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Summary

linear models are light-weight models

model either the output as a linear transformation of the input...

...or probability of belonging to a given class
They are interpretable: directly looking at the coefficients
Limitations:

» accuracy far from state-of-the-art (model too simple)
» need meaningful features...
» and not too many of them
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4.2. Decision trees
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Decision tree: quick recap

What is a decision tree?

tree with root = X and leaves = cells

iterative binary decisions based on feature values

node of the tree: “is feature j smaller than x?”

if yes, go left, if not, go right

Can also be visualized as partition of the input space X

each query point falls into a cell, constant prediction on each cell

two different modes:

> classification — class label — majority vote
> regression — real number — empirical average
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Decision tree: example

(X101 == 3.08 |

[x111s<1.20] (X113 2.09

[x1115€ 040 (X111 3= 1.99] (x1<€o71) (x1113=3.82)

(value=1.68) (value=1.28) (value=0.57] (value=-0.00] (value=-0.10] (value=-0.60] (value=-1.64] [value =-0.97]

» Figure: example of a decision tree for regression in 2D
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Decision tree: example

Decision Tree Regression Predictions

Feature 2

Feature 1

» Figure: associated partition of the space

Predicted value
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Decision trees: interpretability

» Why is this model interpretable?

» let us look at a concrete example: the Wine dataset!®

proline <= 755.0
gini = 0.658
samples = 178
value = [59, 71, 48]
class = class_1

e N

per. dil <= 2.115
gini = 0.492
samples = 111
value =[2, 67, 42] value =[57, 4, 6]
class = class_1 class = class_0

/ N\ / N

gini = 0.227 gini = 0.117 gini = 0.375 gini = 0.065

flav. <= 2.165
gini = 0.265
samples = 67

samples = 46
value = [0, 6, 40]
class = class_2

samples = 65
value = [2, 61, 2]
class = class_1

samples = 8
value = [0, 2, 6]
class = class_2

samples = 59
value = [57, 2, 0]
class = class_0

18Cortez et al., Modeling wine preferences by data mining from physicochemical properties, Decision Support
Systems, 1998
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Decision trees: interpretability

» for a specific example, we can run down the path to understand the decision
» we can also infer global rules
» for instance, we know that

{proline < 755.0, per. dil <2.115} — class 2.

proline <= 755.0
gini = 0.658
samples = 178
value = [59, 71, 48]
class = class_1

e S

per. dil <= 2.115
gini = 0.492
samples = 111
value = [2, 67, 42] value = [57, 4, 6]
class = class_1 class = class_0

/ N\ / N

gini = 0.227 gini = 0.117 gini = 0.375 gini = 0.065

flav. <= 2.165
gini = 0.265
samples = 67

samples = 46
value = [0, 6, 40]
class = class_2

samples = 65
value = [2, 61, 2]
class = class_1

samples = 8
value = [0, 2, 6]
class = class_2

samples = 59
value = [57, 2, 0]
class = class_0
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Summary

» decision trees are light-weight models
» recursively splitting the input space according to a numerical criterion

» They are interpretable: either tracing down the decision or deducing global rules
» Limitations:

» accuracy far from state-of-the-art (model too simple)
> interpretability decreases with number of leaves (see next section)
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5. Ad-hoc methods



Ad-hoc methods

P even interpretable-by-design models can become un-interpretable
» Typical scenario: too many parameters

» Example: tree with large width / depth

» we can still leverage the particular structure of the model
» — ad-hoc importance measures
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5.1. Mean decrease impurity



Impurity: classification

> Key notion for tree construction: impurity

> Informally, quantity measuring how homogeneous a node is

> Notation: (X1, Y (X®) y@) (X" y™) training points, Y € [K]
» for each node m and label k, define label proportion

L H" € [n], XD € mand YO) = k}|
pr(m) := e 7

where  N(m) := |{i € [n],X") € m}| .

Definition: for a given node m, we define Gini impurity as

i(m) := (1 — pk) .

N~
=
||Mx
N

» Intuition: “lower is better” (one class in node = i(m) = 0)




Impurity decrease: classification

» Tree construction: recursively split according to maximal impurity decrease

Definition: consider a node m and a possible split along coordinate j with level z. We call
my and mg the two new sub-cells (m; corresponds to XU < z). The impurity decrease is

defined as
L. 2) i= i(m) — pi(my) — pri(mg)

where p; (resp. pr) is the proportion of observations in m falling into m; (resp. mg).

> Intuition: start with large i(m) and imagine a split producing two “pure” cells
> in that event, i(m.) = i(mg) = 0 = large impurity decrease
» in the other direction, “bad” splits produce cells with i(m;) = i(mg) ~ i(m)

» which yields small impurity decrease
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Quick recap: impurity decrease

e

28

» Example: current cell m has ten points
» pp=0.6 p1 =04
» we compute

(0.4-(1—0.4)+0.6-(1—0.6)) = 0.24.

N| -

i(m) =
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Quick recap: impurity decrease

my mgr
[ ]
e O
0
[ ]
0
[ ]
le
: 0
[
0

2|8

» let us look at a first split

> we compute
i(mL) = O7

1/6 6 2 2
j ==(=-(1-< --(1-=])~0.19
» proportion of observations are

pL=0.2 and pr=0.8.

> we deduce

Al(m)~0.24—0.2-0—0.8-0.19 = 0.09.
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Quick recap: impurity decrease

m mgr » let us look at another candidate
> we compute
[ )
=0
° 0 I(mL) )
0 . 1/6 6 1 1
=—(=-(1-2 N I ~0.12
. i(mr) 2(7 ( 7) 7 7
0 » proportion of observations are
Y [ ]
1; 1 . pr =03 and pr=0.7.
0 » we deduce
o Al(m)~0.24—-03-0-0.7-0.12=0.16.
0 [ ]
01 » this split is much better
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Impurity decrease: regression

» slightly different definition in the regression case
» in that case, Y; € R and we look at the (weighted) variances
» more precisely:

Definition:'° For a given node m and split z across feature j, we define

— 1
Z (i = Vim)* - N(m) Z (Yi - YmL]le J<z ymR]lxU >z)2’
iX;€m iiXi€m

Ly, z) == )

where Y, is the average response on cell m.

» Intuition: good split produces cells with constant responses

19Scornet, Biau, Vert, Consistency of random forests, The Annals of Statistics, 2015




Decision trees: quick recap

» many options for impurity choice / which features are explored
» popular method: classification and regression trees (CART?)

» informally, at a given depth:

1: for m in nodes do

2 for j € [d] do

3 for split € possible splits do

4 compute and store L(j, z)

5: end for

6 end for

7 split according to (j*, z*) maximizing L(j, z)
8: end for

> Stopping criterion: usually max_depth / pure leaves

20Breiman, Friedman, Olshen, and Stone Classification and regression trees, Chapman & Hall, 1984
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Mean decrease impurity

> General idea: use the numerical criterion to give feature importance

Definition: Let j € [d]. Let 7 be a CART tree, 7} the set of nodes with splits according
to feature j. The mean decrease impurity?! is defined as

MDI; i= > pmAl(m),
me7}

where p,, is the proportion of data points falling into cell m, and Al(m) is the decrease in
impurity at node n.

» In other words: MBIJ = weighed decrease in impurity related to splits along j

» Intuition: high if tree uses feature to efficiently split

21Breiman, Random Forests, Machine Learning, 2001
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Nice properties of MDI

» Empirical variance of the observations:
— 1 —
V Y = — »/, — Y 2 .
ar(Y) = 2> (Y= V)
» for a function f : [0,1] — R, train error

Ro(f) i= > (- FO.

Proposition:?> Let 7 be a CART tree. Then

d
Var(Y) = 3" MDI; + Ro(T).
j=1

22Scornet, Trees, forests, and impurity-based variable importance, Annales de I'Institut Henri Poincaré (B)
Probabilités et Statistiques, 2023




Nice properties of MDI

» Reminder: R? = percentage of the variance explained by the model

» Consequence of previous slide:
d =
Q2 _ Zj:1 MDI; .
Var(Y)
» Other consequence: if tree fully-grown, R, = 0 and

d

Var(Y) = > MDI;.
j=1
» For linear models (f(x) = 5o + S1x1 + - -+ + Baxq) and uniform inputs:

2
MDIJ-z%.
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Limitations of MDI

v

Assume: Y = f(X) +¢, Var (¢) = o2
then

v

n—+o00 £

d
lim Z I\WISIJ- = Var (f(X)) + o2.
j=1
the sum of MDIs contains not only all available information Var (f(X))...

MDI of some variables are higher than expected

>
» ...but also noise of the data
| 4

> 23

Other issue: MDI favors variables with many categories

23Strobl et al., Bias in random forest variable importance measures: illustration, sources and a solution, BMC
Bioinformatics, 2007
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Random Forests: quick recap

» Random forests:>* aggregate several trees together

> prediction = mean (regression) or majority vote (classification)

Majority vote

~

Final Decision

24Breiman, ibid.
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Random forests: quick recap

the random aspect comes from the construction of each individual tree
Tree construction: for each tree,

1. sample (with replacement) m points
2. build a CART tree on these points

Additional caveat: explore only a strict subset of the features at each split

the points which are not considered in the construction of tree t are called Out-of-bag
(0O0B) points

typical value: T = 200 trees — not so interpretable anymore
the user is not going to look at 200 traces

+ potentially conflicting...

one can still propose simple mechanisms to get interpretability
let us look into 2 ad-hoc methods for random forests
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Mean decrease impurity for random forests

Idea: average for all trees in the forest
Recall: for any tree t, we defined

MDI; (1) := Y pmA(m).

met;

where p,, is the proportion of data points falling into cell m, and Al(m) is the decrease in
impurity at node n

For random forests: let F be a forest

MDI,( Z MDI;(
te]—'

since taking average, same properties
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Mean Decrease Impurity: example

Feature importances using MDI

° ° °
= = N
=) o )

Mean decrease in impurity

o
1=
ol

0.00

age sex bmi bp sl s2 s3 s4 s5 s6

» Figure: computing the MDI on the diabetes dataset?®

25Efron et al., Least Angle Regression, Annals of Statistics, 2004
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Summary

CART trees: iterative splitting according to impurity

Mean Decrease Impurity looks at average decrease for each feature
gives feature importance of our model

can be connected to variance of the observations

can be extended to random forests
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5.2. Mean decrease accuracy
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Mean decrease accuracy

Recall: in the random forest procedure, each tree is build on a subset of the data
thrown-away points = out-of-bag (OOB) samples

Natural idea:?® take advantage of these points

Mean decrease accuracy, a.k.a. permutation-based feature importance

vvyyvyyvyy

More precisely: for each tree t, for each feature j,

1. permute values of column j for the OOB samples
2. compute prediction of tree t for these new points

v

we then compare the predictions with the ground-truth
> report the increase in misclassification per feature

» Intuition: if j important in every tree, permuting the values breaks the predictor

26Breiman, Random Forests, Machine Learning, 2001
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MDA: formal definition

» we can be more formal:

Definition (Breiman-Cutler MDA):*" Let X . . be the ith permuted OOB sample for
tree t. We define

VDA, =+ 3" g Do (Y= e, = (Y = e
teF i€eO0B(t)

where N(t) is the size of the OOB sample for tree t.

» Remark: other definitions are possible

27Bénard et al., Mean decrease accuracy for random forests: inconsistency, and a practical solution via the
Sobol-MDA, Biometrika, 2022
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Permutation-based feature importance: example

Feature importances using permutation

0.10 ()

Mean accuracy change

» Figure: computing permutation-based importance on the diabetes dataset

76



Properties of MDA

> assume Y = f(X) +¢
» For large n:
MDA; — Var (Y) x ST; + Var (Y) x ST;"® + rest,
where ST is the Sobol total index?®
» Sobol index = contribution to the output variance of the main effect feature j

» Problem: “rest” can be large and does not correspond to anything meaningful...

28Sobol, Sensitivity estimates for nonlinear mathematical models, Math. Mod. Comp. Exp., 1993
77



Summary

» for some models, we can take advantage of the internal mechanics
> still no obvious choice (many possibilities!)
» in the case of random forests, we have seen two possibilities:

> Mean Decrease Impurity averages decrease in impurity for nodes containing the feature
» Permutation-based feature importance permutes inspected feature values and looks at
drop in accuracy
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