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B it suffices to consider each pair of consecutive layers individually

B positions of vertices are fixed

B no two edges share a common end point (vertices have distinct ports)
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Motivation — Layered Orthogonal Edge Routing

B distinguish between /¢ff-going and right-going edges

B only edges going in the same direction and overlapping partially
in x-dimension can cross twice

= induce a vertical order for the horizontal middle segments

upper layer

lower layer
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Definition — Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

B vertex for each interval

B undirected edge if one interval contains another

B directed edge (towards the right interval) if the intervals overlap partially

b C
a b C
Mixed interval graph: \ /
B vertex for each interval a

B for each two overlapping intervals: undirected or arbitrarily directed edge
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Find a graph coloring c¢: V' — IN such that:

Interval

x undirected edge uv: c(u) # c(v),

* directed edge uuv: c(u) < c(v),
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B Let G be the transitive closure of G
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Proof sketch:

B Clearly, for each S; \ {v;}, all intervals contain v;.
(otherwise they would have a directed edge to v;)
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