

Introduction to Informatics for Students from all Faculties

Prof. Dr. Ingo Scholtes

Chair of Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science (CAIDAS) Julius-Maximilians-Universität Würzburg Würzburg, Germany

ingo.scholtes@uni-wuerzburg.de

Lecture 02
Digital Logics and Data Representation

October 29, 2024

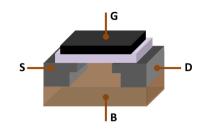
· Lecture LO2: Digital Logics and Data Representation

- 29.10.2024
- Educational objective: We show how data is represented in a digital computer. We introduce basics of digital logics and show how we can implement arithmetic operations based on logic circuits.
 - Digital Representation of Data
 - Digital Logics and Digital Circuits
 - From Logics to Arithmetics

• Exercise Sheet 01 due 05.11.2024

Motivation

- how are data and instructions represented in an electronic digital computer?
- how can we implement logical operations based on digital electronic circuits?
- how can we perform (arithmetic) operations on digitally encoded data?
- how can we represent instructions that can be executed by a programmable computer? → 1.03
- answering these questions requires basic foundations in terms of numeral systems and digital logics



schematic view of a transistor

a digital signal

image credit: Wikipedia, CC-By-SA

Encoding numbers with numeral systems

definition

A numeral system is a system that can be used to consistently encode numbers based on a set of symbols that are called digits. In a positional numeral system the contribution of a digit to the value of the encoded number depends on the position of the digit.

example: decimal numeral system

- digits represent different powers of ten depending on their position
- we call ten **base** of the decimal number system
- rightmost position represents **power of zero**, i.e. $10^0 = 1$
- powers of ten associated with a position increase from right to left
- value of encoded number is given by the sum of contributions of individual digits
- ► left-most digit is called most-significant digit
- ► right-most digit is called least-significant digit

MMXXIV

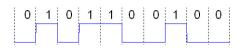
number 2024 represented in the Roman numeral system, where M represents thousand, X represents ten, V represents five and I represents one

$$2 \cdot 1000 + 2 \cdot 10 + 4 \cdot 1 = 1011$$

number 2024 represented in the **decimal** numeral system, where the value of a digit depends on its position

Binary numeral system

- in a digital electronic computer we can use voltage levels to encode two symbols 0 and 1
 - low or no voltage = 0
 - ▶ high voltage = 1
- voltage levels can be used to encode binary digits or "bits" (0 or 1) of the binary numeral system
- positional encoding analogous to decimal system, but using base two instead of ten
- b depending on their position digits represent powers of two, where the least-significant bit represents $2^0 = 1$
- value of an encoded number is given as the sum of powers of two



$$2^3$$
 2^2 2^1 2^0 1 0 1 1

$$1 \cdot 8 + 1 \cdot 2 + 1 \cdot 1 = 11$$

image credit: Wikipedia, CC-By-SA

Powers of two

2 ¹	2	
2^2	4	
2^3	8	
2 ⁴	16	
2 ⁵	32	
2 ⁵	64	
27	128	
2 ⁸	256	

2 ¹⁰ 1,024 2 ¹¹ 2,048 2 ¹² 4,096 2 ¹³ 8,192 2 ¹⁴ 16,384 2 ¹⁵ 32,768	2^{9}	512	
2 ¹² 4,096 2 ¹³ 8,192 2 ¹⁴ 16,384 2 ¹⁵ 32,768	2^{10}	1,024	
2 ¹³ 8,192 2 ¹⁴ 16,384 2 ¹⁵ 32,768	2^{11}	2,048	
2 ¹⁴ 16,384 2 ¹⁵ 32,768	_	4,096	
2 ¹⁵ 32,768	_	8,192	
	_	16,384	
	_	32,768	
2 ¹⁶ 65,536	2^{16}	65,536	

rules of thumb for orders of magnitude

$$\begin{aligned} 2^0 &= 1 = 10^0 \\ 2^{10} &\approx 1,000 = 10^3 \\ 2^{20} &\approx 1,000,000 = 10^6 \\ 2^{30} &\approx 1,000,000,000 = 10^9 \\ 2^{40} &\approx 1,000,000,000,000 = 10^{12} \end{aligned}$$

Group Exercise 02-01

•	Convert the the decimal number 126 into the binary number system.
	Convert the binary number 10010101 into the decimal number system.

Hexadecimal numbers

- long binary numbers are difficult to read and memorize for humans
- hexadecimal numeral system (base 16) yields
 human-friendly representation of large (binary) numbers
- b to distinguish 16 numbers from 0 to 15 with single digit, we extend the symbols $0,\ldots,9$ by letters $A,\ldots F$

9

- **prefix** 0x used to denote hexadecimal number, e.g. 0x10 = 16
- sice 2⁴ = 16, each hexadecimal digit corresponds to four bits, i.e. easy to convert binary/hexadecimal numbers

0101101011110011

$$5 \cdot 4096 + 10 \cdot 256 + 15 \cdot 16 + 3 \cdot 1 = 23283$$

D

Convert the following decimal numbers into the hexadecimal and binary numeral system.

3				

- **▶** 19
- **▶** 64
- **▶** 255

Group Exercise 02-02

Convert the following hexadecimal numbers into the **decimal and the binary numeral system**.

•	0x10
•	0xF0
•	0xAA
•	0x0100
•	0xffff

Encoding text

- how can we encode text in a digital computer?
- idea: use numbers to encode text characters and represent each number by group of bits

ASCII encoding

American Standard Code for Information Interchange (ASCII) defines a 7-bit encoding of 128 different characters.

code table maps numbers 0 to 127 (represented by 7 bits) to character and vice-versa

example

Binary ASCII-encoded text "Jurist"

1001010 1110101 1110010 1101001 1110011 1110100

Hexadecimal ASCII-encoded text "Jurist"

0x 4A 75 72 59 73 74

USASCII code chart

D D D D					۰ ۰ ۰	°° -	0-0	o -	100	- 0 -	_0	<u>-</u> -
	b 3	þ,	١,	Row	0	1	2	3	4	5	6	7
` 0	0	0	0	0	NUL .	DLE	SP	0	0	Р	`	P
0	0	0	1	1	soн	DC1	-:	1	Α.	0	o	q
0	0	1	0	2	STX	DC2	=	2	В	R	b	r
0	0	1	1	3	ETX	DC 3	#	3	C _.	S	С	5
0	1	0	0	4	EOT	DC4	•	4	D	Т	đ	•
0	1	0	1	5	ENQ	NAK	%	5	Æ	U	e	v
0	1	1	0	6	ACK	SYN	8	6	F	>	1	>
0	1	1		7	BEL	ETB	,	7	G	w	g	3
1	0	0	0	8	BS	CAN	(8	н	×	Ŀ	×
T	0	0	1	9	Ħ	EM)	9	1	Y	-	у
	0	ī	0	10	LF	SUB	*	:	J	Z	j	z
1	0	1	1	11	VT	ESC	+	;	K	C	k.	(
T	1	0	0	12	FF	FS		<	L	`	1	1
	1	0	1	13	CR	GS	-	90	М	נ	E	}
	LI.	1	0	14	so	RS		>	N	<	c	?
	I	1		15	SI	US	/	?	0	_	0	DEL

ASCII code table from printer handbook, 1971

image credit: public domain

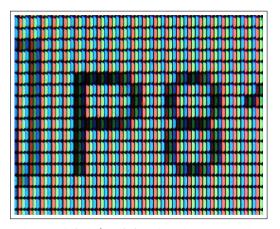
Encoding images

how can we represent image data in a digital computer?

digital images

A digital (raster) image is a picture that is composed of a **rectangular arrangement of pixels**, where each pixel either represents a brightness and (possibly a color value).

- idea: use numbers to represent birghtness (and colors) of pixels
 - grayscale pixels: 8 bits encoding 255 brightness levels from black (0) to white (255)
 - color pixels: 3 × 8 bits encoding 255 brightness levels of red (R), green (G), blue (B)
- image can be digitally encoded by sequence of bits, where groups of 8 or 24 bits represent grayscale or color pixels in rectangular grid

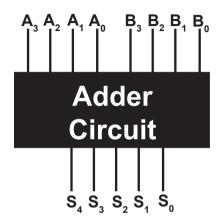


Closeup of pixels (consisting of a red, green, and blue subpixel) on a liquid crystal display (LCD) laptop screen

image credit: Wikimedia Commons, User Kprateek88, CC-BY-SA 4.0

From binary numbers to arithmetics

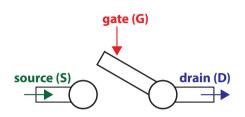
- we introduced the digital representation of numbers, text, and images by bits
- how can a digital computer perform arithmetic operations like addition, multiplication, etc.?
- as example, let us consider addition of two binary numbers with 4 bits each
- **>** given **input of 8 bits** (i.e. binary numbers A and B with 4 bits each), we must compute **5 bits of output** that encode the sum A+B



- · Why do we need five bits for the sum of two four bit binary numbers?
- The largest sum that we can have for two four bit binary numbers is the sum of $1111_b = 15$ and $1111_b = 15$ which is $30 = 1110_b$. This requires 5 bits.

Digital logics

- digital logics is the basis for any (arithmetic) operation of a digital computer
- all functions of a digital computer can eventually be reduced to simple logical operations implemented by electronic switches (e.g. transistors)
- consider one bit representing voltage levels of source (S), gate (G), and drain (D)
- considering S and G as inputs, the output D represents a logical AND operation



S	G	D
0	0	0
0	1	0
1	0	0
1	1	1

Boolean Logic

- formal treatment of logics pioneered by mathematician George Boole
- ▶ Boole studied **logical operations** in analogy to arithmetic operations like $+, -, \times \rightarrow G$ Boole, 1854
- basic logical operations AND, OR and NOT can be mapped to arithmetic operations on numbers 0 and 1 representing False and True

basic operations in Boolean logics

- ightharpoonup A AND $B = A \times B$
- $ightharpoonup A \text{ OR } B \equiv A + B A \times B$
- NOT $A \equiv 1 A$

George Boole (1815 – 1864)

image credit: Wikimedia Commons, public domain

Truth tables

- truth tables define output of logical operations
- each row in the truth table is one possible combination of inputs
- we use 0 and 1 to represent logical values False and True

AND

A	В	A and B
0	0	0
0	1	0
1	0	0
1	1	1

OR

	OIK .						
Α	В	A or B					
0	0	0					
0	1	1					
1	0	1					
1	1	1					

NOT

A	NOT A				
0	1				
1	0				

XOR

Α	В	A xor B
0	0	0
0	1	1
1	0	1
1	1	0

basic operations in Boolean logics

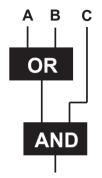
- ightharpoonup A AND $B \equiv A \times B$
- $ightharpoonup A \text{ OR } B \equiv A + B A \times B$
- ▶ NOT $A \equiv 1 A$

Boolean functions and digital circuits

- basic Boolean logical operations NOT, AND, OR and XOR are defined for one or two inputs, respectively
- we can use these as building blocks of more complex Boolean functions with more than one or two inputs
- in formular notation we use brackets to determine order in which operations are executed

examples

- \triangleright A OR NOT B
- \blacktriangleright [A OR B] AND C
- ightharpoonup A OR [B AND C]
- Boolean functions can be represented as digital circuits where logic gates represent Boolean operations



logical circuit
implementing Boolean
function
[A OR B] AND C

logical circuit
implementing Boolean
function
A OR [B AND C]

image credit:

Group Exercise 02-03

1/4

▶ Give the truth table for the Boolean function A OR [B] AND NOT C] with three inputs A, B, C.

• Give a formula for the Boolean function represented by the following truth table.

Α	В	С	?
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Group Exercise 02-03

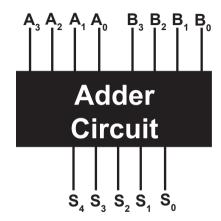
Show that the logical operation XOR (with two inputs A and B) can be constructed as Boole function that only uses AND, OR and NOT operations.								

Group Exercise 02-03

Show that the logical operation OR (with two inputs A and B) can be constructed as Boolean							
function that only uses AND and NOT operations.							

From Digital Circuits to Arithmetics

- we have seen how complex Boolean functions can be implemented based on the basic logical operations AND, OR, and NOT
- assume that we have digital inputs that represent two numbers A and B in the binary numeral system
- how can we perform arithmetic operations like addition or multiplication?
- idea: specify Boolean functions that give the correct digital output for each combination of digital inputs



Adding decimal numbers

let us consider the pencil-and-paper algorithm to add numbers in the decimal numeral system

1	2	5	7
2_1	9	3	2
4	1	8	9

pecil-and-paper algorithm to add two numbers

- step 1 start at right-most position
- step 2 add digits at current position
- step 3 write last digit of sum below current position
- step 4 for sums > 10 additionally carry over 1 to position on the left
- step 5 move one position to left and go to step 2
- allows to reduce addition of numbers with any number of digits to step-wise addition of individual digits

open questions

- how can we apply this to binary numbers?
- how can we map addition to logical operations?

Adding binary numbers

- how does pencil-and-paper addition work for binary numbers?
- we can apply the same algorithm but we only have binary digits (bits) 0 and 1

```
pecil-and-paper algorithm to add two numbers

step 1 start at right-most position

step 2 add digits at current position

step 3 write last digit of sum below current position

step 4 for sums ≥ 2 additionally carry over 1 to position on the left

step 5 move one position to left and go to step 2
```

a carry bit of one is created whenever the sum is larger than base two of the binary numeral system

Half adder circuit

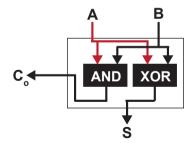
- we can write down the truth table of a Boolean function that generates the **sum** *S* for two binary digits A and B
- sum bit can be generated by a single XOR operation on A and B
- we can further write a Boolean function that generates the carry-over bit C_0
- carry bit can be generated by a single AND operation on A and B
- we call the resulting digital circuit a half adder
- is this enough to add two binary numbers with any number of digits?

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

A	В	Co
0	0	0
0	1	0
1	0	0
1	1	1

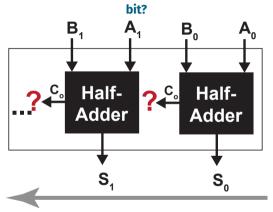
$$S = A \text{ XOR } B$$
 $C_o = A \text{ AND } B$

$$C_o = A$$
 AND B



Adding numbers with more than one bit?

Can we connect multiple half adder circuits to add numbers \boldsymbol{A} and \boldsymbol{B} that consist of more than one



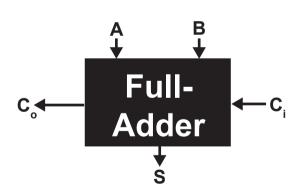
problem

Half adder produces carry-out bit for next position but does not have input that allows to consider carry bit from previous position!

Full adder circuit

- paper-and-pencil algorithm requires to include carry bit from the right when summing digits for a given position
- need Boolean function that takes two bits A and B and a "carry-in" bit C_i as input and generates sum S and "carry-out" bit C_o
- resulting digital circuit is called full adder
- carry-out output generated for one position is used as carry-in input for next position to the left
- this digital circuit design implementes our simple pen-and-pencil method

0	1	1	0
0_1	1	0	1
1	0	1	1



Group Exercise 02-04

	Write down truth	tables for th	e sum and c	carry-out bit	of a full-adder.
--	------------------	---------------	-------------	---------------	------------------

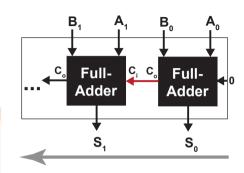
► Give formulas for Boolean functions for the sum and the carry-out bit of a full-adder.

Carry-Ripple Adder

- we can build a full adder based on logical operations AND, OR and XOR.
- we can connect multiple full adders to logical circuit that adds binary numbers with any number of digits

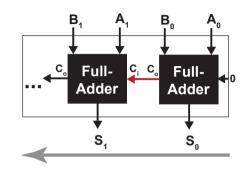
idea for adding two 4 bit numbers

- use sequence of 4 full adders, one for each pair of digits of inputs A and B
- each full adder generates one bit of sum S
- connect carry-out of each full adder with carry-in of next full adder in sequence
- last carry-out is **most-significant bit** of the sum
- we can set carry-in of first full adder to zero
- we call this design a carry-ripple adder



Computation time of Carry-Ripple Adder

- what is the computation time of a carry-ripple adder?
- after setting input bits, we must wait until all carry bits have "rippled" through sequence of full adders
- "gate delay" until sum is computed corresponds to number of full adders in sequence
- let us assume that it takes a full adder **one nanosecond** ($= 10^{-9} = 1$ billionth of a second) to compute the sum of two bits
- adding two 32 bit numbers with a carry-ripple adder then takes 32 nanoseconds
- in practice we use other designs like the carry-lookahead or carry-select adder that speed up the computation time



Conclusion

- we have shown how we can digitally represent data like numbers, text, or images
- we introduced basic operations in Boolean logics like AND, OR, NOT, and XOR
- we expressed Boolean functions given in a truth table using basic Boolean operations
- we demonstrated how to implement arithmetic operations on binary representations of numbers using digital circuits
- digital logics is the foundation of all digital computers and technology

USASCII code chart

B. D. D.	b ₇ b ₆ b ₅					۰۰,	°0,	٥,	٥,	¹ ° °	۰۰,	١,٥	11
		b ₃	Þz	٠,	Rowl	0	1	2	3	4	5	6	7
`1	0	0	0	0	0	NUL .	DLE	SP	0	@	Р	`	P
[0	0	0	1	1	soн	DC1	!	1	Α.	Ġ	o	q
[0	0		0	2	STX	DC 2		2	В	R	b	7
	0	0	1	1	3	ETX	DC 3	#	3	C	S	С	3
	0	-	0	0	4	EOT	DC4	•	4	D	т	d	•
i i	0	-	0	1	5	ENQ	NAK	%	5	E	٥	•	ט
	0	-	1	0	6	ACK	SYN	8	6	F	>	f	٧
	0	-	1	1	7	BEL	ETB	,	7	G	*	9	w
	1	0	0	0	8	BS	CAN	(8	н	×	h	×
	1	0	0	1	9	нТ	EM)	9	1	Y	1	У
	1	0	1	0	10	LF	SUB	*	1	J	Z	j	z
	1	0	1	1	11	VT	ESC	+	- ;	K	C	k .	(
	ı	-	0	0	12	FF	FS		<	L	\	1	1
	1	-	0	1	13	CR	GS	-		м)	E	}
i	,	1	1	0	14	so	RS		>	N	^	n	>
- (T	1	1		15	SI	US	/	?	0	-	0	DEL

ASCII code table

image credit: public domain

Self-study questions

- 1. What is a bit?
- 2. Give and example for a positional and a non-positional numeral system to represent numbers.
- 3. Convert the decimal number 42 into the binary numeral system.
- 4. Convert the binary number 101010 into the decimal numeral system.
- 5. Convert the hexadecimal number $0 \times 2A$ into the decimal and the binary numeral system.
- 6. Explain how you can use electronic switches to implement the basic logical operations AND, OR, and NOT.
- 7. Use a truth table to explain the difference between the OR and the XOR operation.
- 8. Give the truth table for the Boolean formula [A OR NOT B] AND C.
- 9. Use a truth table to show that the logical operator X OR Y corresponds to NOT (NOT X AND NOT Y).
- 10. Give the truth table for the outputs of a half and a full adder.
- 11. Explain the difference between a half and a full adder.
- 12. What is the largest output that a carry-select adder for two four-bit inputs and a carry-in input can produce?
- 13. Draw a diagram of the digital circuit implementation of a full adder.

Literature

reading list

- A Anand Kumar: Fundamentals of Digital Circuits, PHI Learning, 2016
- K Fricke: Digitaltechnik, Springer Vieweg, 2018
- U Schöningh: Logik für Informatiker, Spektrum, 2005
- C Meinel, M Mundhenk: Mathematische Grundlagen der Informatik, BG Teubner, 2000

