Aufgabensammlung ADS-Repetitorium WS 24 /25

rekursive Algorithmen — elementare Datenstrukturen — Baume

Aufgabe 1: Rekursive Gleichung aufstellen
Gegeben sei folgender Algorithmus:

Algorithmus 1: RecursiveAlgo(int A[|, int I= 1, int r=A.length)

1 if [< r then

2 | m=L(+0)/2)

3 RecursiveAlgo(A, I, m)

4 RecursiveAlgo(A, m + 1, r)
5 InsertionSort(A, I, r)

(a) Stellen Sie eine Rekursionsgleichung T fiir den gegebenen Algorithmus auf.
(b) Finden Sie eine Funktion f, fiir die T' € O(f) gilt.

Aufgabe 2: 3-MergeSort
Gegeben sei folgende Algorithmus 2, das eine Variante vom bekannten MergeSort ist.

Algorithmus 2: 3MergeSort(int[] A, int [= 1, int » = A.length)

1 if [< r then

my = |5

Mo = |_2(T;l)J

3MergeSort (A4, I, my)
3MergeSort (A, my + 1, my)
3MergeSort (A4, mo + 1, 1)
Merge (A, I, mq, meo)

Merge (A, [, ma, 1)

® N O Gk WwN

(a) Formulieren Sie die Laufzeit T'(n) von 3MergeSort als Rekursionsgleichung in Abhéingigkeit von der

Léange des Feldes A.

(b) Bestimmen Sie die asymptotische Laufzeit von 3MergeSort mithilfe der Meistermethode. Geben Sie

dabei den Fall an.

Aufgabe 3: Rekursive Laufzeiten

Finden Sie fiir die nachstehenden Rekursionsgleichungen jeweils eine Funktion f, fiir die T' € O(f) gilt. Sie

konnen davon ausgehen, dass die Laufzeit im Basisfall konstant ist.

(a) T(n) = 4T(|n/2]) + n2y/n

) T(n) =
(¢) T(n)=T(n—3)+2n
(d) T(n) =2T (Ln/4J)+3f
(e) T(n) =3T([n/2]) +
(f) T(n) =3T(|n/5]) + 2\f
(g) T(n) =12T(n/2]) +
(h) T(n) = (L”/QD+T(M/21) + O(nlogn)

Seite 1

Lehrstuhl fiir Informatik I
01.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Aufgabe 4: Induktionsbeweis eines Algorithmus
Betrachten sie folgenden Algorithmus zur Berechnung der Fakultét:

Algorithmus 3: int fakultat(int k)

1 f=5=k

2 while j > 1 do
3 Lj:j—l
4 | f=[-J

5 return f

(a) Geben Sie einen Algorithmus in Pseudocode an, der die Fakultit rekursiv berechnet.

(b) Beweisen Sie mittels vollstindiger Induktion die Korrektheit Threr rekursiven Variante.

Aufgabe 5: Korrektheitsbeweise und Rekursion
Betrachten Sie den folgenden Algorithmus.

Algorithmus 5: int doSomethingSimple(int A[|, int ¢ = 1)
Data: Feld mit natiirlichen Zahlen A, natiirliche Zahl 4
Result: Ein Wert, der mit A zusammenhéngt

1 if ¢ == A.length then

2 | return A[j]

3 k = doSomethingSimple(A, i + 1);

4 if k > AJi] then

5 L return k

6 else
7 | return A[i]

a) Beschreiben Sie in einem Satz, was der Algorithmus macht.

(a)
(b) Beweisen Sie die Korrektheit des Algorithmus.

(¢) Geben Sie einen Algorithmus an, der dquivalent zu doSomethingSimple ist, ohne Rekursion zu verwenden.
(d) Geben Sie eine Schleifeninvariante fiir Thren inkrementellen Algorithmus an.

(e) Beweisen Sie die Korrektheit Thres Algorithmus mit der von IThnen aufgestellten Schleifeninvariante.

Aufgabe 6: Implementieren einer eigenen Datenstruktur

Gesucht ist eine Datenstruktur MinStack zum Verwalten einer dynamischen Menge S von Zahlen. Es sollen
wie bei einem Stapel die Methoden push(key k) und pop() zur Verfiigung stehen, zusétzlich eine Methode
Minimum(), welche die kleinste Zahl der Menge S zuriick gibt. Alle Operationen sollen in konstanter Zeit
ablaufen. Tipp: Verwenden Sie intern mehr als eine Datenstruktur.

(a) Geben Sie eine Implementierung der Datenstruktur in Pseudocode an.

(b) Zeigen Sie, dass es keine Datenstruktur geben kann, die zusétzlich zu den obigen Operationen eine
weitere Operation popMinimum() mit konstanter Laufzeit anbietet. Diese Operation 16scht das aktuelle

Minimum aus dem MinStack.

Aufgabe 7: Doppelt-Verkettete Listen
Gegeben sei folgender Algorithmus

Seite 2

Lehrstuhl fiir Informatik I
01.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Algorithmus 11: modifyList(List L)

item = L.head

size = 1

while item.next # null do
item = item.next

size = size + 1

item = L.head

for i =1 to |size/2] do
item = item.next
item.prev.next = item.next
10 item.next.prev = item.prev
11 item = item.next

() Sei L= @ [31| 0 Plo |42 |6 o [13| o o | 77| 9o | 23

Zeichnen Sie die Liste fiir jede Iteration der Schleife in Zeile 7.

[, SN VN

© N o

(b) Beschreiben Sie, was der Algorithmus allgemein macht.

(c) Der Algorithmus enthélt zwei Fehler. Geben Sie eine Liste an, sodass die Ausfithrung von Zeile 3
fehlschlégt. Geben Sie auflerdem eine Liste an, die zu einem Fehler in Zeile 10 fiihrt. Verbessern Sie den
Pseudocode.

(d) Was wiirde passieren, wenn Zeile 11 geldscht wiirde?

(e) Welche Augmentierung der Datenstruktur List schlagen Sie vor, um den Code zu verkiirzen?
Aufgabe 8: Loschen in einer Hash-Tabelle
Gegeben sei eine Hashtabelle H mit einer Hash-Funktion h(z,). Es wird offene Adressierung verwendet.
(a) Beschreiben Sie in Worten, wie der Algorithmus Search(int k) aus der Vorlesung funktioniert.

(b) Ein Element k soll aus der Tabelle geloscht werden. Warum sollte man den Wert nicht mit der folgenden
Befehlsfolge 16schen?
j = Search(k)
Hijl = -1

(c¢) Implementieren Sie die Operation Delete(int k), die einen Schliissel aus der Tabelle l6scht, ohne dass das
Problem aus b) auftritt. Tipp: Verwenden Sie einen besonderen Wert, um geléschte Zellen zu markieren.

(d) Welche Anderung muss nun in den Methoden Insert(int k) und Search(int k) vorgenommen werden?
(e) Beschreiben Sie kurz die Auswirkungen Threr Anderungen auf die Laufzeit der Operationen.
Aufgabe 9: Doppeltes Hashing
Welche der folgenden Funktionen eignen sich fiir eine Hashtabelle der Lénge 25, wenn doppeltes Hashing

verwendet wird und die Hashfunktion h(k,i) = (ho(k) + th1(k)) mod 25 mit ho(k) = (4k + 2) mod 25 ist?
Begriinden Sie Thre Entscheidungen.

(a) hi(k) =1

(b) hi(k) =9 — (k mod 4)

(¢) h1(k) =k mod 17

(d) hi(k) = (34 5k) mod 25

(e) hi(k) = (4k —1) mod 13

Aufgabe 10: Gute Sondierfolgen erkennen

Gegeben sind folgende Hashfunktionen h(k,). Geben Sie an, um welche Methode der Kollisionsauflgsung es
sich handelt und gegebenfalls Probleme der Sondierfolgen, bei den gegebenen Tabellengrofien, an.

Seite 3

Lehrstuhl fiir Informatik I
01.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

(a) h(k,i) = (ho(k)+ (i +1)-i) mod m, m = 512
(b) h(k,i) = (ho(k) 4+ 2i) mod m, m = 511
(¢) h(k,i) = (ho(k) 4+ i-hi(k)) mod m, hi(k) =m — (2k mod m) — 1, m = 16.

Aufgabe 11: Hashing ausfiihren
Gegeben seien die folgenden Schliissel & mit entsprechenden Werten der Hashfunktion h(k):

k [N|JI|[C|E|A|L|G]|O
hk)y|[6 3] 1[3][3[1]7]2

(a) Fiigen Sie die Schliissel in obiger Reihenfolge in eine Hash-Tabelle der Gréfle 8 ein. Kollisionen sollen
durch Verkettung aufgeltst werden.

(b) Fiigen Sie nun die Werte in der gleichen Reihenfolge in eine neue Hashtabelle mit Gréfle 8 ein. Losen Sie
Kollisionen mit linearem Sondieren auf. Geben Sie fiir jeden Schliissel an, wie viele Felder der Tabelle
betrachtet wurden.

(c¢) Fiigen Sie wieder die Schliissel in eine Tabelle der Grofle 8 ein. Verwenden Sie dafiir folgende Hashfunk-
tion I(k,), welche Kollisionen mittels doppelten Hashing auflést. Wobei m die Tabellengrofle ist.

I(k,i) = (h(k)+i-hi(k)) modm

Im Folgenden sind die Werte von hj (k) fiir die Schliissel angegeben. Geben Sie fiir jeden Schliissel an,
wie viele Felder der Tabelle betrachtet wurden.

B [N|JI[CIE|A|L|

ha(k) | 315|375]1]

G|O
713

Aufgabe 12: Zweimal sortiertes Feld

Gegeben ist ein Feld von Zahlen [a1, as, ..., a,]. Dabei gilt, dass die Elemente mit ungeraden Indexen aufstei-
gend sortiert, es gilt also a1 < ag < a5 < ... und die mit geraden Indexen absteigend sortiert sind. Also gilt
as > a4 > ag > Sie konnen davon ausgehen, dass n gerade ist. Thre Aufgabe ist den Index einer gegeben
Zahl im Feld zu finden. Dies soll in O(logn) Zeit geschehen. Geben Sie einen Algorithmus in Pseudocode an.

Aufgabe 13: Bindre (Such-)Bdaume — Eigenschaften

(a) Sei ein gefiillter Bin&rbaum ein bindrer Suchbaum, dessen Knoten entweder 0 oder 2 Kinder besitzen.
Angenommen ein gefiillter Bindrbaum besitzt n Blitter. Wie viele Knoten hat der Baum insgesamt?

(b) Finden Sie die Fehler in den verschiedenen bindren Suchbdumen.

(¢) Ein Kommilitone von Thnen hat einen Algorithmus (Algo. 14) geschrieben, der testen soll, ob ein gegebe-
ner bindrer Suchbaum 7" mit Wurzel r ein korrekter bindrer Suchbaum ist. Geben Sie ein Gegenbeispiel
an, sodass der Algorithmus Thres Kommilitonen ein falsches Ergebnis liefert und begriinden Sie kurz,
wieso der Algorithmus nicht funktioniert.

Seite 4

Lehrstuhl fiir Informatik I
01.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Algorithmus 14: isBinarySearchTree(Node v = r)

if v == null then
2 L return true

3 if v.left # null and v.left.key > v.key then
4 L return false

=

w

if v.right # null and v.right.key < v.key then
6 L return false

7 return isBinarySearchTree(v.left) and isBinarySearchTree (v.right)

(d) Zeigen Sie, dass sich zwei unterschiedliche biniire Suchbiume mit gleichen Schliisseln durch Rotationen
ineinander verwandeln lassen, egal wie sie davor aussahen. Wie viele Rotationen bené6tigen sie maximal?
Hinweis: Zeigen Sie zundchst, dass sich jeder Bindrbaum in eine Kette verwandeln ldsst.

(e) Beweisen oder widerlegen Sie die folgende Aussage iiber Rot-Schwarz-Béume: “Jeder Geschwisterknoten
eines Blattknotens ist entweder selbst ein Blatt oder rot”
Aufgabe 14: Rot-Schwarz-Baume verstehen

(a) Zeichnen Sie den perfekt balancierten bindren Suchbaum mit den Schliisseln {1,...,15}. Féarben Sie
diesen Baum auf drei verschiedene Arten, sodass jeweils ein giiltiger Rot-Schwarz-Baum entsteht.

(b) Angenommen wir haben einen Baum, der bis auf (E2) (,Die Wurzel ist schwarz.“) alle Rot-Schwarz-
FEigenschaften erfiillt. Dieser Baum darf eine rote Wurzel haben. Ist der Baum ein giiltiger Rot-Schwarz-
Baum, wenn wir seine Wurzel ggf. schwarz farben?

(¢) Es sei ein Bindrbaum mit n Knoten gegeben. Wie viele verschiedene Rotationen kénnen auf diesem
Baum ausgefiihrt werden?

(d) Sei T ein giiltiger Rot-Schwarz-Baum. Beweisen Sie, dass der lingste Wurzel-Blatt-Pfad in T hochstens
doppelt so lang ist, wie der kiirzeste Wurzel-Blatt-Pfad in 7.

Seite 5

Lehrstuhl fiir Informatik I
01.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Aufgabe 15: InsertionSort U MergeSort

Obwohl die asymptotische worst-case Laufzeit von MergeSort ©(nlogn) ist und die asymptotische worst-case
Laufzeit von InsertionSort ©(n?) ist, lduft InsertionSort wegen der versteckten Konstanten in der O-Notation
fiir kleine Eingaben oft schneller. Betrachte folgende Modifikation von MergeSort: Wir benutzen MergeSort
bis wir n/k Teilfelder der Grofie & haben. Diese sortieren wir mit InsertionSort und mergen sie anschlieend
mit dem bekannten Merge-Mechanismus von MergeSort.

(a) Zeigen Sie, dass InsertionSort die n/k Teilfelder insgesamt in ©(nk) worst-case sortieren kann!
(b) Zeigen Sie, dass die oben beschriebene Variante von MergeSort in ©(nk + nlog(n/k)) worst-case lauft!

(c) Was ist der groite Wert von k als Funktion von n fiir die der modifizierte MergeSort Algorithmus die
gleiche asymptotische worst-case Laufzeit hat wie die urspriingliche Variante? (mit O-Notation)

(d) Wie sollte k in der Praxis gewiihlt werden?

Aufgabe 16: Telephonbuchsuche

Sie haben ein Telephonbuch mit Eintrdgen gegeben. Jeder Eintrag enthélt den Namen und die dazugehorige
Telephonnummer. Die Eintriige sind nach Namen in alphabetischer Reihenfolge sortiert. Die Namen sind
dabei paarweise verschieden und haben eine maximale Linge von m. Schreiben Sie einen Algorithmus in
Pseudocode der fiir einen bestimmten Namen die zugehorige Telephonnummer in O(m - logn) Zeit findet.

Aufgabe 17: Ringe

Ein Ring ist eine Datenstruktur, die auf einer doppelt-verketteten Liste aufbaut. Der Unterschied zwischen
beiden Datenstrukturen ist, dass beim Ring die Attribute next und prev niemals nil sind und iiber next
eines beliebigen Elements jedes andere Element erreicht werden kann (analog auch iiber prev in die andere
Richtung). Jeder Ring hat einen Pointer entry auf einen beliebiges Element im Ring. Ansonsten gibt es die
gleichen Operationen wie bei der Liste, wobei insert(k) vor dem aktuellen entry einfiigt und dann entry aufs
neue Item setzt.

(a) Zeichnen Sie den Ring, der die ersten vier Fibonacci-Zahlen enthélt. Der Pointer entry soll auf eine
gerade Primzahl zeigen.

(b) Implementieren Sie die Methode makeRing(List |), die aus einer doppelt-verketteten Liste einen Ring
macht. Der Pointer entry des entstanden Rings soll dabei auf den Kopf der urspriinglichen Liste zeigen.
Die Liste darf verdndert werden.

(¢) Implementieren Sie die Methode split(Ring r, Item i, ltem j), die den Ring r in zwei Ringe aufspaltet.
Dabei sollen alle Items zwischen i und j (inklusive, in Richtung des next-Attributs) aus r geldscht werden
und als eigener Ring zuriickgegeben werden. Weisen Sie die entry-Werte beliebig, aber giiltig, zu. Gehen
Sie davon aus, dass mindestens ein Element in r verbleibt (mit anderen Worten i.prev # j).

(d) Implementieren Sie die Methode merge(Ring r, Ring u), die die Items des Rings u vor r.entry einfiigt.
Achten Sie darauf, dass die Reihenfolge der Elemente innerhalb der Ringe gleich bleibt.

Aufgabe 18: Liste mit Varianz

Gegeben sei eine doppelt verkettete Liste L, die ganze Zahlen speichert.

(a) Augmentieren Sie die Liste L so, dass sie eine Methode Mean bereitstellt, die in O(1) den Durchschnitt
aller Elemente in L zuriickgibt.

(b) Augmentieren Sie die Liste L so, dass sie die Varianz o2 der Elemente in L in konstanter Zeit abgefragt

werden kann. Dabei ist die Varianz von x4, ..., x, folgendermaflen definiert:
n —\2 n
(z; —) - ;
o’ = E ———— wobei T = —
: n ° n
i=1 =1

Die Laufzeit von Insert, Delete und Search sollen sich dabei nicht verdndern.

Seite 6

Lehrstuhl fiir Informatik I
01.04.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Aufgabe 19: Traversierung von Bindarbaumen
Es gibt drei géingige Arten bindre Baumstrukturen zudurchlaufen (traversieren). Diese heifilen PreOrder,
InOrder und PostOrder. Folgender Pseudocode zeigt eine Anwendung dieser drei Traversierungen:

Algorithmus 19: Algorithmus 20: Algorithmus 21:

1 PreOrder(Node z) 1 InOrder(Node z) 1 PostOrder(Node z)

2 if & # null then 2 if x # null then 2 if x # null then

3 print (z.key) 3 InOrder (z.left) 3 PostOrder (x.left)
4 PreOrder (z.left) 4 print (z.key) 4 PostOrder (x.right)
5 PreOrder (z.right) 5 InOrder (z.right) 5 print (z.key)

Algorithmen 19-21 durchlaufen einen Bindrbaum in unterschiedlichen Reihenfolgen und geben den key des
Knoten x aus. Benutzen Sie den Bindrbaum in Abbildung 1 fiir die folgenden Aufgaben.

Abbildung 1: Bindrbaum mit Buchstaben als key fiir Aufgabe 19.

(a) Wenden Sie jeweils die Algorithmen 19-21 auf den Baum in Abbildung 1 an und geben Sie den Output
an!

(b) Welche rekursiven Algorithmen aus der Vorlesung kennen Sie, die die selbe Struktur haben wie die
PreOrder und PostOrder Traversierungen?

(c) Neben diesen Traversierungen gibt es noch die LevelOrder Traversierung. Folgender Output wird von
dieser Traversierung generiert: F, B, G, A, D, I, C, E, H. Geben Sie den Pseudocode eines Algorithmus
an, der LevelOrder implementiert. Welcher Graph-Algorithmus aus der Vorlesung koénnte den gleichen
Output geben, wenn der Bindrbaum als Graph représentiert wird?

Aufgabe 20: Finden von relevanten Intervallen

Angenommen Sie haben einen Sensor, der n Werte iiber eine Zeit in unregelméfiigen Absténden gemessen
hat und diese Werte chronologisch in ein Feld A geschrieben hat. Ein Eintrag eines Feldes entspricht einem
Tupel (t;,x;), wobei t; die Zeit ist, an dem der Messwert z; vom Sensor gemessen wurde. Sie wollen nun
einen bestimmten Zeitraum [ts,t.] an Messwerten abfragen. Geben Sie einen Algorithmus an, der in o(n)

ein Tupel von Indize (i,j) zuriickgibt, sodass alle Messungen, die im Zeitraum [tg,t.] getétigt wurden im
Teilfeld Afi..j] stehen.

Hinweis: Weder ty noch t. miissen als Werte in A existieren.

Seite 7

