Coloring Mixed and Directional Interval Graphs

GD 2022, Tokyo

Motivation

Framework for layered

Input: directed graph *G*

Consists of five phases:

- 1. cycle elimination
- 2. layer assignment
- 3. crossing minimiza
- 4. node placement
- 5. edge routing

we want orthogonal edges!

Motivation – Layered Orthogonal Edge Routing

- distinguish between left-going and right-going edges
- only edges going in the same direction and overlapping partially in x-dimension can cross twice
 - \Rightarrow induce a vertical order for the horizontal middle segments

Definition – Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

- vertex for each interval
- undirected edge if one interval contains another
- directed edge (towards the right interval) if the intervals overlap partially

Mixed interval graph:

- vertex for each interval
- for each two overlapping intervals: undirected or arbitrarily directed edge

Coloring Mixed Graphs

- Find a graph coloring $c: V \to \mathbb{N}$ such that:
- [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97]
- * undirected edge uv: $c(u) \neq c(v)$,
- \star directed edge uv: c(u) < c(v),
- $\star \max_{v \in V} c(v)$ is minimized.

Interval graphs (no directed edges):

coloring in linear time by a greedy algorithm

Directional interval graphs:

our contribution

- recognition in $O(n^2)$ time not in this talk
- lacksquare coloring in $O(n \log n)$ time by a greedy algorithm

Mixed interval graphs:

agenda for this talk

- coloring is NP-complete
- Directed graphs (only directed edges):
 - coloring in linear time using topological sorting

n := # intervals

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph *G*

GreedyColoring:

- 1. sort all intervals by left endpoint
- 2. for each interval, assign the smallest available color respecting incident edges

coloring c

Coloring Directional Interval Graphs

Theorem 1:

A coloring *c* computed by GreedyColoring has the minimum number of colors.

Proof sketch:

Clearly, for each $S_i \setminus \{v_i\}$, all intervals contain v_i . (otherwise they would have a directed edge to v_i)

■ Claim: for any two steps S_i and S_ℓ , every pair of intervals is adjacent in the transitive closure G^+ .

- $\Rightarrow S = \bigcup S_i$ is a clique in G^+
- \Rightarrow S alone requires m colors in G

Proof of the Claim

Claim: Any two intervals $u \in S_i$ and $w \in S_\ell$ are adjacent in G^+ .

Proof. W.l.o.g., $u \cap w = \emptyset$ and $i < \ell$.

Let *j* be the largest index s.t. $v_i \cap u \neq \emptyset$.

Let k be the smallest index s.t. $v_k \cap w \neq \emptyset$.

$$\begin{array}{ccc} u \cap v_{i+1} \neq \varnothing & & & i < j < \ell \\ w \cap v_{\ell-1} \neq \varnothing & & \Longrightarrow & i < k < \ell \end{array}$$

By definition, $u \cap v_{j+1} = \emptyset$.

 $\Rightarrow u \text{ and } v_j \text{ overlap } \Rightarrow (v_j, u) \in G$

Similarly, $(w, v_k) \in G$.

If j < k, then $(v_k, v_j) \in G$.

If $j \ge k$, then w overlaps v_j .

Transitivity \Rightarrow claim.

Overview

```
Find a graph coloring c: V \to \mathbb{N} such that:
```

[Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97]

 \star undirected edge uv: $c(u) \neq c(v)$,

 \star directed edge uv: c(u) < c(v),

 $\star \max_{v \in V} c(v)$ is minimized.

Interval graphs (no directed edges):

coloring in linear time by a greedy algorithm

Directional interval graphs:

our contribution

- recognition in $O(n^2)$ time
- lacksquare coloring in $O(n \log n)$ time by a greedy algorithm

Mixed interval graphs:

coloring is NP-complete

Directed graphs (only directed edges):

coloring in linear time using topological sorting

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a *k*-coloring is NP-complete.

Proof sketch:

clause gadget:

6n + 1 colors (n := # variables)

 Φ is satisfiable $\Leftrightarrow G_{\Phi}$ admits a coloring with 6n colors

Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.
- A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.

i := # vertices

- In layered graph drawing, this corresponds to routing "left-going" edges orthogonally to the fewest horizontal tracks. (Symmetrically "right-going".)
- ⇒ Combining the drawings of left-going and right-going edges yields a 2-approximation for the number of tracks. (bidirectional interval graphs)

In our paper, we present a constructive $O(n^2)$ -time algorithm for recognizing directional interval graphs, which is based on PQ-trees.

bidirectional?

■ For the more general case of mixed interval graphs, coloring is NP-hard. (Remark: NP-hardness requires both directed and undirected edges.)