
Aufgabensammlung ADS-Repetitorium WS 24/25
Dynamisches Programmieren

Aufgabe 1: SubsetSum
Gegeben sind eine Liste A = ⟨o1, o2, . . . , on⟩ von n natürlichen Zahlen sowie ein b ∈ N. Gefragt ist, ob
die Summe von einem Teil der in A enthaltenen Zahlen genau b ergibt. Formal ist also gefragt, ob ein
I ⊆ {1, 2 . . . , n} mit

∑
i∈I oi = b existiert. Ein naiver Ansatz wäre es, alle Teilmengen der in A enthaltenen

Zahlen auszuprobieren. Da es jedoch 2n viele solche Teilmengen gibt, hat dieser Ansatz eine Laufzeit von
Ω(2n). Wir wollen stattdessen ein dynamisches Programm angeben, dessen Laufzeit in O(n · b) liegt.
(a) Wie sehen geeignete Teilprobleme aus, die hierfür gelöst werden müssen?

Lösung: Für 1 ≤ i ≤ n und 0 ≤ b̃ ≤ b definieren wir das Teilproblem T [i, b̃]:

T [i, b̃] :=

{
1 falls mit einem Teil der Objekte o1, . . . , oi die Summe b̃ erreicht werden kann

0 sonst

(b) Wir suchen nun zunächst eine rekursive Formulierung, mit der die Antwort auf die Teilprobleme be-
rechnet werden kann. Welchem Teilproblem entspricht die Lösung der eigentlichen Aufgabe?

Lösung: Für i = 1 definieren wir den Basisfall.

T [1, b̃] :=

{
1 falls o1 = b̃ oder b̃ = 0

0 sonst

Dann können wir für ein i > 1 die Fallunterscheidung verwenden, ob Objekt oi in der Lösung ver-
wendet werden soll, oder nicht. Jeweils muss dann die restliche Lösung aus den Objekten o1, . . . , oi−1

gebildet werden.

T [i, b̃] := max
{
T [i− 1, b̃− oi], T [i− 1, b̃]

}
Die gesuchte Antwort entspricht dem Teilproblem T [n, b].

Hinweis: Für bessere Lesbarkeit ignorieren wir im rekursiven Schritt den Fall b̃ < oi, für den das
linke Teilproblem nicht definiert ist. Wir nehmen hier und im Folgenden stillschweigend an, dass
für solche undefinierten Werte Standardmäßig 0 als Antwort gegeben wird.

(c) Nun soll diese rekursive Lösung in einem dynamischen Programm berechnet werden. Wie groß ist der
Speicherbedarf dieser Lösung?

Lösung:

Seite 1

04.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Algorithmus 1: SubsetSum(int[] A, b)

1 Sei T eine Tabelle der Größe n× (b+ 1)

2 for b̃ = 0 to b do

3 if b̃ = 0 or b̃ = A[1] then

4 T [1, b̃] = 1
5 else

6 T [1, b̃] = 0

7 for i = 2 to n do

8 for b̃ = 0 to b do

9 T [i, b̃] = max
{
T [i− 1, b̃−A[i]], T [i− 1, b̃]

}
10 return T [n, b]

(d) Ist es möglich, einen von n unabhängigen Speicherbedarf zu erreichen? Wenn ja, wie lässt sich das
erreichen?

Lösung: Wir können beobachten, dass immer nur auf die vorhergehende Spalte in der Tabelle
zugegriffen wird. Daher können wir statt der n× (b+ 1) Tabelle auch mit einer 2× (b+ 1) Tabelle
auskommen, wodurch der Speicherbedarf in O(b) liegt.

Aufgabe 2: Knapsack
Gegeben sei eine Menge von n Objekten. Jedes Objekt oi besitzt einen ganzzahligen Wert vi und ein ganz-
zahliges Gewicht wi ∈ N. Außerdem ist ein Maximalgewicht W ∈ N gegeben. Gesucht ist eine Teilmenge
von Objekten U , sodass

∑
oi∈U wi ≤ W , wobei

∑
oi∈U vi maximiert wird. Lösen Sie dieses Problem mittels

dynamischer Programmierung! Ihr Programm sollte eine Laufzeit von O(n ·W) haben. Es reicht, wenn Sie
den Wert

∑
oi∈U vi einer optimalen Lösung U bestimmen.

Lösung: Wir füllen eine Tabelle D, wobei der Eintrag D(i, j) dem größtmöglichen Wert der ersten
i Objekte enthält unter der Berücksichtigung des maximalen Gewichts j. Den Wert einer optimalen
Lösung ist dann in D(n,W) gespeichert.

Basisfall: Für 1 ≤ j ≤W

D(1, j) =

{
v1 if wi ≤ j

0 else.

Rekursionsfall:

D(i, j) = max

{
vi +D(i− 1, j − wi) if wi ≤ j

D(i− 1, j)

Wir haben n Zeilen undW spalten. Pro Eintrag benötigen wir O(1) Zeit. Somit benötigt ein dynamisches
Programm O(n·W) Zeit. Die tatsächlichen Objekte, die zum Wert der optimalen Lösung gehören, lassen
sich mittels Backtracking bestimmen.

Seite 2

04.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Aufgabe 3: Längste Wege in azyklischen Graphen
Wir haben bereits gesehen, dass das Problem Längster Wege in allgemeinen Graphen nicht die Eigenschaft
optimaler Teilstrukturen aufweist. Wir beschränken uns daher nun auf azyklische gerichtete Graphen. Es
wird ein solcher Graph G = (V,E) mit E ⊆ V 2 sowie eine Kantengewichtsfunktion w : E 7→ R+ gegeben.
Außerdem werden Start- und Endknoten s, t ∈ V übergeben. Gesucht ist ein längster Weg von s nach t.

(a) Wir wollen zunächst zeigen, dass dieses eingeschränkte Problem die optimale-Teilstruktur-Eigenschaft
hat. Dazu wollen wir nun beweisen, dass der längste s-t-Weg für einen Knoten v ∈ V aus einem längsten
s-v-Weg sowie einem längsten v-t-Weg besteht.

Hinweis: Es könnte hilfreich sein, sich nochmal zu überlegen, wieso das Problem kürzester Wege aus
optimalen Teilstrukturen besteht.

Lösung: Angenommen wir haben einen längsten s-t-Weg und einen Knoten v auf diesem Weg
gegeben. Wir teilen diesen Weg nun in einen s-v-Weg und einen v-t-Weg.

Wir nehmen außerdem zunächst an, dass der so gefundene s-v-Weg nicht der längste ist. Auf diesem
Weg liegt kein Knoten, der auf dem v-t-Weg liegt, da wir sonst einen Kreis gefunden hätten. Der
Graph ist jedoch azyklisch. Also können wir den längeren s-v-Weg mit dem v-t-Weg kombinieren,
um einen noch längeren s-t-Weg zu erhalten. Das widerspricht der Annahme.

Analog können wir auch argumentieren, dass der v-t-Weg bereits der längste ist.

(b) Was sind die Teilprobleme, die in einem dynamischen Programm gelöst werden müssten? Wie können
diese Teilprobleme rekursiv gelöst werden?

Lösung: Es ist ausreichend, für jeden Knoten v ∈ V einen längsten v-t-Pfad zu berechnen. Da der
Graph azyklisch ist, ist der Längste t-t-Pfad dabei einfach der leere Pfad. Für v ∈ V \ {t} können
wir dann den Nachbarn u mit längstem u-t-Pfad wählen und die Kante (v, u) an den Anfang dieses
Pfades einfügen.

(c) In welcher Reihenfolge müssen die Teilprobleme gelöst werden?

Lösung: Wir können den Graphen vor der Berechnung topologisch sortieren und in dieser Reihen-
folge abarbeiten. Dadurch ist garantiert, dass bereits für alle Nachbarn des aktuell betrachteten
Knotens ein längster Weg zu t berechnet ist.

Seite 3

04.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Aufgabe 4: Independent Sets in Bäumen
Eine unabhängige Menge in einem Graphen ist eine Teilmenge U ⊆ V , sodass keine Knoten in U miteinander
benachbart sind. Im Independent Set Problem ist nach der größten unabhängigen Menge in einem Graphen
G gesucht. Im Allgemeinen ist dieses Problem NP-schwer, doch in Bäumen lässt sich dieses Problem in
Polynomialzeit lösen. Sei also ein Baum T = (V,E) gegeben. Schreiben Sie ein dynamisches Programm, das
in O(V + E) Zeit die Kardinalität eines größten Independent Sets in T findet.
Hinweis 1: Ein Baum als Graph besitzt keine eindeutige Wurzel. Sie können annehmen, dass der Baum T
bereits an Wurzel r gewurzelt ist.
Hinweis 2: Nutzen Sie die rekursive Struktur eines Baums aus! Nutzen Sie zwei Tabelleneinträge pro Knoten,
einmal für den Fall, dass Sie den Knoten nehmen und einmal für den Fall, dass Sie ihn nicht nehmen.

Lösung: Sei T = (V,E) ein Baum gewurzelt mit Wurzel r ∈ V . Sei A(v) die Kardinalität eines größten
Independent Sets im Teilbaum Tv mit Wurzel v und sei B(v) die Kardinalität eines größten Independent
Sets im Teilbaum Tv mit Wurzel v, wobei v nicht im Independent Set enthalten sein darf. Aus der
Definition folgt, dass A(r) das gewünschte Ergebnis liefert.

Basisfall: Der Basisfall tritt für alle Blätter in T ein. Nachdem der Teilbaum Tv eines Blatts v nur aus
einem Knoten besteht gilt A(v) = 1 und B(v) = 0.

Rekursionsfall: Durch eine Postorder Berechnung können wir annehmen, dass A(u) und B(u) für
alle Kinder von v bereits berechnet worden sind. Für den Fall, dass v nicht im Independent Set
enthalten sein darf, müssen wir uns um nichts kümmern, da die Teilbäume der Kinder von v nicht
miteinander verbunden sein können. Somit ist

B(v) =
∑

u child of v

A(u)

Falls wir v mit ins Independent Set wählen, darf kein Kind von v im Independent Set enthalten
sein, denn andernfalls wären das Kind u und v benachbart. Falls wir v nicht wählen, können wir
einfach B(v) ausrechnen und diesen Wert auch für A(v) benutzen:

A(v) = max

{
B(v), 1 +

∑
u child of v

B(u)

}

Für jeden Knoten v summieren wir über Werte der Kinder. Somit haben wir insgesamt einen linearen
Aufwand und erhalten eine Laufzeit von O(V + E).

Aufgabe 5: Der schönste Binärbaum der Welt
Sie sind auf Kiliani und laufen an einem Stand vorbei. Dort fällt Ihnen der schönste Binärbaum in die
Augen, den Sie je gesehen haben. Unverzüglich gehen Sie den kürzesten Pfad zum Stand und sehen, dass
dieser Binärbaum der Hauptpreis eines Spieles ist. Das Spiel funktioniert wie folgt:
Innerhalb des Standes sind n Pins nebeneinander aufgestellt. Auf jedem dieser Pins ist eine ganze Zahl (also
auch negative) geschrieben. Sie erhalten einen Ball und müssen die Pins abwerfen, sodass Sie ihren Score
maximieren. Dieser Score berechnet sich folgendermaßen:

• Sie treffen genau einen Pin: Sie erhalten den Wert des Pins aufaddiert zu ihrem bisherigen Score

• Sie treffen zwei benachbarte Pins: Sie erhalten das Produkt beider Pins zu ihrem bisherigen Score
aufaddiert

Sie können nicht mehr als zwei benachbarte Pins treffen und Sie müssen nicht alle Pins abwerfen. Sobald Sie
einen Pin abgeworfen haben, fällt dieser um und kann nicht erneut abgeworfen werden. Wie es der Zufall
will können Sie ausgezeichnet werfen und treffen immer wohin Sie zielen.

Seite 4

04.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Entwickeln Sie ein dynamisches Programm, das eine Sequenz v1, . . . , vn von Zahlen (die Werte der Pins)
entgegen nimmt und den maximalen Score errechnet.

(a) Definieren Sie das Teilproblem B(·).

Lösung: B(i)=̂ maximal möglicher Score für Pins 1, . . . , i

(b) Wie kann das Teilproblem, das Sie in Teilaufgabe (a) definiert haben berechnet werden? Geben Sie
hierzu eine rekursive Gleichung an.

Lösung: Wir haben drei Möglichkeiten für Pin i: Wir werfen Pin i nicht ab, wir werfen lediglich
Pin i ab oder wir werfen Pin i mit seinem Nachbarn ab. Nachdem Pin i in unserem Teilproblem
der Pin am rechten Rand ist, hat Pin i nur einen linken Nachbarn. Nachdem B(i) den maximalen
Score angibt müssen wir von diesen drei Möglichkeiten das Maximum wählen. Demnach können
wir B(i) folgendermaßen rekursiv definieren:

B(i) =


max{B(i− 1), B(i− 1) + vi, B(i− 2) + vi−1 · vi} falls 2 ≤ i ≤ n

max{B(i− 1), B(i− 1) + vi} falls i = 1

0 falls i = 0

Wir definieren den Basisfall für eine leere Sequenz mit einem maximal möglichen Score von 0.

(c) Schreiben Sie einen Pseudocode, der die rekursive Gleichung in Teilaufgabe (b) implementiert! Ordnen
Sie die asymptotische Laufzeit des Algorithmus ein und begründen Sie ihre Antwort! (eine genaue
Berechnung ist nicht gefordert)

Lösung: Im Prinzip müssen wir hier nur die Rekursionsgleichung in Pseudocode übertragen:

Algorithmus 2: getMaxBowlingScore(int[] v, int i)

1 if i == 0 then
2 return 0

3 if i ≥ 2 then
4 // Hier muss sichergestellt werden, dass wir kein Index Out Of Bounds

bekommen

5 return max{getMaxBowlingScore(v, i− 1), getMaxBowlingScore(v, i− 1) + v[i],
getMaxBowlingScore(v, i− 2) + v[i− 1]· v[i]}

6 else
7 return max{getMaxBowlingScore(v, i− 1), getMaxBowlingScore(v, i− 1) + v[i]}

Laufzeit: Die Laufzeit ist mindestens exponentiell, da die Rekursionsgleichung einen Teil T (n) =
2T (n−1)+T (n−2)+Θ(1) hat. Diese Gleichung hat eine große Ähnlichkeit zu den Fibonaccizahlen
und diese wachsen bereits exponentiell. Genauer kann man die Rekursionsgleichung aber auch mit
T (n) ≤ 3T (n− 1) abschätzen, was einer Laufzeit von O(3n) entspricht.

(d) Nutzen Sie nun memoization, um redundante Berechnungen in Ihrem rekursiven Algorithmus zu ver-
meiden! Welche Laufzeit hat der memoized Algorithmus nun?

Lösung: Wir lassen den Wrapper um die Funktion weg (Siehe Vorlesung).

Seite 5

04.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Algorithmus 3: getMaxBowlingScore(int[] v, int i, int[] memo)

1 // memo ist ein Array der Länge n+ 1 und ist zu Beginn mit ∞ gefüllt

2 if memo ̸=∞ then
3 return memo[i]

4 if i == 0 then
5 return 0

6 if i ≥ 2 then
7 memo[i] = max{getMaxBowlingScore(v, i− 1), getMaxBowlingScore(v, i− 1) + v[i],

getMaxBowlingScore(v, i− 2) + v[i− 1]· v[i]}
8 else
9 memo[i] = max{getMaxBowlingScore(v, i− 1), getMaxBowlingScore(v, i− 1) + v[i]}

10 return memo[i]

Laufzeit: Durch die memo Tabelle sparen wir uns redundante Berechnungen ⇒ Laufzeit ist Anzahl
Teilprobleme · Die Zeit die wir benötigen, ein Teilproblem zu lösen: Θ(n) ·Θ(1) = Θ(n)

(e) Implementieren Sie den Algorithmus nun bottom-up!

Lösung: Beim bottom-up Ansatz füllen wir nun memo iterativ:

Algorithmus 4: getMaxBowlingScore(int[] v, int i)

1 int[] B = new int[n+ 1]
2 B[0] = 0
3 B[1] = max{B[0], B[0] + v[1]}
4 for i = 2 to n do
5 B[i] = max{B[i− 1], B[i− 1] + v[i], B[i− 2] + v[i− 1]· v[i]}
6 return B[n]

Aufgabe 6: Perfekte Binärbäume
Angenommen wir haben n Elemente und wissen, mit welcher Wahrscheinlichkeit diese angefragt werden.
Wir wollen nun einen binären Suchbaum finden, der die erwartete Anfragezeit minimiert. Das heißt, gegeben
eine Wahrscheinlichkeitsverteilung der n Elemente p1, p2, . . . , pn mit der die Elemente angefragt werden. Wir
wollen die Suchzeit

∑l
i=1 pi · li minimieren, wobei li das Level von Element i ist. Im Folgenden wollen wir

ein dynamisches Programm entwickeln, das dieses Problem löst.

(a) Wie verändert sich die erwartete Suchzeit eines Teilbaums, wenn dieser an einen weiteren Knoten
gehängt wird?

Lösung: Sei Tij ein Teilbaum, der die Elemente vi, . . . , vj enthält, wobei dieser eine erwartete

Suchzeit von
∑j

k=i pk · lk besitzt. Wenn nun dieser Teilbaum an einen weiteren Knoten gehängt
wird, erhöht sich das Level aller Knoten im Teilbaum Tij um 1. Somit gilt die erwartete Suchzeit
nun:

j∑
k=i

pk(lk + 1) =

j∑
k=i

pk · lk +

j∑
k=i

pk.

(b) Angenommen Sie haben eine Methode, um die Wurzel eines optimalen Teilbaums zu berechnen. Gegeben
sei ein Teilbaum mit folgender Sequenz von Elementen vi . . . , vr, . . . , vj , wobei vr die Wurzel eines

Seite 6

04.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

optimalen Teilbaums ist. Wie können Sie den Rest des Teilbaums berechnen?

Lösung: Seien die Elemente in aufsteigender Reihenfolge sortiert. Wenn wir nun die Wurzel vr
eines optimalen Teilbaums kennen, so können wir die Sequenz an der Wurzel spalten, sodass wir
zwei kleinere Teilprobleme erhalten. Das heißt, wir können rekursiv den linken Teilbaum von vr
mit den Elementen vi, . . . , vr−1 berechnen und wir können rekursiv den rechten Teilbaum von vr
mit den Elementen vr+1, . . . , vj berechnen und deren optimalen Wert mittels der Gleichung aus
Teilaufgabe (a) anpassen.

(c) Sei D[i, j] der Wert einer optimalen Lösung mit den Elementen vi, . . . , vj . Stellen Sie die Rekursions-
gleichung für D[i, j] auf!

Lösung: Aus der vorherigen Teilaufgabe geht bereits hervor, welche Form die Rekursionsgleichung
haben sollte. Allerdings kennen wir die optimale Wurzel vr in einer Sequenz vi, . . . , vj bei der
Berechnung noch nicht. Deshalb probieren wir alle möglichen Wurzeln aus und nehmen davon die
jenige Wurzel, die die erwartete Suchzeit minimiert.

D[i, j] = min
i≤r≤j

{D[i, r − 1] +

r−1∑
k=i

pk︸ ︷︷ ︸
linker Teilbaum mit (a)

+ pr +D[r + 1, j] +

j∑
k=r+1

pk︸ ︷︷ ︸
rechter Teilbaum mit (a)

}

= min
i≤r≤j

{D[i, r − 1] +D[r + 1, j] +

j∑
k=i

pk}

(d) Für welche Sequenz von Elementen kennen wir bereits die optimale erwartete Suchzeit (Basisfall)?

Lösung: Wenn wir eine leere Sequenz von Elementen haben, wissen wir sofort, dass D[i, i−1] = 0.

(e) Welche Laufzeit hat Ihr dynamisches Programm?

Lösung: Wir müssen nicht jedesmal
∑j

k=i pk neu berechnen. Wir können die Summe vorberechnen,

indem wir für jedes 1 ≤ i ≤ n die Summe
∑i

k=1 pk berechnen und den Wert in ein Feld an Stelle S[i]

speichern. Wenn wir nun
∑j

k=i pk berechnen wollen, können wir einfach S[j]− S[i− 1] berechnen.
Damit können wir einen rekursiven Aufruf in O(n) berechnen. Unsere Tabelle hat O(n2) Einträge
und somit haben wir eine Gesamtlaufzeit von O(n3).

Aufgabe 7: Kürzeste Wege mit negativen Kanten
Gestern haben wir festgestellt, dass die Ergebnisse von Dijkstra auf Graphen mit negativen Kanten unter
Umständen nicht die kürzesten Wege repräsentieren. In dieser Aufgabe wollen wir einen Algorithmus finden,
der auf einem Graphen G = (V,E) mit der Gewichtsfunktion w : V × V → R einen kürzesten Weg zwischen
zwei Knoten s und t findet. Wir nehmen an, dass der Graph G keine von s erreichbaren, negativen Kreise
enthält.

(a) Zeigen Sie, dass das Problem eine optimale Substruktur aufweist. Sie müssen also zeigen, dass der
kürzeste Weg zwischen s und t aus kleineren Teillösungen desselben Problems berechenbar ist. In welchen
Fällen ist es besonders einfach, den kürzesten Weg zwischen s und t zu berechnen?

Lösung: Auf dem Weg von s nach t überqueren OdBA wir einen Knoten w. Also setzt sich der
gesuchte kürzeste Weg von s nach t aus zwei Wegen zusammen, einem Weg von s nach w und

Seite 7

04.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

einem Weg von w nach t. Die beiden Teilwege sind jeweils kürzeste Wege und diese sind jeweils
mindestens eine Kante kürzer.

Damit erhalten wir ein kleineres Problem derselben Art, nämlich den kürzesten Weg von s zu einem
Knoten w zu finden.

Besonders einfach ist das Problem zu lösen, falls s = t, da dann δ(s, t) = 0.

(b) Wie viele Kanten kann jeder kürzeste Weg im Graphen G = (V,E) maximal haben? Angenommen, der
Distanzwert v.d ist für alle v ∈ V mit ∞ intialisiert und s.d = 0. Was passiert auf jeden Fall, wenn Sie
die Relax-Methode (siehe Dijkstra) nun auf jede Kante in beliebiger Reihenfolge aufrufen? Was passiert,
wenn Sie dies erneut tun?

Lösung: Der längste mögliche kürzeste Weg traversiert jeden Knoten maximal einmal. Deswegen
ist die höchste mögliche Kantenanzahl |V |−1. Nachdem Aufruf von Relax wurden die Distanzwerte
der Nachbarn von s auf einen endlichen Wert gesetzt und mindestens einer von ihnen hat auch
die korrekte Entfernung. Beim wiederholten Aufruf von Relax kommen immer mehr Knoten hinzu,
deren Entfernung gesetzt ist und in jeder Iteration wird mindestens eine Entfernung richtig gesetzt.

(c) Wir betrachten nun eine zweidimensionale Tabelle T . Jede Spalte steht für einen Knoten (in beliebiger
Reihenfolge), und es gibt |V | − 1 Zeilen. Die Zelle T (i, j) enthält die Länge des kürzesten Weges von
s zum i-ten Knoten, nachdem j Mal die Relax-Methode auf alle Kanten aufgerufen wurde. Stellen Sie
die Tabelle für folgenden Graphen auf und füllen Sie sie zeilenweise aus. Relaxieren Sie die Kanten in
alphabetischer Reihenfolge nach ihrem Startknoten.

s

a
b

c

d
e

10

8

2

1 −2

−4
1

−1

Iteration s.d a.d b.d c.d d.d e.d
0 0 ∞ ∞ ∞ ∞ ∞
1
2
3
4
5

Lösung:

Iteration s.d a.d b.d c.d d.d e.d
0 0 ∞ ∞ ∞ ∞ ∞
1 0 10 ∞ ∞ ∞ 8
2 0 10 10 12 9 8
3 0 5 10 11 9 8
4 0 5 5 7 9 8

(d) Geben Sie nun den Algorithmus in Pseudocode an. Welche Laufzeit hat er?

Lösung: Der Bellman-Ford-Algorithmus löst das Problem:

Algorithmus 5: BellmanFord(G, s, w)

1 for i = 1 to |V | − 1 do
2 foreach Kante (u, v) ∈ E do
3 if v.d > u.d+w(u, v) then
4 v.d = u.d+w(u, v)

Seite 8

04.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Die Korrektheit kann durch die Schleifeninvariante
”
Nach der i. Iteration gilt für i + 1 Knoten v,

dass ihre berchnete Distanz v.d mit dem tatsächlich kürzesten Weg δ(s, v) übereinstimmt.“ gezeigt
werden.

(e) Modifizieren Sie Ihren Algorithmus so, dass er auch die optimale Lösung selbst, also den kürzesten Weg
berechnet. Welche Methode aus der Vorlesung können Sie dafür verwenden?

Lösung: Wir ergänzen den Anweisungsblock der if -Abfrage um die Zeile v.p = u, wobei das
Attribut v.p jeweils auf den Elternknoten u auf dem bisher kürzesten gefundenen Wegs von s nach
v zeigt. Die if -Abfrage entspricht nun genau der Relax-Funktion, die vom Dijkstra-Algorithmus
bekannt ist.

(f) Unter welchen Umständen kann der Algorithmus vorzeitig abgebrochen werden? Wie kann mithilfe des
Algorithmus ein negativer Zykel detektiert werden?

Lösung: Falls sich in einer Iteration keine d-Werte mehr ändern, kann der Algorithmus vorzeitig
abgebrochen werden. Falls alle |V | − 1 Iterationen ausgeführt wurden und in einer letzten, |V |.
Iteration noch d-Werte verändert werden, dann liegt ein negativer Zykel vor.

Aufgabe 8: Palindrome Subsequenzen
Ein Palindrom ist eine Zeichenkette, die von vorne und von hinten gelesen das gleiche ergibt, zum Beispiel
das Adjektiv

”
soldlos“. Eine Subsequenz ist ein String, der nach Weglassen beliebig vieler Zeichen aus einem

String hervorgeht, beispielsweise das Wort
”
Baum“ aus

”
Brauchtum“. Wir suchen nun einen effizienten Al-

gorithmus, der eine längste Subsequenz einer Zeichenkette s = s0 . . . sn findet, die gleichzeitig ein Palindrom
ist. Die längste palindrome Subsequenz in

”
Amortisierte Laufzeit“ ist

”
tieteit“.

(a) Erklären Sie kurz, wie ein Brute-Force-Algorithmus vorgehen würde, um das Problem zu lösen. Was ist
die Laufzeit dieses Algorithmus?

Lösung: Der Brute-Force-Ansatz wäre, alle Subsequenzen aus s zu berechnen und diese auf ihre
Palindrom-Eigenschaft zu testen. Da es jedoch 2n+1 Subsequenzen gibt, ist dieser Ansatz nicht
effizient. Die Laufzeit wäre in O(n · 2n+1).

(b) Gegeben sei eine Zeichenkette s = s0 . . . sn und ihre längste palindrome Subsequenz p = p0 . . . pm.
Beschreiben Sie wie p aus einer kleineren Instanz desselben Problems hervorgeht. Betrachten Sie dazu
einen Teilstring s′ von s, und erklären Sie, wie p zu s′ steht.

Lösung:

1. Falls s0 ̸= p0, dann ist p eine optimale Lösung für s1, . . . , sn.

2. Falls sn ̸= pm, dann ist p eine optimale Lösung für s0 . . . sn−1.

3. Falls s0 = sn, dann ist s0 = pm und p1 . . . pm−1 ist eine optimale Lösung in s′ = s1 . . . sn−1.

Beweis. Es trifft immer genau einer der obigen Fälle zu. Wir begründen nun, dass die obigen
Implikationen korrekt sind:

1. Analog zu ii.

2. Angenommen, p ist keine optimale Lösung für s0 . . . sn−1. Dann gibt es eine andere optimale
Lösung mit der Länge größer als m+ 1 für s0 . . . sn−1. Das widerspricht aber der Annahme,
dass p optimal für s0 . . . sn−1 ist.

Seite 9

04.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

3. Falls s0 ̸= pm, dann könnten wir p verbessern, indem wir die offenbar noch nicht genutzten
s0 und sn vorne und hinten an p anhängen. Das widerspricht aber der Annahme, das p schon
optimal ist. Also muss s0 = pm sein. Nun, nehmen wir an, p1 . . . pm−1 ist keine optimale
Lösung in s1 . . . sn−1. Dann muss es eine andere optimale Lösung für s1 . . . sn−1 geben, die
länger als m−1 ist. Da s0 = sn könnten wir diese Lösung nutzen, um eine längste palindrome
Subsequenz der Länge m+2 für s zu finden. Dies widerspricht ebenfalls der Annahme, das p
optimal ist.

Die obigen Implikationen zeigen, dass wir das Problem der längsten palindromen Subsequenz immer
auf kleine Substrings übertragen können. Die Teilprobleme überlappen sich, da wir zum Beispiel
den inneren Teil von s in allen obigen Implikationen untersuchen müssen.

(c) Wir definieren l(i, j) als die Länge der längsten palindromen Subsequenz im Substring si . . . sj . Was ist
l(i, i) und l(i, i+1)? Dies sind die Basisfälle und sind einfach anzugeben. Überlegen Sie sich nun, wie Sie
für allgemeine i, j mit i < j den Wert l(l, j) berechnen können. Tipp: Machen Sie eine Fallunterscheidung
nach si = sj bzw. si ̸= sj und greifen Sie auf l(i′, j′) zu, wobei i′ < i oder j′ < j.

Lösung: Lege eine Matrix der Größe n + 1 × n + 1 an und fülle jede Diagonale, angefangen von
der Hauptdiagonale, sukzessive nach oben rechts. Andere Richtungen sind denkbar, dann müssen
die Indizes angepasst werden.

l(i, j) =


1 falls i = j

2 falls i+ 1 = j und si = sj

max(l(i+ 1, j), l(i, j − 1)) falls si ̸= sj

l(i+ 1, j − 1) + 2 falls si = sj

(d) Legen Sie eine Matrix, die l(i, j) für alle 0 ≤ i ≤ j ≤ n repräsentiert, für die beiden Sequenzen
”
anna“

und
”
graphalgo“ an und füllen Sie sie aus. Wie lang sind die längsten palindromen Subsquenzen in den

Wörtern? Wo steht der Wert der Lösung in der Matrix?

Lösung: Da
”
anna“ selbst ein Palindrom ist, ist die längste palindrome Subsequenz vier Zeichen

lang. Die längste palindrome Subsequenz von
”
graphalgo“ ist 5.

A N N A
A 1 1 2 4
N 1 2 2
N 1 1
A 1

G R A P H A L G O
G 1 1 1 1 1 3 3 5 5
R 1 1 1 1 3 3 3 3
A 1 1 1 3 3 3 3
P 1 1 1 1 1 1
H 1 1 1 1 1
A 1 1 1 1
L 1 1 1
G 1 1
O 1

Der Wert der optimalen Lösung steht bei einer komplett ausgefüllten Matrix in der ersten Zeile
ganz rechts.

(e) Formulieren Sie jetzt einen Algorithmus, der eine solche Matrix automatisch ausfüllt und den Wert der
Lösung zurückgibt.

Seite 10

04.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Lösung: Die obige Matrix-Rekurrenz wird direkt umgesetzt. Die erste Fallunterscheidung entfällt
hierbei durch die Initialisierung der Matrix in Zeile 3.

Algorithmus 6: findLongestPalindromeSubsequenceLength(String s)

1 n = s.length
2 values = new int [s.length][s.length]
3 Fülle Hauptdiagonale von values mit 1ern
4 for row = 1 to n - 1 do
5 currRow = 1
6 for col = row + 1 to n do
7 if scurrRow == scol ∧ currRow + 1 ̸= col then
8 values[currRow][col] = values[currRow+1][col-1] + 2

9 else if scurrentRow == scol then
10 values[currRow][col] = 2

11 else
12 values[currRow][col] = max (values[currRow][col-1], values[currRow+1][col])

13 currRow = currRow + 1

14 return values[1][n]

(f) Jetzt möchten Sie nicht nur den Wert ermitteln, sondern auch die längste palindrome Subsequenz selbst.
Beschreiben Sie, wie Sie mit einer zweiten Matrix die längste palindrome Subsequenz ermitteln können.

Lösung: Wir legen eine Matrix an, die genau so groß ist wie die erste und füllen sie parallel
mit der Hauptmatrix mit Pfeilen aus, die auf das Feld zeigen, auf dem der Wert des aktuellen
Feldes basiert. Dann verfolgen wir den Weg vom obersten rechten Feld zurück, bis wir auf ein
Feld treffen, das den Wert 1 oder zwei 2 hat. Diese beiden Felder haben laut Matrix-Rekkurenz
keine Vorgänger-Felder. Spalten-Indizes, die von Feldern abhängen, die diagonal von einem anderen
Feld abhängen, beschreiben Zeichen, die in der längsten palindromen Subsequenz vorkommen. Das
heißt, wir speichern diese Felder. Sobald wir das Ende des Weges erreicht haben, fügen wir noch
das letzte Zeichen hinzu. Nun haben wir die Hälfte des gesuchten Palindroms und müssen dies nur
noch spiegeln. Dabei müssen wir auf gerade und ungerade Länge aufpassen (siehe Pseudocode).

(g) Zeichnen Sie auch die ergänzte Matrix für die Wörter
”
anna“ und

”
graphalgo“. Was ist die jeweils

längste palindrome Subsequenz?

Lösung: Für
”
anna“ ist die Lösung

”
anna“, für

”
graphalgo“ ist die Lösung

”
gahag“.

A N N A
A ⊙ ⊙ ↓ ↙
N ⊙ ⊙ ←
N ⊙ ⊙
A ⊙

G R A P H A L G O
G ⊙ ← ← ← ← ↓ ← ↙ ←
R ⊙ ← ← ← ↓ ← ← ←
A ⊙ ← ← ↙ ← ← ←
P ⊙ ← ← ← ← ←
H ⊙ ← ← ← ←
A ⊙ ← ← ←
L ⊙ ← ←
G ⊙ ←
O ⊙

(h) Ändern Sie Ihren Algorithmus so, dass er die längste palindrome Subsequenz zurückgibt.

Seite 11

04.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Lösung:

Algorithmus 7: findLongestPalindromeSubsequence(String s)

1 n = s.length
2 values = new int [s.length][s.length]
3 directions = new int [s.length][s.length]
4 Fülle Hauptdiagonale von values mit 1ern
5 for row = 1 to n - 1 do
6 currRow = 1
7 for col = row + 1 to n do
8 if scurrRow == scol ∧ currRow + 1 ̸= col then
9 values[currRow][col] = values[currRow+1][col−1] + 2

10 directions[currRow][col] = ↙
11 else if scurrentRow == scol then
12 values[currRow][col] = 2
13 directions[currRow][col] = ←
14 else
15 if values[currRow][col-1] ≥ values[currRow+1][col] then
16 values[currRow][col] = values[currRow][col−1]
17 directions[currRow][col] = ←
18 else
19 values[currRow][col] = values[currRow+1][col]
20 directions[currRow][col] = ↓

21 currRow = currRow + 1

22 row = 1
23 length = values[1][n]
24 col = length
25 result =

”
“

26 while values[row][col] ̸= 1 do
27 if directions[row][col] = ← then col = col − 1
28 if directions[row][col] = ↓ then row = row + 1
29 if directions[row][col] = ↙ then
30 row = row + 1
31 col = col − 1
32 result = result + scol

33 if length mod2 == 0 then result = result + scol + scol + reverse(result)
34 else result = result + scol + reverse(result)
35 return result

(i) Überlegen Sie sich, wie Sie Ihren Algorithmus ändern können, sodass er den längsten palindromen
Substring findet. Im Wort

”
stirnlappenbasilisk“ ist der längste palindrome Substring

”
silis“, während

die bisher betrachtete palindrome Subsequenz
”
silappalis“ ist. Formulieren Sie die Matrix-Rekurrenzen

aus Teilaufgabe c) um und beschreiben Sie in Worten, wo sich in der Matrix jetzt der Wert der Lösung
befindet und wie Sie die Lösung rekonstruieren können.

Lösung: Der Wert der Zelle l(i, j) repräsentiert nun nicht mehr die optimale Lösung für den
Substring si . . . sj , sondern den Wert ein 1, falls si . . . sj kein Palindrom ist, andernfalls die Länge des
Palindroms. Dementsprechend müssen wir lediglich verhindern, dass Werte nach oben durchgereicht

Seite 12

04.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

werden. Wir ändern also den dritten Fall entsprechend:

l(i, j) =


1 falls i = j

2 falls i+ 1 = j und si = sj

1 falls si ̸= sj

l(i+ 1, j − 1) + 2 falls si = sj

Dann suchen wir nach dem höchsten Feld in der Matrix, welches dann auch gleich den Wert der
optimalen Lösung entspricht. Nun gehen wir wieder diagonal nach links unten, bis wir auf ein leeres
Feld treffen. Die Spalten-Indizes dieses Wegs sind die Buchstaben des Palindromes, die dann noch
gespiegelt angehängt werden müssen.

(j) Falls Sie noch Zeit haben, geben Sie einen Brute-Force-Algorithmus an, der eine längste palindrome
Subsequenz findet.

Lösung: Die Idee besteht darin, einen Branching-Algorithmus zu konsturieren.

Algorithmus 8: bruteForce(s0 . . . sn, p0 . . . pm = ε)

1 if s0 . . . sn = ε then
2 return True falls p0 . . . pm Palindrom, False sonst

3 return bruteForce(s1 . . . sn, p0 . . . pms0) ∨ bruteForce(s1 . . . sn, p0 . . . pm)

Seite 13

