Aufgabensammlung ADS-Repetitorium WS 24 /25

Dynamisches Programmieren

Aufgabe 1: SubsetSum

Gegeben sind eine Liste A = (01,02,...,0,) von n natiirlichen Zahlen sowie ein b € N. Gefragt ist, ob
die Summe von einem Teil der in A enthaltenen Zahlen genau b ergibt. Formal ist also gefragt, ob ein
I'c{1,2...,n} mit), ; 0; = b existiert. Ein naiver Ansatz wire es, alle Teilmengen der in A enthaltenen

Zahlen auszuprobieren. Da es jedoch 2™ viele solche Teilmengen gibt, hat dieser Ansatz eine Laufzeit von

Q(2™). Wir wollen stattdessen ein dynamisches Programm angeben, dessen Laufzeit in O(n - b) liegt.

(a) Wie sehen geeignete Teilprobleme aus, die hierfiir gelost werden miissen?

Loésung: Fiir 1 <4 <n und 0 < b < b definieren wir das Teilproblem T, l~)]

Tl B] o {1 falls mit einem Teil der Objekte o1, ..., 0; die Summe b erreicht werden kann

0 sonst

(b) Wir suchen nun zunéchst eine rekursive Formulierung, mit der die Antwort auf die Teilprobleme be-

rechnet werden kann. Welchem Teilproblem entspricht die Losung der eigentlichen Aufgabe?

Losung: Fiir i = 1 definieren wir den Basisfall.

T[LINJ] :: {1 falls o1 = boder b=10

0 sonst

Dann kénnen wir fiir ein ¢ > 1 die Fallunterscheidung verwenden, ob Objekt o; in der Lésung ver-
wendet werden soll, oder nicht. Jeweils muss dann die restliche Losung aus den Objekten o1, ...,0;_1
gebildet werden.

T(i,B] := max {Ti = 1,b— o), Tli — 1,B]}

Die gesuchte Antwort entspricht dem Teilproblem T'[n, b].

Hinweis: Fiir bessere Lesbarkeit ignorieren wir im rekursiven Schritt den Fall b < o;, fiir den das
linke Teilproblem nicht definiert ist. Wir nehmen hier und im Folgenden stillschweigend an, dass
fiir solche undefinierten Werte Standardméfig 0 als Antwort gegeben wird.

(¢) Nun soll diese rekursive Losung in einem dynamischen Programm berechnet werden. Wie grof§ ist der

Speicherbedarf dieser Losung?

Loésung:

Seite 1

Lehrstuhl fiir Informatik I
04.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Algorithmus 1: SubsetSum(int[| 4, b)

1 Sei T eine Tabelle der Grofie n x (b+ 1)
2 for b =0 to b do

3 if b= 0 or b= A[l] then

4 | T[Lb =1

5 else

6 | T8 =0

7 for i =2 to n do
8 for b=0to b do

° L T[i, b] = max {T[i —1,b— Al T — 1,6]}

10 return 7T'[n,b]

(d) Ist es moglich, einen von n unabhingigen Speicherbedarf zu erreichen? Wenn ja, wie ldsst sich das
erreichen?

Losung: Wir kénnen beobachten, dass immer nur auf die vorhergehende Spalte in der Tabelle
zugegriffen wird. Daher kénnen wir statt der n x (b+ 1) Tabelle auch mit einer 2 x (b+ 1) Tabelle
auskommen, wodurch der Speicherbedarf in O(b) liegt.

Aufgabe 2: Knapsack

Gegeben sei eine Menge von n Objekten. Jedes Objekt o; besitzt einen ganzzahligen Wert v; und ein ganz-
zahliges Gewicht w; € N. Auflerdem ist ein Maximalgewicht W € N gegeben. Gesucht ist eine Teilmenge
von Objekten U, sodass >, r; wi < W, wobei) ;v; maximiert wird. Lésen Sie dieses Problem mittels
dynamischer Programmierung! Thr Programm sollte eine Laufzeit von O(n - W) haben. Es reicht, wenn Sie

den Wert) ., v; einer optimalen Lésung U bestimmen.

Losung: Wir fiillen eine Tabelle D, wobei der Eintrag D(i,j) dem groBtmoglichen Wert der ersten
i Objekte enthélt unter der Beriicksichtigung des maximalen Gewichts j. Den Wert einer optimalen
Losung ist dann in D(n, W) gespeichert.

Basisfall: Fir 1 <j <W

. V1 1f (o S]
D(1.7) = {O else

Rekursionsfall:

‘D(Z - 17.7)
Wir haben n Zeilen und W spalten. Pro Eintrag benotigen wir O(1) Zeit. Somit benotigt ein dynamisches

Programm O(n-W) Zeit. Die tatséchlichen Objekte, die zum Wert der optimalen Losung gehéren, lassen
sich mittels Backtracking bestimmen.

Seite 2

Lehrstuhl fiir Informatik I
04.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Aufgabe 3: Langste Wege in azyklischen Graphen

Wir haben bereits gesehen, dass das Problem Léngster Wege in allgemeinen Graphen nicht die Eigenschaft
optimaler Teilstrukturen aufweist. Wir beschréinken uns daher nun auf azyklische gerichtete Graphen. Es
wird ein solcher Graph G = (V, E) mit E C V2 sowie eine Kantengewichtsfunktion w : E — RT gegeben.
Auflerdem werden Start- und Endknoten s,t € V iibergeben. Gesucht ist ein ldngster Weg von s nach t.

(a) Wir wollen zuniichst zeigen, dass dieses eingeschriinkte Problem die optimale-Teilstruktur-Eigenschaft
hat. Dazu wollen wir nun beweisen, dass der langste s-t-Weg fiir einen Knoten v € V' aus einem léngsten
s-v-Weg sowie einem ldngsten v-t-Weg besteht.

Hinweis: Es konnte hilfreich sein, sich nochmal zu {iberlegen, wieso das Problem kiirzester Wege aus
optimalen Teilstrukturen besteht.

Loésung: Angenommen wir haben einen ldngsten s-t-Weg und einen Knoten v auf diesem Weg
gegeben. Wir teilen diesen Weg nun in einen s-v-Weg und einen v-t-Weg.

Wir nehmen auflerdem zunéchst an, dass der so gefundene s-v-Weg nicht der ldngste ist. Auf diesem
Weg liegt kein Knoten, der auf dem v-t-Weg liegt, da wir sonst einen Kreis gefunden hétten. Der
Graph ist jedoch azyklisch. Also kénnen wir den lingeren s-v-Weg mit dem v-t-Weg kombinieren,
um einen noch ldngeren s-t-Weg zu erhalten. Das widerspricht der Annahme.

Analog konnen wir auch argumentieren, dass der v-t-Weg bereits der lingste ist.

(b) Was sind die Teilprobleme, die in einem dynamischen Programm gelost werden miissten? Wie kénnen
diese Teilprobleme rekursiv gelost werden?

Losung: Es ist ausreichend, fiir jeden Knoten v € V' einen ldngsten v-t-Pfad zu berechnen. Da der
Graph azyklisch ist, ist der Lingste t-t-Pfad dabei einfach der leere Pfad. Fiir v € V' \ {¢} kénnen
wir dann den Nachbarn v mit lingstem u-t-Pfad wihlen und die Kante (v, u) an den Anfang dieses
Pfades einfiigen.

(¢) In welcher Reihenfolge miissen die Teilprobleme gelést werden?

Loésung: Wir kénnen den Graphen vor der Berechnung topologisch sortieren und in dieser Reihen-
folge abarbeiten. Dadurch ist garantiert, dass bereits fiir alle Nachbarn des aktuell betrachteten
Knotens ein ldngster Weg zu ¢ berechnet ist.

Seite 3

Lehrstuhl fiir Informatik I
04.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Aufgabe 4: Independent Sets in Biaumen

Eine unabhingige Menge in einem Graphen ist eine Teilmenge U C V, sodass keine Knoten in U miteinander
benachbart sind. Im Independent Set Problem ist nach der groften unabhéingigen Menge in einem Graphen
G gesucht. Im Allgemeinen ist dieses Problem NP-schwer, doch in Bdumen ldsst sich dieses Problem in
Polynomialzeit 16sen. Sei also ein Baum 7' = (V, E') gegeben. Schreiben Sie ein dynamisches Programm, das
in O(V + E) Zeit die Kardinalitét eines grofiten Independent Sets in T findet.

Hinweis 1: Ein Baum als Graph besitzt keine eindeutige Wurzel. Sie kénnen annehmen, dass der Baum T
bereits an Wurzel r gewurzelt ist.

Hinweis 2: Nutzen Sie die rekursive Struktur eines Baums aus! Nutzen Sie zwei Tabelleneintrige pro Knoten,
einmal fiir den Fall, dass Sie den Knoten nehmen und einmal fiir den Fall, dass Sie ihn nicht nehmen.

Losung: Sei T' = (V, E) ein Baum gewurzelt mit Wurzel r € V. Sei A(v) die Kardinalitét eines grofiten
Independent Sets im Teilbaum T, mit Wurzel v und sei B(v) die Kardinalitét eines grofiten Independent
Sets im Teilbaum T, mit Wurzel v, wobei v nicht im Independent Set enthalten sein darf. Aus der
Definition folgt, dass A(r) das gewiinschte Ergebnis liefert.

Basisfall: Der Basisfall tritt fiir alle Blatter in 7" ein. Nachdem der Teilbaum T, eines Blatts v nur aus
einem Knoten besteht gilt A(v) =1 und B(v) = 0.

Rekursionsfall: Durch eine Postorder Berechnung kénnen wir annehmen, dass A(u) und B(u) fir
alle Kinder von v bereits berechnet worden sind. Fiir den Fall, dass v nicht im Independent Set
enthalten sein darf, miissen wir uns um nichts kiimmern, da die Teilbdume der Kinder von v nicht
miteinander verbunden sein kénnen. Somit ist

Bv)= Y Alu)

w child of v

Falls wir v mit ins Independent Set wéhlen, darf kein Kind von v im Independent Set enthalten
sein, denn andernfalls wiren das Kind v und v benachbart. Falls wir v nicht wihlen, kénnen wir
einfach B(v) ausrechnen und diesen Wert auch fiir A(v) benutzen:

A(v) :maX{B(v),l—i— Z B(u)}
wu child of v

Fiir jeden Knoten v summieren wir iiber Werte der Kinder. Somit haben wir insgesamt einen linearen
Aufwand und erhalten eine Laufzeit von O(V + E).

Aufgabe 5: Der schonste Binarbaum der Welt

Sie sind auf Kiliani und laufen an einem Stand vorbei. Dort féllt Thnen der schonste Bindrbaum in die
Augen, den Sie je gesehen haben. Unverziiglich gehen Sie den kiirzesten Pfad zum Stand und sehen, dass
dieser Bindrbaum der Hauptpreis eines Spieles ist. Das Spiel funktioniert wie folgt:

Innerhalb des Standes sind n Pins nebeneinander aufgestellt. Auf jedem dieser Pins ist eine ganze Zahl (also
auch negative) geschrieben. Sie erhalten einen Ball und miissen die Pins abwerfen, sodass Sie ihren Score
maximieren. Dieser Score berechnet sich folgendermafien:

e Sie treffen genau einen Pin: Sie erhalten den Wert des Pins aufaddiert zu ihrem bisherigen Score
e Sie treffen zwei benachbarte Pins: Sie erhalten das Produkt beider Pins zu ihrem bisherigen Score
aufaddiert

Sie konnen nicht mehr als zwei benachbarte Pins treffen und Sie miissen nicht alle Pins abwerfen. Sobald Sie
einen Pin abgeworfen haben, fillt dieser um und kann nicht erneut abgeworfen werden. Wie es der Zufall
will konnen Sie ausgezeichnet werfen und treffen immer wohin Sie zielen.

Seite 4

Lehrstuhl fiir Informatik I
04.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Entwickeln Sie ein dynamisches Programm, das eine Sequenz vy,...,v, von Zahlen (die Werte der Pins)
entgegen nimmt und den maximalen Score errechnet.

(a) Definieren Sie das Teilproblem B(-).

Losung: B(i)= maximal moglicher Score fiir Pins 1,...,4

(b) Wie kann das Teilproblem, das Sie in Teilaufgabe (a) definiert haben berechnet werden? Geben Sie
hierzu eine rekursive Gleichung an.

Loésung: Wir haben drei Moglichkeiten fiir Pin i: Wir werfen Pin ¢ nicht ab, wir werfen lediglich
Pin i ab oder wir werfen Pin ¢ mit seinem Nachbarn ab. Nachdem Pin ¢ in unserem Teilproblem
der Pin am rechten Rand ist, hat Pin ¢ nur einen linken Nachbarn. Nachdem B(i) den maximalen
Score angibt miissen wir von diesen drei Moglichkeiten das Maximum wihlen. Demnach kénnen
wir B(i) folgendermaflen rekursiv definieren:

max{B(i—1),B(i —1)4+v;, B(i —2) + v;—1 -v;} falls2<i<n
B(i) = {max{B(— 1), B(i — 1) + v;} fallsi =1
0 falls i =0

Wir definieren den Basisfall fiir eine leere Sequenz mit einem maximal moglichen Score von 0.

(c) Schreiben Sie einen Pseudocode, der die rekursive Gleichung in Teilaufgabe (b) implementiert! Ordnen
Sie die asymptotische Laufzeit des Algorithmus ein und begriinden Sie ihre Antwort! (eine genaue
Berechnung ist nicht gefordert)

Losung: Im Prinzip miissen wir hier nur die Rekursionsgleichung in Pseudocode iibertragen:

Algorithmus 2: getMaxBowlingScore(int]] v, int 7)
1 if ¢ == 0 then
2 L return 0
3 if 1 > 2 then
// Hier muss sichergestellt werden, dass wir kein Index Out Of Bounds
bekommen
5 return max{getMaxBowlingScore (v, i — 1), getMaxBowlingScore (v, i — 1) + v[i],
getMaxBowlingScore (v, i —2) + v[i — 1]- v[i]}
else
L return max{getMaxBowlingScore (v, i — 1), getMaxBowlingScore (v, i — 1) + v[i]}

N o

Laufzeit: Die Laufzeit ist mindestens exponentiell, da die Rekursionsgleichung einen Teil T'(n) =
2T (n—1)+T(n—2)+0(1) hat. Diese Gleichung hat eine groe Ahnlichkeit zu den Fibonaccizahlen
und diese wachsen bereits exponentiell. Genauer kann man die Rekursionsgleichung aber auch mit
T(n) < 3T(n — 1) abschétzen, was einer Laufzeit von O(3") entspricht.

(d) Nutzen Sie nun memoization, um redundante Berechnungen in IThrem rekursiven Algorithmus zu ver-
meiden! Welche Laufzeit hat der memoized Algorithmus nun?

Loésung: Wir lassen den Wrapper um die Funktion weg (Siehe Vorlesung).

Seite 5

Lehrstuhl fiir Informatik I
04.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Algorithmus 3: getMaxBowlingScore(int[] v, int 4, int[] memo)

[u

// memo ist ein Array der Lidnge n+ 1 und ist zu Beginn mit oo gefiillt

if memo # oo then

3 L return memoli]

if i == 0 then

5 | return0

if i > 2 then
memo[i] = max{getMaxBowlingScore (v, i — 1), getMaxBowlingScore (v, i — 1) + v[i],
getMaxBowlingScore (v, i — 2) + v[i — 1]- v[i]}

else

| memoli] = max{getMaxBowlingScore (v, i — 1), getMaxBowlingScore (v, i — 1) + v[i]}

N

I

N o

© 0w

10 return memoli]

Laufzeit: Durch die memo Tabelle sparen wir uns redundante Berechnungen = Laufzeit ist Anzahl
Teilprobleme - Die Zeit die wir bendtigen, ein Teilproblem zu lsen: O(n) - ©(1) = ©(n)

(e) Implementieren Sie den Algorithmus nun bottom-up!

Losung: Beim bottom-up Ansatz fiillen wir nun memo iterativ:

Algorithmus 4: getMaxBowlingScore(int]] v, int 7)

1 int[] B = new int[n + 1]

2 B[0]=0

3 B[1] = max{B[0], B[0] + v[1]}

4 fori=2tondo

5 | Bli] = max{Bl[i — 1], B[i — 1] + vl[i], B[i — 2] + v[i — 1]- v[i]}
6 return B[n]

Aufgabe 6: Perfekte Bindrbaume

Angenommen wir haben n Elemente und wissen, mit welcher Wahrscheinlichkeit diese angefragt werden.
Wir wollen nun einen binidren Suchbaum finden, der die erwartete Anfragezeit minimiert. Das heifit, gegeben
eine Wahrscheinlichkeitsverteilung der n Elemente pq, po, ..., p, mit der die Elemente angefragt werden. Wir
wollen die Suchzeit 2221 p; - l; minimieren, wobei [; das Level von Element ¢ ist. Im Folgenden wollen wir
ein dynamisches Programm entwickeln, das dieses Problem 16st.

(a) Wie verdndert sich die erwartete Suchzeit eines Teilbaums, wenn dieser an einen weiteren Knoten
gehéingt wird?

Lo6sung: Sei T;; ein Teilbaum, der die Elemente v;,...,v; enthilt, wobei dieser eine erwartete

Suchzeit von > 7 _. p - Iy besitzt. Wenn nun dieser Teilbaum an einen weiteren Knoten gehéngt
wird, erhoht sich das Level aller Knoten im Teilbaum T;; um 1. Somit gilt die erwartete Suchzeit
nun:

J

J J
S ookl +1) =) pr-le+ Y i
k=i k=i

k=i

(b) Angenommen Sie haben eine Methode, um die Wurzel eines optimalen Teilbaums zu berechnen. Gegeben
sei ein Teilbaum mit folgender Sequenz von Elementen wv;...,v,,...,v;, wobei v, die Wurzel eines

Seite 6

Lehrstuhl fiir Informatik I
04.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

optimalen Teilbaums ist. Wie konnen Sie den Rest des Teilbaums berechnen?

Losung: Seien die Elemente in aufsteigender Reihenfolge sortiert. Wenn wir nun die Wurzel v,
eines optimalen Teilbaums kennen, so konnen wir die Sequenz an der Wurzel spalten, sodass wir
zwei kleinere Teilprobleme erhalten. Das heif3t, wir kénnen rekursiv den linken Teilbaum von v,
mit den Elementen v;,...,v,_1 berechnen und wir kénnen rekursiv den rechten Teilbaum von v,
mit den Elementen v,11,...,v; berechnen und deren optimalen Wert mittels der Gleichung aus
Teilaufgabe (a) anpassen.

(c) Sei DJi, j] der Wert einer optimalen Losung mit den Elementen v;,...,v;. Stellen Sie die Rekursions-
gleichung fiir DJi, j] auf!

Losung: Aus der vorherigen Teilaufgabe geht bereits hervor, welche Form die Rekursionsgleichung
haben sollte. Allerdings kennen wir die optimale Wurzel v, in einer Sequenz v;,...,v; bei der
Berechnung noch nicht. Deshalb probieren wir alle moglichen Wurzeln aus und nehmen davon die
jenige Wurzel, die die erwartete Suchzeit minimiert.

r—1 J
Dfi,j] = min {Dfi,r — 1+ prtp, + Dir+ L1+ Y pi}
= k=i k=r+1
linker Teilbaum mit (a) rechter Teilbaum mit (a)

J
= min {Dfi,r = 1]+ D[r +1,7] + ;pk}

(d) Fiir welche Sequenz von Elementen kennen wir bereits die optimale erwartete Suchzeit (Basisfall)?

Lésung: Wenn wir eine leere Sequenz von Elementen haben, wissen wir sofort, dass DJ[i,i — 1] = 0.

(e) Welche Laufzeit hat Thr dynamisches Programm?

Loésung: Wir miissen nicht jedesmal Zi:l pr neu berechnen. Wir kénnen die Summe vorberechnen,
indem wir fiir jedes 1 < i < n die Summe >, _, pi berechnen und den Wert in ein Feld an Stelle S[i]

speichern. Wenn wir nun Zi:i pr berechnen wollen, kénnen wir einfach S[j] — S[i — 1] berechnen.
Damit kénnen wir einen rekursiven Aufruf in O(n) berechnen. Unsere Tabelle hat O(n?) Eintrige
und somit haben wir eine Gesamtlaufzeit von O(n?).

Aufgabe 7: Kiirzeste Wege mit negativen Kanten

Gestern haben wir festgestellt, dass die Ergebnisse von Dijkstra auf Graphen mit negativen Kanten unter
Umstéanden nicht die kiirzesten Wege reprisentieren. In dieser Aufgabe wollen wir einen Algorithmus finden,
der auf einem Graphen G = (V, E') mit der Gewichtsfunktion w: V' x V' — R einen kiirzesten Weg zwischen
zwei Knoten s und ¢ findet. Wir nehmen an, dass der Graph G keine von s erreichbaren, negativen Kreise
enthélt.

(a) Zeigen Sie, dass das Problem eine optimale Substruktur aufweist. Sie miissen also zeigen, dass der
kiirzeste Weg zwischen s und ¢ aus kleineren Teillosungen desselben Problems berechenbar ist. In welchen
Féllen ist es besonders einfach, den kiirzesten Weg zwischen s und ¢ zu berechnen?

Losung: Auf dem Weg von s nach ¢ {iberqueren OdBA wir einen Knoten w. Also setzt sich der
gesuchte kiirzeste Weg von s nach ¢ aus zwei Wegen zusammen, einem Weg von s nach w und

Seite 7

Lehrstuhl fiir Informatik I

04.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

einem Weg von w nach t. Die beiden Teilwege sind jeweils kiirzeste Wege und diese sind jeweils
mindestens eine Kante kiirzer.

Damit erhalten wir ein kleineres Problem derselben Art, ndmlich den kiirzesten Weg von s zu einem
Knoten w zu finden.

Besonders einfach ist das Problem zu 16sen, falls s = t, da dann (s, t) = 0.

(b) Wie viele Kanten kann jeder kiirzeste Weg im Graphen G = (V, E) maximal haben? Angenommen, der

Distanzwert v.d ist fiir alle v € V mit oo intialisiert und s.d = 0. Was passiert auf jeden Fall, wenn Sie
die Relax-Methode (siehe Dijkstra) nun auf jede Kante in beliebiger Reihenfolge aufrufen? Was passiert,
wenn Sie dies erneut tun?

Losung: Der lidngste mogliche kiirzeste Weg traversiert jeden Knoten maximal einmal. Deswegen
ist die hochste mogliche Kantenanzahl [V| — 1. Nachdem Aufruf von Relax wurden die Distanzwerte
der Nachbarn von s auf einen endlichen Wert gesetzt und mindestens einer von ihnen hat auch
die korrekte Entfernung. Beim wiederholten Aufruf von Relax kommen immer mehr Knoten hinzu,
deren Entfernung gesetzt ist und in jeder Iteration wird mindestens eine Entfernung richtig gesetzt.

(¢) Wir betrachten nun eine zweidimensionale Tabelle T'. Jede Spalte steht fiir einen Knoten (in beliebiger

Reihenfolge), und es gibt |V| — 1 Zeilen. Die Zelle T'(4, j) enthilt die Léinge des kiirzesten Weges von
s zum i-ten Knoten, nachdem j Mal die Relax-Methode auf alle Kanten aufgerufen wurde. Stellen Sie
die Tabelle fiir folgenden Graphen auf und fiillen Sie sie zeilenweise aus. Relaxieren Sie die Kanten in
alphabetischer Reihenfolge nach ihrem Startknoten.

Tteration | s.d | ad | b.d | cd | d.d | e.d
10 01]0 00 00

1

2

8 3

4

5
Iteration | s.d | ad | b.d | cd | d.d | e.d
01]0 00 o0 | 00 | 00
L& . 110 10 o0 | 00 | 8
osuneg: 270 |10 |10 |12 |9 |8
310 5 10 | 11 | 9 8
410 5 5 7 9 8

Geben Sie nun den Algorithmus in Pseudocode an. Welche Laufzeit hat er?

Losung: Der Bellman-Ford-Algorithmus 16st das Problem:

Algorithmus 5: BellmanFord(G, s, w)

1 fori=1to|V|—-1do
2 foreach Kante (u,v) € E do
3 L if v.d > u.d + w(u,v) then

4 L v.d =u.d+ w(u,v)

Seite 8

Lehrstuhl fiir Informatik I
04.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Die Korrektheit kann durch die Schleifeninvariante ,,Nach der i. Iteration gilt fiir i + 1 Knoten v,
dass ihre berchnete Distanz v.d mit dem tatséichlich kiirzesten Weg d(s, v) iibereinstimmt.“ gezeigt
werden.

(e) Modifizieren Sie Ihren Algorithmus so, dass er auch die optimale Losung selbst, also den kiirzesten Weg
berechnet. Welche Methode aus der Vorlesung kénnen Sie dafiir verwenden?

Losung: Wir erginzen den Anweisungsblock der if-Abfrage um die Zeile v.p = u, wobei das
Attribut v.p jeweils auf den Elternknoten u auf dem bisher kiirzesten gefundenen Wegs von s nach
v zeigt. Die if-Abfrage entspricht nun genau der Relax-Funktion, die vom Dijkstra-Algorithmus
bekannt ist.

(f) Unter welchen Umsténden kann der Algorithmus vorzeitig abgebrochen werden? Wie kann mithilfe des
Algorithmus ein negativer Zykel detektiert werden?

Losung: Falls sich in einer Iteration keine d-Werte mehr dndern, kann der Algorithmus vorzeitig
abgebrochen werden. Falls alle |V| — 1 Iterationen ausgefithrt wurden und in einer letzten, |V|.
Tteration noch d-Werte verandert werden, dann liegt ein negativer Zykel vor.

Aufgabe 8: Palindrome Subsequenzen

Ein Palindrom ist eine Zeichenkette, die von vorne und von hinten gelesen das gleiche ergibt, zum Beispiel
das Adjektiv ,,soldlos®. Eine Subsequenz ist ein String, der nach Weglassen beliebig vieler Zeichen aus einem
String hervorgeht, beispielsweise das Wort ,Baum* aus ,,Brauchtum®. Wir suchen nun einen effizienten Al-
gorithmus, der eine lingste Subsequenz einer Zeichenkette s = s ... s, findet, die gleichzeitig ein Palindrom
ist. Die lingste palindrome Subsequenz in ,, Amortisierte Laufzeit® ist ,tieteit*.

(a) Erkldren Sie kurz, wie ein Brute-Force-Algorithmus vorgehen wiirde, um das Problem zu 16sen. Was ist
die Laufzeit dieses Algorithmus?

Losung: Der Brute-Force-Ansatz wire, alle Subsequenzen aus s zu berechnen und diese auf ihre
Palindrom-Eigenschaft zu testen. Da es jedoch 27! Subsequenzen gibt, ist dieser Ansatz nicht
effizient. Die Laufzeit wire in O(n - 27+1).

(b) Gegeben sei eine Zeichenkette s = sp...s, und ihre lingste palindrome Subsequenz p = pog...pm.
Beschreiben Sie wie p aus einer kleineren Instanz desselben Problems hervorgeht. Betrachten Sie dazu
einen Teilstring s’ von s, und erkliren Sie, wie p zu s’ steht.

Loésung:
1. Falls sg # pg, dann ist p eine optimale Losung fiir sy, ..., sy.
2. Falls s,, # pm, dann ist p eine optimale Losung fiir sg...s,_1.
3. Falls sy = s,,, dann ist so = p,,, und p;y ...p,_1 ist eine optimale Lésung in 8" = s1...5,_1.

Beweis. Es trifft immer genau einer der obigen Fille zu. Wir begriinden nun, dass die obigen
Implikationen korrekt sind:

1. Analog zu ii.

2. Angenommen, p ist keine optimale Losung fiir sq...s,_1. Dann gibt es eine andere optimale
Losung mit der Lange grofler als m + 1 fiir sq...s,_1. Das widerspricht aber der Annahme,
dass p optimal fiir sg...S,_1 ist.

Seite 9

04.04.2025 Aufgabensammlung ADS-Repetitorium

Lehrstuhl fiir Informatik I
Universitdt Wiirzburg

optimal ist.

3. Falls sg # pm, dann kénnten wir p verbessern, indem wir die offenbar noch nicht genutzten
sp und s, vorne und hinten an p anhédngen. Das widerspricht aber der Annahme, das p schon
optimal ist. Also muss sy = p,, sein. Nun, nehmen wir an, pi...p,_1 ist keine optimale
Losung in s1...s,_1. Dann muss es eine andere optimale Losung fiir s;...s,_1 geben, die
langer als m —1 ist. Da sg = s, konnten wir diese Losung nutzen, um eine léngste palindrome
Subsequenz der Lénge m + 2 fiir s zu finden. Dies widerspricht ebenfalls der Annahme, das p

Die obigen Implikationen zeigen, dass wir das Problem der ldngsten palindromen Subsequenz immer
auf kleine Substrings iibertragen koénnen. Die Teilprobleme iiberlappen sich, da wir zum Beispiel
den inneren Teil von s in allen obigen Implikationen untersuchen miissen.

O

(c) Wir definieren {(i, j) als die Lénge der lingsten palindromen Subsequenz im Substring s; ...s;. Was ist
I(i,4) und 1(4,3+1)? Dies sind die Basisfille und sind einfach anzugeben. Uberlegen Sie sich nun, wie Sie
fiir allgemeine 4, j mit ¢ < j den Wert I(l, j) berechnen kénnen. Tipp: Machen Sie eine Fallunterscheidung
nach s; = s; bzw. s; # s; und greifen Sie auf [(¢, j') zu, wobei ¢ < ¢ oder j' < j.

die Indizes angepasst werden.

1

1(27]): ’

Losung: Lege eine Matrix der Gréfie n + 1 x n+ 1 an und fiille jede Diagonale, angefangen von
der Hauptdiagonale, sukzessive nach oben rechts. Andere Richtungen sind denkbar, dann miissen

ma‘X(Z(Z + 17])71(17] - 1))
IG+1,j—1)+2

falls i = j
fallsi+1=jund s; = s;
falls s; # s

falls s; = s;

(d) Legen Sie eine Matrix, die I(4, j) fiir alle 0 < i < j < n repriisentiert, fiir die beiden Sequenzen ,anna“
und ,,graphalgo® an und fiillen Sie sie aus. Wie lang sind die lédngsten palindromen Subsquenzen in den
Wortern? Wo steht der Wert der Losung in der Matrix?

Losung: Da ,anna“ selbst ein Palindrom ist, ist die ldngste palindrome Subsequenz vier Zeichen
lang. Die ldngste palindrome Subsequenz von , graphalgo® ist 5.

G|IR|IA|P|H|A|L|G|O
G|1 |1 |1 |11 3]3]|5 /|5
ANNAR 1111|3333
A 1711 3|33 |3
A1l |1]2 |4
N 122P 1 (1|1 (1)1 1
N 11H 11171]1 1
A 1A 1 {111
L 111 |1
G 1|1
O 1

ganz rechts.

Der Wert der optimalen Losung steht bei einer komplett ausgefiillten Matrix in der ersten Zeile

(e) Formulieren Sie jetzt einen Algorithmus, der eine solche Matrix automatisch ausfiillt und den Wert der

Losung zuriickgibt.

Seite 10

04.04.2025

Lehrstuhl fiir Informatik I
Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Loésung: Die obige Matrix-Rekurrenz wird direkt umgesetzt. Die erste Fallunterscheidung entfzllt
hierbei durch die Initialisierung der Matrix in Zeile 3.

Algorithmus 6: findLongestPalindromeSubsequenceLength(String s)

1
2
3
4
5
6
7
8

©

10

11
12

13

n = s.length

values

Fiille Hauptdiagonale von values mit lern
for row =1 ton -1 do

currRow =1

for col =row + 1 to n do

14 return values[1][n]

= new int [s.length][s.length]

if ScurrRow == Scol A currRow + 1 # col then

L values[currRow][col] = values[currRow—+1][col-1] + 2

else if scurrentRow == Scol then

| values[currRow][col] = 2
else

| values[currRow][col] = max (values[currRow][col-1], values[currRow+1][col])

currRow = currRow + 1

(f) Jetzt mochten Sie nicht nur den Wert ermitteln, sondern auch die lingste palindrome Subsequenz selbst.
Beschreiben Sie, wie Sie mit einer zweiten Matrix die ldngste palindrome Subsequenz ermitteln kénnen.

Losung: Wir legen eine Matrix an, die genau so grofl ist wie die erste und fiillen sie parallel
mit der Hauptmatrix mit Pfeilen aus, die auf das Feld zeigen, auf dem der Wert des aktuellen
Feldes basiert. Dann verfolgen wir den Weg vom obersten rechten Feld zuriick, bis wir auf ein
Feld treffen, das den Wert 1 oder zwei 2 hat. Diese beiden Felder haben laut Matrix-Rekkurenz
keine Vorgénger-Felder. Spalten-Indizes, die von Feldern abhéngen, die diagonal von einem anderen
Feld abhéngen, beschreiben Zeichen, die in der langsten palindromen Subsequenz vorkommen. Das
heifit, wir speichern diese Felder. Sobald wir das Ende des Weges erreicht haben, fiigen wir noch
das letzte Zeichen hinzu. Nun haben wir die Hilfte des gesuchten Palindroms und miissen dies nur
noch spiegeln. Dabei miissen wir auf gerade und ungerade Linge aufpassen (siehe Pseudocode).

(g) Zeichnen Sie auch die ergénzte Matrix fiir die Worter ,anna“ und ,graphalgo“. Was ist die jeweils
lingste palindrome Subsequenz?

Losung: Fiir ,anna“ ist die Losung ,,anna“, fiir ,,graphalgo® ist die Losung ,,gahag*.

G| R
© | +

A

O]

OIT|T|*

oft|t|t]™

0|o|Z

oft|T|t|T|=

ot IN|=

O} 1O 17

> Z| 2| >

CICIENANES

O T T T T T|E

ottt T[T e
ot |t t]T]| |1

O Q| | | m T = = Q

(h) Andern Sie Thren Algorithmus so, dass er die lingste palindrome Subsequenz zuriickgibt.

Seite 11

Lehrstuhl fiir Informatik I

04.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg
Loésung:
Algorithmus 7: findLongestPalindromeSubsequence(String s)
1 n = s.length
2 values = new int [s.length][s.length]
3 directions = new int [s.length][s.length]
4 Fiille Hauptdiagonale von values mit lern
5 for row = 1 ton - 1 do
6 currRow =1
7 for col =row + 1 to n do
8 if ScurrRow == Scol A currRow + 1 # col then
9 values[currRow][col] = values[currRow+1][col—1] + 2
10 directions[currRow][col] =
11 else if scurrentRow == Scol then
12 values|currRowl][col] = 2
13 directions[currRowl][col] = +
14 else
15 if values[currRow][col-1] > values[currRow+1][col] then
16 values[currRow][col] = values[currRow][col—1]
17 L directions[currRow][col] = +
18 else
19 values[currRow][col] = values[currRow+1][col]
20 L directions[currRow][col] = |
21 currRow = currRow + 1
22 row = 1
23 length = values[1][n]
24 col = length
25 result =,
26 while values[row][col] # I do
27 if directions[row][col] = + then col = col — 1
28 if directions[row][col] = | then row = row + 1
29 if directions[row][col] = /" then
30 row = row + 1
31 col = col — 1
32 result = result + Sco1
33 if length mod2 == 0 then result = result + sco1 + Scol + reverse(result)
34 else result = result + s¢, + reverse(result)
35 return result

(i) Uberlegen Sie sich, wie Sie Thren Algorithmus #ndern kénnen, sodass er den lingsten palindromen
Substring findet. Im Wort , stirnlappenbasilisk“ ist der ldngste palindrome Substring ,,silis“, widhrend
die bisher betrachtete palindrome Subsequenz ,silappalis“ ist. Formulieren Sie die Matrix-Rekurrenzen
aus Teilaufgabe ¢) um und beschreiben Sie in Worten, wo sich in der Matrix jetzt der Wert der Losung

befindet und wie Sie die Losung rekonstruieren kénnen.

Losung: Der Wert der Zelle [(i,j) repriisentiert nun nicht mehr die optimale Losung fiir den
Substring s; . .. s;, sondern den Wert ein 1, falls s; . . . s; kein Palindrom ist, andernfalls die Lange des
Palindroms. Dementsprechend miissen wir lediglich verhindern, dass Werte nach oben durchgereicht

Seite 12

Lehrstuhl fiir Informatik I
04.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

werden. Wir dndern also den dritten Fall entsprechend:

1 falls i = 3
falls i +1=j und s; = s;
falls s; # s
l(i+1,j—-1)+2 fallss; =s;

Dann suchen wir nach dem héchsten Feld in der Matrix, welches dann auch gleich den Wert der
optimalen Losung entspricht. Nun gehen wir wieder diagonal nach links unten, bis wir auf ein leeres
Feld treffen. Die Spalten-Indizes dieses Wegs sind die Buchstaben des Palindromes, die dann noch
gespiegelt angehéngt werden miissen.

(j) Falls Sie noch Zeit haben, geben Sie einen Brute-Force-Algorithmus an, der eine lingste palindrome
Subsequenz findet.

Losung: Die Idee besteht darin, einen Branching-Algorithmus zu konsturieren.

Algorithmus 8: bruteForce(sg ... 8Sn, Po...Dm =€)

1 if sg...s, = ¢ then
2 | return True falls po ... pm Palindrom, False sonst

3 return bruteForce(sy ... Sp, Po ... PmSo) V bruteForce(sy ... Sn, Po-..Dm)

Seite 13

