
Aufgabensammlung ADS-Repetitorium WS 24/25
Probabilistische Analyse – Amortisierte Analyse – Datenstrukturen Augmentieren

Aufgabe 1: Indikatorzufallsvariablen und Maximum
Sei A ein Array paarweise unterschiedlicher ganzzahliger Zahlen der Länge n. Algorithmus 1 ermittelt die
größte Zahl in A.

Algorithmus 1:

1 m = A[1]
2 for i = 2 to n do
3 if A[i] > m then
4 m = A[i]

5 return m

(a) Wie häufig wird im worst-case Zeile 4 ausgeführt?

Lösung: Falls A aufsteigend sortiert ist, wird Zeile 4 in jeder Iteration ausgeführt. Zeile 4 wird also
n− 1 mal ausgeführt.

(b) Definieren Sie eine Zufallsvariable X, die die Anzahl der Aktualisierungen von m angibt und definieren
Sie zusätzlich Indikatorzufallsvariablen, mit der X gezählt werden kann.

Lösung: Sei X ∈ {1, . . . , n} die Zufallsvariable, die angibt, wie häufig m aktualisiert wird und
seien Xi Indikatorzufallsvariablen, die folgendermaßen definiert sind:

Xi =

{
1 m wird in der i-ten Iteration aktualisiert

0 sonst.

Weil m immer in Zeile 1 aktualisiert wird, ist X = 1 +X2 +X3 + · · ·+Xn

(c) Berechnen Sie den Erwartungswert von X!

Lösung: A enthält paarweise unterschiedliche Zahlen, somit ist die Wahrscheinlichkeit, dass A[i]
im Teilfeld A[1..i] das Maximum ist Pr[Xi = 1] = 1/i. Somit ist der Erwartungswert von X:

E[X] = E[1 +X2 +X3 + · · ·+Xn]

= 1 +

n∑
i=2

E[Xi] = 1 +

n∑
i=2

Pr[Xi = 1] = 1 +

n∑
i=2

1

i
= Hn ∈ O(log n)

Aufgabe 2: Algorithmen und Zufall
Bestimmen Sie den Erwartungswert der Ausgabe von Algorithmus 2.

Seite 1

03.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Algorithmus 2:

1 s = 0
2 for i = 1 to n do
3 /* Random(a, b) gibt zufällig und gleichverteilt einen Wert zwischen a und b aus.

*/

4 if Random(1, 2 · i) ≤ i then
5 s = s+ i

6 return s

Lösung: SeiX die Zufallsvariable, die den Rückgabewert repräsentiert. SeiXi eine Indikatorzufallsvaria-
ble, die angibt, ob in Iteration i die Zeile 5 ausgeführt (Xi = 1) wird. Dann können wirX folgendermaßen
bestimmen:

E[X] = E

[
n∑

i=1

Xi · i

]
=

n∑
i=1

E[Xi] · i

Nachdem Xi eine Indikatorzufallsvariable ist, ist E[Xi] = Pr[Xi = 1] = i/(2i) = 1/2. E[X] ist also

E[X] =

n∑
i=1

E[Xi] · i =
n∑

i=1

1

2
· i = 1

2

n∑
i=1

i =
n(n+ 1)

4
.

Aufgabe 3: Paranoia
Gegeben sei folgender Algorithmus 3. Dabei ist das Set A eine endliche Menge von ganzzahligen Elementen
der Länge n. Sie dürfen davon ausgehen, dass Einfüge-, Lösch- und Suchoperationen in O(1) möglich sind.

Algorithmus 3:

1 ParanoidMaximum(int[] A, ℓ = 1)
2 if A.length = ℓ then
3 return A[ℓ]

4 swap(A, ℓ, Random(ℓ, n))
5 a = A[ℓ]
6 b = ParanoidMaximum(A, ℓ+ 1)
7 if b > a then
8 return b
9 else

10 for i = ℓ+ 1 to A.length do
11 if A[i] > a then
12 a = A[i]

13 return a

(a) Was berechnet Algorithmus 3 und ist die for-Schleife in der else Bedingung in den Zeilen 8-11 notwendig?

Lösung: Der Algorithmus berechnet das Maximum von A[ℓ..n]. Nein, die else Bedingung in den
Zeilen 8-11 ist nicht notwendig, denn falls a ≥ b ist, so ist a das Maximum in A[ℓ..n], weil b bereits
das Maximum in A[ℓ+ 1..n] ist.

Seite 2

03.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

(b) Berechnen Sie die worst-case Laufzeit des Algorithmus, indem Sie eine Rekursionsgleichung aufstellen
und diese mittels Substitionsmethode beweisen!
Hinweis: Hier eignet es sich in der Rekursionsgleichung die Anzahl der Vergleiche zu zählen.

Lösung: Der worst-case tritt ein, wenn wir in jedem Rekursionsaufrauf in die else Bedingung in
den Zeilen 8-11 kommen. Wir stellen eine Rekursionsgleichung für die Anzahl der Vergleiche auf,
nachdem diese proportional zu der gesamten Laufzeit des Algorithmus sind:

T (n) =

{
1 n = 1

n+ 1 + T (n− 1) else.

Wir behaupten, dass T ∈ O(n2). Wir beweisen dies mittels Induktion über n.

Induktionsanfang (n = 1): Hier sind wir auch im Basisfall der Rekursionsgleichung und es gilt
1 ≤ c · 12 für jede Konstante c ≥ 1.

Induktionshypothese: Für alle k < n gelte T (k) ≤ c · k2 für eine Konstante c > 0 und n ≥ 1.

Induktionsschritt (n→ n+ 1): Es gilt

T (n) = (n+ 1) + T (n− 1)
I.H.

≤ (n+ 1) + c · (n− 1)2

= n+ 1 + cn2 − 2c · n+ c

= c · n2 + (1− 2c) · n+ 1 + c

≤ c · n2 + (1− 2c) · n+ (1 + c) · n denn n ≥ 1 und c > 0

= c · n2 + (2− c) · n
≤ c · n2 falls c = 2

Somit gilt die Behauptung, dass T (n) ≤ c · n2 für eine Konstante c und damit ist T ∈ O(n2).

Wir nehmen nun im Folgenden an, dassA paarweise verschiedene Zahlen enthält. Weiterhin ist die Anordnung
der Zahlen in A zufällig gleichverteilt.

(c) Definieren Sie eine geeignete Zufallsvariable, die beide Fälle in den Zeilen 6-11 in Abhängigkeit der
Rekursionstiefe i angibt!

Lösung: Sei Xi eine Indikatorzufallsvariable, die in der i-ten Rekursion angibt, ob wir Zeile 7 oder
die Zeilen 8-11 ausführen:

Xi =

{
1, a ≥ b

0 else.

(d) Geben Sie eine Formel für die erwartete Laufzeit mit Hilfe der definierten Zufallsvariable aus Teilaufgabe
(c) an!

Lösung: In jeder Rekursionsstufe wird die Funktion mit einem Element weniger aufgerufen. Nach-
dem Xi ∈ {0, 1} angibt, ob wir Zeile 7 ausführen (Xi = 0) oder Zeilen 8-11 ausführen (Xi = 1),

Seite 3

03.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

können wir die erwartete Laufzeit mit der Linearität des Erwartungswerts ausdrücken:

E[T (n)] = E

[
Θ(1) +

n∑
i=2

(1−Xi) ·Θ(1) +Xi ·Θ(n− i+ 1)

]

= Θ(1) +

n∑
i=2

E[(1−Xi)] ·Θ(1) +E[Xi] ·Θ(n− i+ 1)

= O(n) +
n∑

i=2

E[Xi] ·Θ(n− i+ 1)

Hierbei entspricht Θ(1) dem Basisfall und die Summe dem rekursiven Fall. Nachdem der Fall für
Zeile 7 insgesamt höchstens Linearzeit in Anspruch nimmt, schätzen wir dies mit O(n) ab und
konzentrieren uns auf den aufwändigen Fall.

(e) Mit welcher Wahrscheinlichkeit tritt der Fall in den Zeilen 8-11 auf? Was ist der Erwartungswert Ihrer
Zufallsvariable aus Teilaufgabe (c)?

Lösung: Weil A keine Duplikate enthält, hängt die Wahrscheinlichkeit, dass a das größte Element
ist, einzig von der Länge von A ab. Somit ist Pr[Xi = 1] = 1/(n − i + 1). Nachdem Xi eine
Indikatorzufallsvariable ist, ist E[Xi] = Pr[Xi = 1].

(f) Berechnen Sie nun die erwartete Laufzeit mit Hilfe der Formel in Teilaufgabe (d) und der Wahrschein-
lichkeit aus Teilaufgabe (e).

Lösung: Wir müssen nur noch die Formeln zusammenführen und erhalten:

E[T (n)] = O(n) +
n∑

i=2

E[Xi] ·Θ(n− i+ 1)

= O(n) +
n∑

i=2

Pr[Xi = 1] ·Θ(n− i+ 1)

= O(n) +
n∑

i=2

1

n− i+ 1
·Θ(n− i+ 1)

= O(n) +
n∑

i=2

O(1) = O(n)

Die erwartete Laufzeit ist also O(n).

Aufgabe 4: Dynamic Table
In der Vorlesung sind wir häufig davon ausgegangen, dass unsere elementaren Datenstrukturen, wie eine
Schlange oder ein Stapel, statischen Speicher haben. Das heißt, beim Anlegen der Datenstruktur geben
wir bereits vor, wie viele Elemente die Struktur insgesamt speichern kann. Diese Größe ist nicht immer
zu Beginn bekannt. Im Folgenden untersuchen wir, wie wir den Speicher einer Datenstruktur dynamisch
vergrößern bzw. verkleinern können, sodass wir immer genug Platz haben aber gleichzeitig nicht unnötig viel
Speicher verschwenden. Eine amortisierte Analyse wird zeigen, dass Insertion und Deletion dennoch O(1)
Zeit benötigt.

Sei zunächst T eine Tabelle, die lediglich die Operation Insert unterstützt. Das Attribut T .table soll einen
Pointer auf einen Speicherblock enthalten (ein Array). T .num ist die Anzahl der Elemente, die derzeitig in
T enthalten sind und T .size ist die Größe des Speicherblocks. Zu Beginn gilt T.num = T.size = 0.

Seite 4

03.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

(a) Eine herkömmliche Heuristik beim Expandieren einer Tabelle ist, den vorherigen Speicher zu verdoppeln
wenn die Tabelle voll ist. Mit anderen Worten: Wenn nur Insert Operationen unterstützt werden, sind
immer mindestens T.size/2 Elemente in T enthalten. Schreiben Sie einen Pseudocode der die Operation
Insert implementiert.

Lösung: Pseudocode:

Algorithmus 4: Insert Operation von T , die ein neues Element x einfügt

1 if T.size == 0 then
2 allokiere Speicher für T.table der Länge 1
3 T.size = 1

4 if T.num == T.size then
5 allokiere neuen Speicher A der Länge 2 · T.size
6 Füge alle Elemente von T.table zu A hinzu
7 T.table = A
8 T.size = 2 · T.size
9 füge x zu T.table hinzu

10 T.num = T.num + 1

Dieser Pseudocode ist mehr pseudo als code. Man kann zum Beispiel Zeile 6 als For Loop formulie-
ren. In der Lösung wurde T.table absichtlich abstrakt gehalten. Falls das als herkömmliches Array
implementiert wurde, ist das in Ordnung.

(b) Was ist die worst-case Laufzeit einer einzigen Insert Operation von Teilaufgabe (a)?

Lösung: Sei n die Anzahl der Elemente in T . Im worst-case ist T.table voll und somit T.num ==
T.size, wodurch T.table verdoppelt wird. Dazu müssen alle n Elemente kopiert werden und das
neue Element x hinzugefügt werden. Der Gesamtaufwand beträgt also O(n).

(c) Betrachten Sie nun eine Folge von n Insert Operationen. Zeigen Sie mit der Aggregationsmethode, dass
die Insert Operation amortisiert O(1) Zeit benötigt.
Hinweis: Eine Tabelle verdoppelt sich bei jeder Expansion. Wie häufig kann eine Expansion bei n Insert
Operationen auftreten?

Lösung: Die Tabelle wird nur selten expandiert: die i-te Operation hat nur eine Expansion zur
Folge, falls i− 1 eine Zweierpotenz ist! Definiere also die Kosten der i-ten Operation als

ci =

{
i falls i− 1 eine Zweierpotenz

1 sonst.

Die Gesamtkosten sind also

n∑
i=1

ci ≤ n+

⌊logn⌋∑
j=0

2j < n+ 2n = 3n

Damit haben wir amortisierte Kosten von 3 ∈ O(1) pro Insert Operation.

(d) Zeigen Sie mit Hilfe der Buchhaltermethode, dass die Insert Operation amortisiert O(1) Zeit bean-
sprucht.

Seite 5

03.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Lösung: Die Buchhaltermethode kann gleichzeitig eine Intuition dafür geben, wieso die Insert
Operation in der Aggregationsmethode amortisierte Kosten von 3 erhalten hat: Jedes Element
das hinzugefügt wird, bezahlt für drei Operationen: die eigenen Kosten durch das Hinzufügen,
die eigenen Kosten für das Rüberkopieren von sich selbst in eine erweiterte Tabelle und außerdem
übernimmt das Element die Kosten für die Kopie eines weiteren Elements. Da nach einer Expansion
T.size/2 Elemente in T enthalten sind und eine Expansion erst stattfindet, wenn T.size == T.num,
übernimmt jedes Element, welches nach der Expansion hinzugefügt wurde genau für ein vorheriges
Element die Kosten für die Kopie. Dadurch machen wir nie Schulden.

(e) Zeigen Sie mit Hilfe der Potentialmethode, dass die Insert Operation amortisiert O(1) benötigt.
Hinweis: Entwicklen Sie eine Potentialmethode, die nach einer Expansion 0 ist und sich bis zur nächsten
Expansion (pro Insert Operation) auflädt. Um wie viel muss sich die Potentialfunktion pro Operation
aufladen?

Lösung: Wenn wir die Potentialmethode verwenden, müssen wir uns eine Potentialfunktion Φ
definieren, die uns die freiverfügbare Arbeit angibt. Die verfügbare Arbeit, müssen wir für das Ko-
pieren der Elemente verwenden. Ähnlich wie bei der Buchhaltermethode wollen wir, dass nach einer
Expansion das Potential 0 ist, also wenn T.num = T.size/2. Während Elemente eingefügt werden,
muss sich das Potential erhöhen, sodass das Potential nach weiteren T.size/2 Insert Operationen
alle Kopien zahlen kann. Die Anzahl der Kopien ist dann T.num = T.size. Das heißt für T.size/2
Insert Operationen muss das Potential von 0 auf T.size steigen. Pro Insert Operation sollte sich das
Potential also um

T.size

T.size/2
= 2

erhöhen. Wir können die Potentialfunktion also folgendermaßen definieren:

Φ(T) = 2(T.num− T.size/2)

Die Funktion ist 0 gleich nach einer Expansion, also wenn T.num == T.size/2 und es steigt um zwei
mit jeder Insertion Operation, bis sie T.size groß ist. Nachdem unsere Tabelle immer mindestens
T.num ≥ T.size/2 groß ist, ist unsere Funktion immer ≥ 0 und wir kommen nie in die Mießen.
Die amortisierten Kosten einer Insert Operation falls keine Expansion stattfindet sind dann:

ĉi = ci +∆Φ = 1 + 2 = 3

Sei numi die Anzahl der Elemente nach der i-ten Operation und sei sizei die Größe der Tabelle
nach der i-ten Operation, d.h. es gilt Φ(Di−1) = 2(sizei−1 − sizei−1/2) = sizei−1 = i − 1. Gleich
nach der Expansion ist das Potential 0 aber gleich danach wird das Element x hinzugefügt, weshalb
Φ(Di) = 2 und wir für ∆Φ = 2−(i−1) = 3− i erhalten. Wenn wir die Tabelle expandieren müssen,
haben wir echte Kosten von i (Kopie von i − 1 Elementen + das Einfügen von Element i). Die
amortisierten Kosten sind also

ĉi = ci +∆Φ = i+ (3− i) = 3

Bisher haben wir uns lediglich die Insert Operation angeschaut. Nun betrachten wir auch die Delete Operati-
on, die ein Element von unserer Tabelle löscht. Um nicht unnötig Speicher zu besetzen, wollen wir außerdem
unsere Tabelle verkleinern, wenn T.num einen bestimmten Schwellenwert unterschreitet. Diese Verkleinerung
funktioniert analog zur Expansion. Falls der Schwellenwert unterschritten wird, wird ein kleinerer Speicher
allokiert und die Elemente in diesen Speicher rüberkopiert, damit anschließend der vorherige Speicher frei-
gegeben werden kann.

(f) Ein Kommilitone von Ihnen schlägt vor, dass der Schwellenwert für eine Verkleinerung bei T.num/2

Seite 6

03.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

sein sollte, dessen Unterschreitung in einer Halbierung der Tablle resultiert. Zeigen Sie anhand einer
Beispielfolge, dass diese Strategie nicht zu amortisiert konstanten Laufzeiten für die Insert und Delete
Operation führt.
Hinweis: Sie dürfen davon ausgehen, dass eine Verdopplung der Tabelle stattfindet, wenn die Tabelle
voll ist, wie in den vorherigen Teilaufgaben der Fall war.

Lösung: Sei n eine Zweierpotenz und T eine Tabelle der Größe n/2. Die ersten n/2 Operationen
sind Insert Operationen, sodass am Ende dieser Operationen T.num = T.size = n/2. Anschließend
führen wir Operationen in der Folge Insert, Delete, Delete, Insert, Insert, . . . aus.

Die erste Insertion Operationen hat eine Expansion zur Folge, sodass T.size = n. Die zwei aufein-
anderfolgenden Delete Operationen führen zu einer Verkleinerung der Tabelle. Dies wiederholt sich
bis zum Ende der Operationen. Insgesamt gibt es dann Θ(n) Expansionen bzw. Verkleinerungen,
die jeweils Θ(n) Zeit benötigen, wodurch diese Folge von Operationen Θ(n2) beansprucht, wodurch
amortisierte Kosten von Θ(n) resultieren.

(g) Das Problem der Strategie des Kommilitonen war, dass nach einer Verkleinerung der Tabelle nicht genug
Insertion Operationen stattfinden konnten, um für eine Expansion zu zahlen und auch umgekehrt nicht
genug Delete Operationen stattfinden konnten, um für eine Verkleinerung zu zahlen. Zeigen Sie mit der
Potentialmethode, dass folgende Strategie aufgeht: Wenn T.num < T.size/4, dann halbiere die Größe
der Tabelle.

Lösung: Siehe CLRS, Amortisierte Analyse

Aufgabe 5: Monotoner Stapel
Wir wollen in einem Stapel eine Menge von aufsteigenden Zahlen verwalten. Dabei wurde die Push Operation
folgendermaßen mittels Algorithmus 5 modifiziert:

Algorithmus 5:

1 PushMonotone(Stack S, int x)
2 y = S.Pop()
3 while y > x and S ̸= ∅ do
4 y = S.Pop()

5 S.Push(x)

(a) Was ist die worst-case Laufzeit von PushMonotone?

Lösung: Falls der Stack nur Elemente enthält, die größer sind als x, wird der gesamte Stapel
geleert, bevor x eingefügt wird. Dementsprechend ist die worst-case Laufzeit linear in der Anzahl
der Elemente im Stack.

(b) Zeigen Sie, dass PushMonotone bei einer Sequenz von n Operationen amortisiert konstant ist.

Lösung: In einem Stack kann ein Element nur eingefügt und gelöscht werden. Wenn wir jedem
Element beim Einfügen Kosten von 2 geben, so benutzen wir Kosten von 1, um das Element
einzufügen und Kosten von 1, um dieses Element später wieder zu entfernen. Nachdem ein Element
erst eingefügt werden muss, bevor es entfernt werden kann, kommen wir nicht in die Miesen. Allen
anderen Operationen geben wir konstante Kosten und erhalten folglich ingesamt über eine Sequenz
von n Operationen maximale Kosten von O(n). Demnach ist PushMonotone amortisiert konstant.

Seite 7

03.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Aufgabe 6: Leichte Klausuren
Jede ADS-Klausur wird von den Studierenden nach Ihrer Schwierigkeit bewertet. Die erste Klausur wurde
im Semster 0 geschrieben, die letzte Klausur im Semester n + 1. Jede Klausur hat einen eindeutigen Rang
erhalten, sodass sich Bewertungen von 0 bis n + 1 ergeben. Wir betrachten eine Klausur im Semester i als
leicht, falls für deren Bewertung bi gilt, dass bi < bi−1 und bi < bi+1 ist.

Wir nehmen an, dass jede mögliche Folge der Bewertungen gleich wahrscheinlich ist, also alle Permutationen
von (b0, b1, . . . , bn, bn+1) mit gleicher Wahrscheinlichkeit auftreten können. Als Studierender möchten Sie
berechnen, wie viele leichte Klausuren Sie in n Semestern erwarten können.

(a) Sei K eine Zufallsvariable, die die Anzahl der leichten Klausuren in den Semestern 1 bis n beschreibt.
Angenommen, Sie hätten eine Formel, die die Wahrscheinlichkeit P (K = k) für 0 ≤ k ≤ n berechnet.
Wie könnten Sie dann E[K] für ein festes n ausrechnen?

Lösung: In diesem Fall könnten Sie die allgemeine Definition des Erwartungswerts verwenden:
E[K] =

∑n
k=0 k · P (K = k).

(b) Im Allgemeinen ist es schwierig, eine Formel für P (K = k) zu finden. Die Fragestellung können Sie aber
trotzdem lösen, indem Sie mit Indikatorzufallsvariablen arbeiten. Definieren Sie eine Indikatorzufalls-
variable Ki die einem Semester 0 < i < n + 1 den Wert 0 oder 1 zuweist, je nachdem, ob die Klausur
einfach war oder nicht. Wir können Sie K in Abhängigkeit von Ki für 0 < i < n+ 1 berechnen?

Lösung:

Ki =

{
1 falls bi < bi−1 und bi < bi+1

0 sonst

K =

n∑
i=1

Ki

(c) Geben Sie außerdem eine Formel an, mit der Sie E[K] in Abhängigkeit von E[Ki] für 0 < i < n + 1
berechnen können. Welche Gesetzmäßigkeit des Erwartungswerts machen Sie sich zu Nutze?

Lösung: Um E[K] zu berechnen, bilden wir den Erwartungswert der Summe E[K] = E[
∑n

i=1 Ki].
Dank der Linearität des Erwartungswerts können wir auch erst alle Erwartungswerte berechnen
und dann die Summe bilden E[K] =

∑n
i=1 E[Ki].

(d) Nehmen Sie an, Sie kennen eine Formel, die P (Ki = 1) für ein festes i berechnet. Geben Sie eine
Formel an, mit der Sie E[Ki] berechnen können. Formulieren Sie in Worten, was die Wahrscheinlichkeit
P (Ki = 1) ausdrückt.

Lösung: Auch hier können wir die allgemeine Definition des Erwartungswerts verwenden. Da
Ki nur 0 oder 1 annehmen kann, besteht die Formel nur aus einem Term E[Ki] = 1 · P (Ki =
1) + 0 · P (Ki = 0) = P (Ki = 1), da der Faktor 0 wegfällt. Die gegebene Wahrscheinlichkeit
P (Ki = 1) ist die Wahrscheinlichkeit, dass die Klausur im Semester i eine leichte Klausur war.

(e) Wie groß ist die Wahrscheinlichkeit, dass die Bewertung bi des Semesters i einen bestimmten Wert j
aufweist und diese Klausur in Semester i eine leichte ist?

Lösung: Die gesuchte Wahrscheinlichkeit besteht aus zwei Teilen, die mit einem
”
und“ verknüpft

sind. Wir betrachten beide Teile einzeln und verknüpfen Sie unter Beachtung der Pfadregel mit einer

Seite 8

03.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Multiplikation. Die Wahrscheinlichkeit, dass die Bewertung bi den Wert j aufweist, ist 1/(n + 2),
da es n+ 2 verschiedene Bewertungen gibt.

Es gibt offenbar j Zahlen, die kleiner als j sind, da unsere Zählung bei 0 beginnt. Also bleiben für
die Bewertung bi−1 noch j Möglichkeiten und für die Bewertung bi+1 noch j − 1 Möglichkeiten.
Es bleiben (n − 1)! Möglichkeiten der anderen Werte b0, . . . , bi−2 und bi+2, . . . , bn+1. Da die Be-
wertung bi den festen Wert j hat, gibt es insgesamt noch (n+ 1)! Möglichkeiten, um die restlichen
Bewertungen zu verteilen.

Die gesuchte Wahrscheinlichkeit ist also:

P (bi = j ∧ (bi < bi−1 ∧ bi < bi+1) =
1

n+ 2
· j · (j − 1) · (n− 1)!

(n+ 1)!
=

j(j − 1)

(n+ 2)(n+ 1)n

(f) Wie groß ist die Wahrscheinlichkeit P (Ki = 1) für ein gegebenes i?

Lösung: Die Bewertung bi kann n+ 2 verschiedene Werte j annehmen und für jeden dieser Werte
j kennen wir die Wahrscheinlichkeit, dass bi = j und die Klausur ist eine leichte Klausur. Gemäß
der Baumregel müssen wir die Wahrscheinlichkeiten für alle möglichen Werten von j aufaddieren.
Dies können wir dann vereinfachen:

P (Xi = 1) =

n+1∑
j=0

1

n+ 2
· j · (j − 1) · (n− 1)!

(n+ 1)!
=

(n− 1)!

(n+ 2)(n+ 1)!

n+1∑
j=2

j · (j − 1)

=
1

(n+ 2)(n+ 1)n

n∑
j=1

(j + 1)j =
1

(n+ 2)(n+ 1)n

(
n∑

j=1

j2 +

n∑
j=1

j

)

=
1

(n+ 2)(n+ 1)n

(n(n+ 1)(2n+ 1)

6
+

n(n+ 1)

2

)
=

2n+ 1

6(n+ 2)
+

1

2(n+ 1)

=
2n+ 1 + 3

6(n+ 2)
=

2(n+ 2)

6(n+ 2)
=

1

3

(g) Was ist die erwartete Anzahl von Klausuren in den Semestern 1 bis n, die als leicht empfunden werden?

Lösung: Nun können wir alle Ergebnisse zusammenfassen. Wir wissen, dass E[K] =
∑n

i=1 E[Ki].
Da wir E[Ki] kennen, setzen wir das in die Formel ein und lösen auf:

E[K] =

n∑
i=1

E[Ki] =

n∑
i=1

1

3
=

n

3

Wir können erwarten, dass ein Drittel der Klausuren als leicht empfunden werden.

Aufgabe 7: Wahrscheinlichkeit und Erwartungswert
Auf dem Frühjahrs-Volksfest gibt es ein faires Glücksrad, welches mit den fünf Farben rot, grün, blau, gelb
und glitzer angemalt ist. Der rote und der grüne Sektor nehmen jeweils 25 % der Fläche des Glücksrads ein,
die anderen drei Farben nehmen jeweils ein Sechstel des Glücksrads ein.

(a) Hängt die Wahrscheinlichkeit, dass der Zeiger am Ende einer Drehung auf eine bestimmte Farbe zeigt,
davon ab, ob die Farben zusammenhängen oder das Glücksrad in nach außen gehenden Streifen bemalt
ist?

Seite 9

03.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Lösung: Die Wahrscheinlichkeiten sind unabhängig davon, wie das Glücksrad bemalt ist, solan-
ge der insgesamte Flächenanteil einer Farbe dem insgesamten Anteil am Umfang des Glücksrads
gleicht. Damit wird sichergestellt, dass keine Farbe zur Zierde im Inneren der Glücksrads angebracht
ist und der Zeiger, der ja auf den Umfang zeigt, diese Farbe nicht erreichen kann.

(b) Sie bekommen fünf Freifahrten, falls Sie
”
glitzer“ gedreht haben (Hauptpreis), drei Freifahrten, wenn

Sie
”
gelb“ gedreht haben. Zwei Freifahrten gibt es, wenn der Zeiger

”
blau“ zeigt und eine Freifahrt ist

der Gewinn bei
”
grün“. Die Farbe

”
rot“ geht leer aus. Wie viele Freifahrten gibt der Standbesitzer im

Durchschnitt pro Besucher aus, wenn jeder Besucher einmal drehen darf?

Lösung: Wir definieren zunächst die Zufallsvariable F , die dem Ergebnis ω eines Versuchs die
Anzahl der Freifahrten zuweist:

F (ω) =



0 falls ω =
”
rot“

1 falls ω =
”
grün“

2 falls ω =
”
blau“

3 falls ω =
”
gelb“

5 falls ω =
”
glitzer“

Der Erwartungswert E[F] ist dann die Summe aus den numerischen Werten multipliziert mit den
Wahrscheinlichkeiten, dass diese Werte auftreten:

E(F) = 0, 25 · 0 + 0, 25 · 1 + 0, 16 · 2 + 0, 16 · 3 + 0, 16 · 5 = 1, 916

Pro Drehung werden im Schnitt 1, 916 Freifahrten verschenkt.

(c) Die letzten neun Drehungen hatten alle das Ergebnis
”
glitzer“. Wie hoch ist die Wahrscheinlichkeit,

dass die nächste, zehnte Drehung, erneut das Ergebnis
”
glitzer“ hat?

Lösung: Alle Drehungen sind voneinander unabhängig, daher ändert sich die Wahrscheinlichkeit
nie. Die Antwort ist daher P (

”
glitzer“) = 0, 16.

(d) Dem Standbetreiber ist es wichtig, dass die Kunden in der Warteschlange sehen, dass der Hauptpreis
gewinnbar ist. Es sieht jeweils der nächste Kunde der Warteschlange und der vorherige Kunde, der gerade
sein Gewinn abholt, das Ergebnis der aktuellen Drehung. Wenn an einem Tag n Kunden das Glücksrad
drehen, wie viele sind dann im Durchschnitt Zeuge eines Hauptgewinns eines anderen Kunden?

Lösung: Sei Z die Anzahl der Kunden, die einen Hauptgewinn sehen. Gesucht ist dann E[Z]. Wir
lösen die Aufgabe mit der Indikatorzufallsvariable Zi für 0 ≤ i ≤ n− 1:

Zi =

{
1 falls wi−1 oder wi+1 die Farbe

”
glitzer“ gezeigt hat

0 sonst

Die Wahrscheinlichkeit, dass Zi gleich 1 ist, müssen wir durch eine Fallunterscheidung berechnen,
da der erste und letzte Kunde jeweils nur einmal die Möglichkeit hat, einen Hauptgewinn zu sehen:

P (Zi = 1) = E[Zi] =

{
0, 16

2
+ 2(1− 0, 16) · 0, 16 falls 0 < i < n− 1

0, 16 sonst

Seite 10

03.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Nun gilt

E[Z] = E[

n−1∑
i=0

Zi] =

n−1∑
i=0

E[Zi] = 0, 16 +

n−2∑
i=1

0, 16(2− 0, 16) + 0, 16

= 0, 16 + (n− 2)0, 16(2− 0, 16) + 0, 16

= 0, 3 + (n− 2)0, 16(2− 0, 16)

= 0, 3 + (n− 2)
184

625

= 0, 3 +
184

625
n− 368

625

=
184

625
n− 479

1875
=

552

1875
n ≈ 0, 2944n− 0, 25

Das heißt, etwa ein Drittel der Kunden sind Zeugen eines fremden Hauptgewinns.

Aufgabe 8: Zufall und Zufallsvariablen mit Würfeln
Gegeben seien zwei 6-seitige faire Würfel.

(a) Geben Sie den Ereignisraum Ω und dessen Kardinalität an, wenn beide Würfel nacheinander einmal
geworfen werden.

Lösung: Jeder Würfel zeigt eine Zahl zwischen 1 und 6 an. Somit ist
Ω = {(1, 1), (1, 2), . . . , (6, 5), (6, 6)} = {1, 2, 3, 4, 5, 6}2 und dadurch ist die Kardinalität |Ω| = 62 =
36.

(b) Mit welcher Wahrscheinlichkeit würfelt der erste Würfel eine bestimmte Augenzahl i und der zweite
eine bestimmte Augenzahl j?

Lösung: Die Wahrscheinlichkeit, dass (i, j) ∈ Ω ist Pr[(i, j)] = 1/|Ω| = 1/36.

(c) Mit welcher Wahrscheinlichkeit haben beide Würfel die gleiche Augenzahl?

Lösung: Sei A das Ereignis, das beschreibt, dass beide Würfel die gleiche Augenzahlen haben.
Dann gilt: A = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} und somit ist Pr[(i, j) ∈ A] = |A|/|Ω| =
6/36 = 1/6.

(d) Was ist der Erwartungswert des Maximums der beiden Augenzahlen eines Wurfes mit diesen zwei
Würfeln?

Lösung: SeiX = max{i, j} ∈ {1, 2, 3, 4, 5, 6} die Zufallsvariable, die das Maximum eines Wurfes mit
Augenzahlen i und j angibt. Durch Zählen erhalten wir die Wahrscheinlichkeiten Pr[X = 1] = 1/36,
Pr[X = 2] = 3/36, Pr[X = 3] = 5/36, . . . , Pr[X = 6] = 11/36 und somit erhalten wir den
Erwartungswert von X durch:

E[X] = 1 ·Pr[X = 1] + 2 ·Pr[X = 2] + · · ·+ 6 ·Pr[X = 6] ≈ 4.5

Aufgabe 9: Bank-Schließfächer und Heaps
Bei einer Bank können Sie Schließfächer mieten. In jedes Schließfach passt genau ein Gegenstand. Der Service
ist aber nicht kostenlos. Für das Einlagern des n. Gegenstands stellt die Bank log n Euro in Rechnung.
Ebenfalls werden bei der Rückgabe des n. Gegenstands log n Euro fällig.

Seite 11

03.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

(a) Geben Sie die Gesamtkosten für das Ein- und Auslagern den n. Gegenstands in Θ-Notation an.

Lösung: Die Kosten für das Ein- und Auslagern des n. Gegenstands sind in Θ(log n).

(b) Wie muss die Bank ihre Bezahlpolitik ändern, sodass das Abholen der Gegenstände kostenlos ist, die
Bank aber trotzdem denselben Gewinn macht?

Lösung: Die Bank verlangt die Kosten für das Abholen des Gegenstands bereits bei der Einlage-
rung. Die Kosten für das Einlagern des n. Gegenstands sind dann 2 log n.

(c) Geben Sie die Kosten für das Ein- und Auslagern mit der neuen Bezahlpolitik in Θ-Notation an.

Lösung: Die Kosten für das Hinbringen bleiben in Θ(log n), während die Kosten für das Abholen
in Θ(1) liegen.

(d) Übertragen Sie Ihre Überlegungen aus den vorherigen Teilaufgaben auf einen MaxHeap. Zeigen Sie mit
der Buchhaltermethode, dass die Insert-Methode amortisiert eine Laufzeit von O(log n) und ExtractMax
eine konstante Laufzeit hat.

Lösung: Wir zahlen für eine Einfügeoperation der i. Zahl êi = 2 log i und für das Löschen der
i. Zahl l̂i = 1. Für das Einfügen von n Zahlen und das anschließende Extrahieren zahlen wir
also ĉ =

∑n
i=1 2 log i +

∑n
i=1 1. Vergleichen wir das mit den tatsächlichen Worst-Case-Kosten c =∑n

i=1 log i+
∑n

i=1 log i, so erkennen wir, dass ĉ > c. Da ĉ ∈ O(n log n) und auch die tatsächlichen
Kosten c ∈ O(n log n), schließen wir daraus, dass Insert eine amortisierte Laufzeit von O(log n) hat
und ExtractMax amortisiert in O(1) liegt.

(e) Lösen Sie die Aufgabe nun mit der Potentialmethode.

Lösung: Die Potentialmethode bei n Elementen im Heap definieren wir mit Φ(n) =
∑n

i=1 log i, also
der Summe aller Höhen im Heap. Damit ist Φ(0) = 0 und es gibt keinen Wert n, sodass Φ(k) < 0.
Nun berechnen wir die amortisierten Kosten der Operationen:
Insert: ĉi = ci + Φ(n) − Φ(n − 1) = log n +

∑n−1
i=1 log i + log n −

∑n−1
i=1 log i = 2 log n ∈ O(log n)

ExtractMax: ĉi = ci +Φ(n− 1)− Φ(n) = log n+
∑n−1

i=1 log i− (
∑n−1

i=1 log i+ log n) = 0 ∈ O(1)

Aufgabe 10: Graham’s Scan
Gegeben sei eine Menge S ⊆ R2 von Punkten auf der Ebene. Wir wollen ein Polygon finden, das alle Punkte
von S enthält und nur Punkte aus S als Eckpunkte enthält. Abbildung 10 zeigt ein Beispiel für das gesuchte
Polygon.

Abbildung 10: Beispiel für S und das dazugehörige
Polygon in Aufgabe 10.

Algorithmus 6: Graham’s Scan

1 Sortiere Punkte in S nach x-Koordinate,
falls gefordert

2 L← ⟨p1, p2⟩
3 for i = 3 to n do
4 L.Insert(pi)
5 while |L| > 2 and die letzten 3 Punkte

bilden einen links Knick do
6 entferne den vorletzten Punkt aus L

7 return L

Seite 12

03.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Algorithmus 6 kann als Unterroutine benutzt werden, um ein solches Polygon zu finden. Dabei berechnet
dieser Algorithmus die obere Hülle des Polygons. Das Beispiel in Abbildung 10 enthält die obere Hülle in
blau eingezeichnet.

(a) Geben Sie eine worst-case Laufzeit für die Schleife in den Zeilen 5-6 an. Geben Sie weiterhin ein Beispiel
an, für die dieser worst-case eintritt.

Lösung: Ein worst-case wäre folgendes Set S:

p1

. . .

pn

pn−1

Hier sind n − 2 Punkte in einer Geraden nach unten angereiht und ein weitere Punkt (pn−1) ist
unter beziehungweise über (pn) dieser Geraden, sodass der Punkt p1 ganz links auf der Geraden
und die beiden Punkte über bzw. unter der Geraden das Polygon bilden. Der Algorithmus findet
nun für die ersten n − 1 Punkte keinen Linksknick, doch erst beim Einfügen des letzten Punkts
(über der Gerade) entsteht ein Linksknick. Nun müssen wir die gesamte Liste L bis auf die Punkte
p1 und pn entfernen. Folglich kann die Laufzeit der While-Schleife in den Zeilen 5-6 O(n) Zeit in
Anspruch nehmen.

(b) Gehen Sie nun davon aus, dass S bereits nach x-Koordinate sortiert ist. Zeigen sie mittels amortisierter
Analyse, dass die Laufzeit von Algorithmus 6 O(n) ist.

Lösung: Die Gesamtanzahl der Aufrufe des Schleifenkopfes hängt von der Länge der Elemente in L
ab, da wir immer stoppen, wenn |L| ≤ 2 ist, und wir bei einer Iteration genau ein Element löschen.
Wir fügen einen Punkt pi nur einmal in L ein und löschen diesen Punkt auch nur maximal einmal.
Somit ist die Gesamtanzahl der Aufrufe des Schleifenkopfes O(n).

Aufgabe 11: Von Monte Carlo nach Las Vegas

(a) Geben Sie eine scharfe obere Schranke für die Fehlerwahrscheinlichkeit von Algorithmus 7 an.

Seite 13

03.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Algorithmus 7: FindLarge(int[] A, int k)

input : Array A ist ein Feld ganzzahliger paarweise verschiedener Zahlen
output: Gibt ein Element zurück, dass mindestens so groß ist wie der Median

1 m = 0
2 for i = 1 to k do
3 randomly choose r ∈ {1, . . . , n}
4 if A[r] > m then
5 m = A[r]

6 return m

Lösung: Wir geben ein falsches Ergebnis zurück, wenn in allen k Iterationen ein Element gezogen
wird, das kleiner ist als der Median. Dies sind insgesamt ⌊n/2⌋− 1 Elemente. Somit haben wir eine
Fehlerwahrscheinlichkeit von ≤ 1/2k.

(b) Geben Sie die Erfolgswahrscheinlichkeit mit jedem Schritt von Algorithmus 8 an.

Algorithmus 8: FindRepeated(int[] A)

input : Array A der Länge n mit ganzzahligen Zahlen, sodass ⌈n/2⌉ Zahlen identisch und
⌊n/2⌋ paarweise unterschiedlich sind.

output: Das identische Element.
1 while true do
2 randomly choose i ∈ {1, 2, . . . , n}
3 randomly choose j ∈ {1, 2, . . . , n} \ {i}
4 if A[i] = A[j] then
5 return A[i]

Lösung: Es gibt mindestens n/2 identische Elmente, somit ist die Wahrscheinlichkeit, dass A[i] ein
identisches Element ist mindestens 1/2. Die Wahrscheinlichkeit, dass A[j] ein identisches Element
ist, ist dann mindestens (n/2− 1)/(n− 1). Somit ist die Erfolgswahrscheinlichkeit ≈ 1/4.

(c) Was sind die Vor- und Nachteile beider Algorithmen?

Lösung: FindLarge könnte ein falsches Ergebnis zurückgeben, aber falls wir k sinnvoll wählen,
z.B. k = c log2 n, dann ist die Laufzeit dieses Algorithmus schneller als jeder deterministische Algo-
rithmus, der immer das korrekte Ergebnis liefert und hat eine sehr geringe Fehlerwahrscheinlichkeit.
FindRepeated gibt auf jeden Fall immer das korrekte Ergebnis zurück aber könnte potentiell lange
laufen. Allerdings ist die erwartete Anzahl an Iterationen 4 und somit erwartet konstant.

Aufgabe 12: Bernoullis Spielzeuge
Eine Supermarktkette verschenkt ein zufälliges Spielzeug, wenn Sie einen Einkauf in Höhe von über 10 Euro
tätigen. Insgesamt gibt es n unterschiedliche Spielzeuge, die Sie gerne sammeln möchten. Mit wie vielen
Einkäufen müssen Sie rechnen, bis Sie alle Spielzeuge gesammelt haben?

Lösung: Angenommen wir haben bereits i − 1 unterschiedliche Spielzeuge. Dann ist die Wahrschein-
lichkeit ein neues Spielzeug zuerhalten pi = (n − i + 1)/n. Sei Xi eine ZV, die angibt, wie häufig wir
einkaufen gehen müssen, um das i-te Spielzeug zuerhalten. Wir kaufen solange ein, bis wir das i-te
Spielzeug erhalten haben. Damit folgt das Experiment einer geometrischen Verteilungsfunktion und der

Seite 14

03.04.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Erwartungswert ist E[Xi] = 1/pi. Somit ist die erwartete Anzahl an Einkäufen
∑n

i=1 E[Xi] =
∑n

i=1 =
pi = n · (1/n+ 1/(n− 1) + · · ·+ 1) ∈ O(n log n).

Seite 15

