
Aufgabensammlung ADS-Repetitorium WS 24/25
O-Notation – inkrementelle Algorithmen – Sortieren

Aufgabe 1: Schleifeninvariante
Gegeben sei der folgende Algorithmus, der die Fakultät einer Zahl k berechnet.

Algorithmus 1: int fakultät(int k)

1 if k = 0 then
2 return 1

3 f = j = k
4 while j > 1 do
5 j = j − 1
6 f = f · j
7 return f

(a) Geben Sie eine geeignete Invariante an, mit der wir zeigen können, dass fakultät für Eingaben ≥ 1
korrekt arbeitet.

Lösung: Vor jeder Ausführung des Schleifenkopfes in Zeile 2 hat f den Wert k!/(j − 1)!.

(b) Zeigen Sie mit Hilfe der in (a) aufgestellten Invariante die Korrektheit des Algorithmus.

Lösung:

Initialisierung Vor der ersten Iteration (j = k) hat f den Wert k = k!/(k − 1)! = k!/(j − 1)!.

Aufrechterhaltung Sei die Invariante korrekt zu Beginn einer Iteration. Zunächst wird j = j − 1
gesetzt, es gilt also nun f = k!/j!. Danach wird f = f · j berechnet, wonach wieder f =
k!/(j − 1)! gilt. Damit ist die Schleifeninvariante auch weiterhin erfüllt.

Terminierung Die Schleife bricht ab, wenn j ≤ 1. Da zu Beginn j = k > 1 war und j nur
dekrementiert wurde, gilt also genau j = 1. Wegen der Schleifeninvariante gilt also f =
k!/(j − 1)! = k!/(1− 1)! = k!/0! = k!.

Aufgabe 2: SelectionSort
Gegeben sei der folgende Sortieralgorithmus.

(a) Welche Laufzeit hat SelectionSort jeweils im besten und im schlechtesten Fall?

Lösung: Die innere Schleife benötigt n− i+1 Schritte mit jeweils konstantem Aufwand. Dadurch
erhalten wir über alle Iterationen eine Laufzeit von

n−1∑
i=1

n− i+ 1 =

n∑
i=2

i =
n(n+ 1)

2
− 1 ∈ Θ(n2)

(b) Geben Sie eine geeignete Invariante an, um die Korrektheit von SelectionSort zu beweisen.
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Algorithmus 2: SelectionSort(int[] A)

1 n = A.length
2 for i = 1 to n− 1 do
3 ℓ = i
4 for j = i to n do
5 if A[j] < A[ℓ] then
6 ℓ = j

7 Swap(A, i, ℓ)

8 return A

Lösung: Zu Beginn der iten Iteration

(i) enthält A[1..i− 1] die i− 1 kleinsten Zahlen aus A aufsteigend sortiert und

(ii) A enthält noch die gleichen Zahlen wie zu Beginn.

(c) Beweisen Sie die Korrektheit von SelectionSort. Für die innere Schleife muss kein Korrektheitsbeweis
angegeben werden, es ist ausreichend zu beschreiben, was die Schleife berechnet.

Lösung:

Initialisierung Vor der ersten Iteration (i = 1) wurde A noch nicht verändert. Daher ist (ii)
erfüllt. Außerdem enthält A[1..0] trivialerweise die kleinsten 0 Elemente aus A.

Aufrechterhaltung Seien (i) und (ii) zu Beginn der iten Iteration erfüllt. Innerhalb der Iteration
wird A nur durch einen Tauschbefehl verändert. Somit bleibt (ii) auch nach der Iteration
erhalten. Die innere Schleife berechnet den Index des kleinsten Elements aus A[i..n] und
tauscht dieses Minimum an die Stelle A[i]. Wegen (i) ist A[i] mindestens so groß wie die
Zahlen in A[1..i − 1], daher enthält A[1..i] nun die i kleinsten Zahlen aufsteigend sortiert.
Somit bleibt auch (i) erhalten.

Terminierung Der Algorithmus terminiert für i = n. Aus (ii) folgt direkt, dass A noch die gleichen
Zahlen wie zu Beginn enthält. Dabei ist wegen (i) das Teilfeld A[1..n − 1] bereits korrekt
sortiert. Die Zahl in A[n] muss wegen (i) mindestens so groß wie A[n− 1] sein, folglich ist A
korrekt aufsteigend sortiert.

Aufgabe 3: O-, Θ- und Ω-Notation
Beweisen oder widerlegen Sie die Behauptungen. Arbeiten Sie mit der Definition aus der Vorlesung.

(a) f(n) = 1
2n− 2 ∈ Ω(log2 n)

Lösung: Die Aussage ist wahr. Dementsprechend ist zu zeigen: ∃n0∃c∀n ≥ n0 : c · log2 n ≤ 1
2n− 2

Man wähle c = 1/2, dann gilt:

1

2
log2 n ≤

1

2
n− 2⇔ log2 n+ 4 ≤ n

Also wähle n0 = 8, da log2 n ≤ n für alle n > 0.

(b) f(n) = nn + n2 ∈ O(nn−1)
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Lösung: Die Aussage ist falsch. Dementsprechend ist zu zeigen: ∀c∀n0∃n ≥ n0 : c · nn−1 < f(n)
Seien n0 und c beliebig. Wir beobachten zunächst c · nn−1 < nn =⇒ c · nn−1 < f(n).

c · nn−1 < nn

⇐⇒ c <
nn

nn−1
= n

Damit wählen wir n = max(n0, c+1). Für diese Wahl gilt n > c und somit auch c ·nn−1 < nn, aus
der Beobachtung folgt die gewünschte Aussage.

(c) f(n) = n4−4n2

2n+7 /∈ O(n3)

Lösung: Die Aussage ist falsch. Dementsprechend ist zu zeigen: ∃n0∃c∀n ≥ n0 :
n4−4n2

2n+7 ≤ c · n3

Wir vereinfachen die Ungleichung:

n4 − 4n2

2n+ 7
≤ c · n3

n4 − 4n2 ≤ c · n3 · (2n+ 7)

n4 − 4n2 ≤ c · (2n4 + 7n3)

Mit der letzten Ungleichung wählen wir n0 = 1 und c = 1.

(d) f(n) = log3(n
5 · 9n2

) ∈ Ω(n log3 n)

Lösung: Die Aussage ist wahr. Also ist zu zeigen: ∃n0∃c∀n ≥ n0 : c · n log3 n ≤ log3(n
5 · 9n2

). Wir
zeigen dies:

c · n log3 n ≤ log3(n
5 · 9n

2

) = log3 n
5 + log3 9

n2

= 5 log3 n+ n2 log3 9 = 5 log3 n+ 2n2

c · n log3 n ≤︸︷︷︸
Wir müssen dieses zeigen

2n2 ≤ 5 log3 n+ 2n2

c · log3 n ≤ 2n

Also können wir c = 1 wählen und n0 = 0, da log3 n ≤ 2n für alle n.

(e) f(n) = loga n ∈ Θ(logb n) für beliebige a, b > 1

Lösung: Die Aussage ist wahr. Also ist zu zeigen: ∃n0∃c1∀n ≥ n0 : c1 · logb n ≤ loga n und
∃n0∃c2∀n ≥ n0 : loga n ≤ c2 · logb n. Die Auflösung der Ungleichung liefert auch gleich die Werte
für c1 und c2, unabhängig von n, also können wir n0 = 0 wählen.

c1 logb n ≤ loga n ≤ c2 logb n

c1 ≤
loga n

logb n
≤ c2

c1 ≤
logb n

logb a · logb n
≤ c2

c1 ≤
1

logb a
≤ c2

(f) f(n) = 1
100n

2 + n sinn ∈ Θ(n2)
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Lösung: Die Aussage ist wahr. Wir zeigen zunächst f(n) ∈ Ω(n2), dafür ist folgendes zu zeigen:
∃n1∃c1∀n ≥ n1 : c1 · n2 ≤ 1

100n
2 + n sinn:

c1 · n2 ≤ 1

100
n2 + n sinn

c1 · n2 ≤︸︷︷︸
Das zeigen wir

1

100
n2 − n ≤ 1

100
n2 + n sinn

c1 · n ≤
1

100
n− 1

Nun wählen wir n1 = 101, sodass f(n) ≥ 0. Anschließend wählen wir passendes c1, sodass die
Ungleichung erfüllt ist, zum Beispiel c1 = 1/100−1/101 (diesen Wert erhält man durch Multipliation
obiger Ungleichung mit 1/n. Jetzt zeigen wir noch f(n) ∈ O(n2), dafür müssen wir zeigen, dass
∃n2∃c2∀n ≥ n2 :

1
100n

2 + n sinn ≤ c2 · n2:

1

100
n2 + n sinn ≤ c2 · n2

1

100
n2 + n sinn ≤ 1

100
n2 + n ≤︸︷︷︸

Das zeigen wir

c2 · n2

1

100
n+ 1 ≤ c2 · n

1

n
+

1

100
≤ c2

Für n2 = 2 und c2 = 1 ist die obige Ungleichung immer erfüllt. Für das geforderte n0 nehmen wir
max(n1, n2) = 100.

(g) f(n) = n4 − 10n3 + 2n ∈ O(n3)

Lösung: Die Aussage ist falsch. Also ist zu zeigen: ∀c∀n∃n0 ≥ n : n4 − 10n3 + 2n > c · n3. Seien c
und n0 beliebig:

c · n3 < n4 − 10n3 + 2n

c · n3 < n4 − 10n3 < n4 − 10n3 + 2n

c+ 10 < n

Wähle also n = max(n0, c+ 11).

(h) f(n) = 9
n /∈ Ω( 1√

n
)

Lösung: Die Aussage ist korrekt. Also ist zu zeigen: ∀c∀n∃n0 ≥ n : c · 1/
√
n > 9/n. Seien n0 und c

beliebig:

9

n
< c · 1√

n
Nächste Gleichung erhält man durch n/

√
n =
√
n

9

c
<
√
n

81

c2
< n

Wähle also n = max(n0, 81/c
2 + 1).
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Aufgabe 4: Asymptotisches Wachstum von Funktionen
Ordnen Sie die Liste von Funktionen nach ihrem asymptotischen Wachstum (O(. . . ) ⊊ O(. . . ) · · · ⊊ O(. . . )).
Nutzen Sie = für das gleiche asymptotische Wachstum und ⊊ für unterschiedliches Wachstum. Beispiel:
f(n) = n, g(n) = 2n, h(n) = n2 dann gilt: O(f(n)) = O(g(n)) ⊊ O(h(n)).

√
n log4(n

2), 5
√
n, 2n, log2(n), n

2 − 7n, n log10(n/3), n
log3(4), log4(n

3),
√
n log2(n

√
n),

4log3 n, 22n, (n+ 1)2, n(log2(n))
2, n!, 23n log2(n)

Lösung:

•
√
n log(n2) = 2

√
n log(n)

• n log(n/3) = n log(n)− n log(3)

• log4(n
3) = 3 log4(n)

•
√
n log(n

√
n) = n log(n)

• 4log3(n) = nlog3(4)

• nlog3(4) ≈ n1,26

• O(n!) ⊂ O(nn) = O(2n log2 n) ⊂ O(8n log2 n)

• Basiswechsel für Logarithmen

O(log2(n)) = O(log4(n3)) ⊊ O(5
√
n) ⊊ O(

√
n log4(n

2)) ⊊ O(
√
n log(n

√
n)) = O(n log10(n/3))

⊊ O(n log22(n)) ⊊ O(nlog3(4)) = O(4log3(n)) ⊊ O(n2 − 7n) = O((n+ 1)2)

⊊ O(2n) ⊊ O(22n) ⊊ O(n!) ⊊ O(23n log2(n))

Aufgabe 5: Aufwandsanalyse
Gegeben seien die Funktionen f ∈ Θ(log n) und g(n) ∈ Θ(n). Bestimmen Sie die Laufzeit der folgenden
Programmfragmente in der Θ-Notation.

(a)

Algorithmus 3:

1 for i = 1 to n do
2 g(n)

Lösung: Θ(n2), da g(n) n-mal aufgerufen wird.

(b)

Algorithmus 4:

1 i = 1
2 while i < n do
3 f(n)
4 g(n)
5 i = i · 2
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Lösung: Θ(n log n). i wird in jedem Schleifendurchlauf verdoppelt, deswegen wird die while-Schleife
Θ(log2 n)-mal ausgeführt. Innerhalb der Schleife ist der Aufwand Θ(log n)+Θ(n) = Θ(n). Insgesamt
ist der Aufwand also:

Θ(log2 n) ·Θ(n) = Θ(n log n)

(c)

Algorithmus 5:

1 i = n
2 while i > 0 do
3 f(n)

4 i = i
2

Lösung: Θ(log2 n). Die Schleife wird Θ(log2 n)-mal ausgeführt. Also ist der Aufwand:

Θ(log2 n) ·Θ(log n) = Θ(log2 n)

(d)

Algorithmus 6:

1 for i = 1 to n do
2 j = n
3 while j ≥ 1 do
4 for k = 1 to n do
5 g(n)

6 j = j
2

Lösung: Θ(n3 log n). Die innere Schleife wird n-mal betreten, hat also einen Gesamtaufwand
von Θ(n2). Die while Schleife wird Θ(log n)-mal betreten, hat also einen Gesamtaufwand von
Θ(n2 log n). Die äußere for-Schleife wird n-mal betreten, also ist der Gesamtaufwand Θ(n3 log n).

Aufgabe 6: Laufzeiten von Pseudocodes bestimmen
Analysieren Sie die Algorithmen 7-9 bezüglich der Laufzeit. Geben Sie asymptotisch scharfe Schranken in
Θ-Notation an!

Algorithmus 7: Algo1(int[] A)

1 k = 5
2 i = 0
3 while i ≤ A.length− k do
4 MergeSort(A, i+ 1, i+ k)
5 i = i+ k

6 MergeSort(A, i+ 1, A.length)

Algorithmus 8: Algo2(int[] A)

1 x = 0
2 i = 1
3 while i ≤ A.length do
4 x = x+A[i]
5 i = 2 · i
6 return x
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Algorithmus 9: Algo1(int n)

1 total = 0
2 for i = 1 to n do
3 x = 0
4 for j = 1 to i do
5 x = x+ 1

6 total = total + x

7 return total

Lösung:

• Algo1: MergeSort wird immer für ein Teilfeld der Länge höchstens k = 5 aufgerufen und somit ist
die Laufzeit aller MergeSort Aufrufe konstant. Die While-Schleife in Zeile 2 wird n/k = n/5 mal
aufgerufen. Das heißt ingesamt hat Algo1 eine Laufzeit von Θ(n)

• Algo2: Pro Schleifendurchlauf haben wir konstanten Aufwand. Mit jedem Aufruf der Schleife wird i
verdoppelt. Um die Anzahl der Schleifendurchläufe k zubestimmen, müssen wir herausfinden wann
2k > n ist, wobei n = A.length. Dies ist der Fall, wenn k > log2(n). Ingesamt läuft Algo2 also in
Θ(log n) Zeit.

• Algo3: Der Aufwand des Schleifenkörpers der inneren Schleife in Zeile 4-5 ist konstant. Demnach
können wir die Gesamtlaufzeit von Algo3 mit folgender Gleichung ausdrücken:

n∑
i=1

Θ(1) +

i∑
j=1

Θ(1)

 = Θ(n) +

n∑
i=1

Θ(i) = Θ(n) + Θ(n2) = Θ(n2)

Aufgabe 7: Sortieralgorithmen

(a) Sortieren Sie das Feld A = [4, 3, 7, 2, 0, 9 ,8, 1, 5, 6] mit InsertionSort. Geben Sie nach jeder Iteration
der äußeren Schleife das Feld an.

Lösung:

1. A = [3, 4, 7, 2, 0, 9 ,8, 1, 5, 6] – Die 3 wird eingeordnet

2. A = [3, 4, 7, 2, 0, 9 ,8, 1, 5, 6] – Die 4 ist bereits richtig

3. A = [3, 4, 7, 2, 0, 9 ,8, 1, 5, 6] – Die 7 ist bereits richtig

4. A = [2, 3, 4, 7, 0, 9 ,8, 1, 5, 6] – Die 2 wird eingeordnet

5. A = [0, 2, 3, 4, 7, 9 ,8, 1, 5, 6] – Die 0 wird eingeordnet

6. A = [0, 2, 3, 4, 7, 9 ,8, 1, 5, 6] – Die 9 ist bereits richtig

7. A = [0, 2, 3, 4, 7, 8, 9, 1, 5, 6] – Die 8 wird eingeordnet

8. A = [0, 1, 2, 3, 4, 7, 8, 9, 5, 6] – Die 1 wird eingeordnet

9. A = [0, 1, 2, 3, 4, 5, 7, 8, 9, 6] – Die 5 wird eingeordnet

10. A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] – Die 6 wird eingeordnet
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(b) Sortieren Sie das Feld B = [3, 7, 2, 9, 1, 4, 6, 5, 8, 0] mit HeapSort. Geben Sie bei jedem Schritt den
entstandenen Heap an.

Lösung: Zuerst müssen wir das Feld in einen Heap umbauen. Die Schritte dafür sind:

1. B = [3, 7, 2, 9, 1, 4, 6, 5, 8, 0] – Heap [1, 0] ist bereits ein Heap.

2. B = [3, 7, 2, 9, 1, 4, 6, 5, 8, 0] – Heap [9, 5, 8] ist bereits ein Heap.

3. B = [3, 7, 6, 9, 1, 4, 2, 5, 8, 0] – Heap [6, 4, 2] wird gebildet.

4. B = [3, 9, 6, 7, 1, 4, 2, 5, 8, 0] – Heap [9, 7, 1] wird gebildet.

5. B = [3, 9, 6, 8, 1, 4, 2, 5, 7, 0] – 7 versickert.

6. B = [9, 3, 6, 8, 1, 4, 2, 5, 7, 0] – Heap [9, 3, 6] wird gebildet.

7. B = [9, 8, 6, 3, 1, 4, 2, 5, 7, 0] – 3 versickert.

8. B = [9, 8, 6, 7, 1, 4, 2, 5, 3, 0] – 3 versickert.

Nun zur Sortierung:

1. B = [8, 7, 6, 5, 1, 4, 2, 0, 3 | 9] – 0 mit 9 tauschen und versickern

2. B = [7, 5, 6, 3, 1, 4, 2, 0 | 8, 9] – 3 mit 8 tauschen und versickern

3. B = [6, 5, 4, 3, 1, 0, 2 | 7, 8, 9] – 0 mit 7 tauschen und versickern

4. B = [5, 3, 4, 2, 1, 0 | 6, 7, 8, 9] – 2 mit 6 tauschen und versickern

5. B = [4, 3, 0, 2, 1 | 5, 6, 7, 8, 9] – 0 mit 5 tauschen und versickern

6. B = [3, 2, 0, 1 | 4, 5, 6, 7, 8, 9] – 1 mit 4 tauschen und versickern

7. B = [2, 1, 0 | 3, 4, 5, 6, 7, 8, 9] – 1 mit 3 tauschen und versickern

8. B = [1, 0 | 2, 3, 4, 5, 6, 7, 8, 9] – 0 mit 2 tauschen und versickern

9. B = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] – 1 mit 0 tauschen und versickern

(c) MergeSort arbeitet rekursiv. Geben Sie für das Feld C = [9, 4, 1, 3, 5, 2, 6, 0, 8, 7] den Rekursionsbaum
von MergeSort an. In jedem Knoten soll der jeweilige Aufruf von MergeSort und die zu sortierende
Teilliste stehen, jeweils vor der Sortierung.

Lösung:
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MergeSort(A,1,10)

MergeSort(A,6,10)

MergeSort(A,1,5)

MergeSort(A,9,10)

MergeSort(A,6,8)

MergeSort(A,4,5)

MergeSort(A,1,3)

MergeSort(A,10,10)

MergeSort(A,9,9)

MergeSort(A,8,8)

MergeSort(A,6,7)

MergeSort(A,5,5)

MergeSort(A,4,4)

MergeSort(A,3,3)

MergeSort(A,1,2)

MergeSort(A,2,2)

MergeSort(A,1,1)

MergeSort(A,7,7)

MergeSort(A,6,6)

(d) Sortieren Sie das Feld D = [6, 4, 7, 9, 2, 3, 1, 5, 0, 8] mit einem vereinfachten QuickSort. Dieser
schreibt alle Elemente, die kleiner als das Pivotelement sind, links und alle größeren rechts neben das
Pivotelement. Zeichnen Sie den Rekursionsbaum. Schreiben Sie in jeden Knoten das zu sortierende
Teilfeld nach dem Aufruf von Partition und markieren Sie das Pivotelement, die Wurzel sieht also so
aus: [6, 4, 7, 0, 2, 3, 1, 5, 8, 9]. Achtung: Das ist nicht der VL-Algorithmus, aber die Idee ist die gleiche!

Lösung:

[6, 4, 7, 0, 2, 3, 1, 5, 8, 9]

[9]

[4, 2, 3, 1, 0, 5, 6, 7]

[6, 7]

[0, 4, 2, 3, 1]

[6]

[1, 4, 2, 3]
[2, 3, 4]

[2]

[4]

Aufgabe 8: Sortieren mit Quicksort

(a) Gegeben ist die Ausgabe der Methode Partition des Quicksort Algorithmus. Rekonstruieren Sie die Ein-
gabe. Konkret sollen Sie das Array A = ⟨ , , 1, , ⟩ so vervollständigen, dass der Aufruf Partition(A,
1, 5) die Zahl 3 zurückgibt und nach dem Aufruf gilt, dass A = ⟨1, 2, 3, 4, 5⟩ ist.

Lösung: Die Aufgabenstellung gibt bereits vor, dass A[3] = 1 sein soll und dass das gewählte pivot
Element an Index 3 des resultierenden Arrays A ist, also A[3] = 3, wodurch die 3 im vorherigen
Array an letzter Stelle stehen muss. Nachdem nach der Ausführung von Partition(A, 1, 5) das Feld
aufsteigend sortiert sein soll, muss 1 als erstes und 2 als zweites geswapt werden. Das heißt, dass
in den ersten beiden Feldern nur die 4 und die 5 stehen darf. Wenn A[1] = 4 wäre, dann würde der
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letzte swap nach der for-Schleife die Sortierung zerstören.⇒ das Feld muss vor der Ausführung von
Partition(A, 1, 5) also folgendermaßen aussehen: A = ⟨5, 4, 1, 2, 3⟩.

(b) Beweisen Sie die Korrektheit von Partition mittels Schleifeninvariante.

Lösung: Die Idee von Partition ist die Folgende: Bestimme einen Index m ∈ {l, . . . , r} und teile
A[l..r] so in A[l..m−1] und A[m+1, r] auf, dass alle Elemente im ersten Teilfeld kleiner gleich A[m]
sind und alle im zweiten Teilfeld größer als A[m] sind. Dies schafft Partition durch eine Schleife, die
das vordere Teilfeld aufrechterhält und alle Elemente, die kleiner gleich das pivot Element sind in
das vordere Teilfeld swapt. Unsere Schleifeninvarianten müssen also diese Eigenschaften reflektieren,
damit wir die Korrektheit von Partition beweisen können. Wir werden vier Invarianten benutzen,
um die Korrektheit zu zeigen:

(1) Für alle Elemente in A[l..i− 1] gilt, dass A[k] ≤ pivot

(2) Für alle Elemente in A[i..j − 1] gilt, dass A[k] > pivot

(3) Während der gesamten Ausführung bleibt pivot = A[r]

(4) A[l..j − 1] enthält die gleichen Elemente wie zu Beginn

Initialisierung: Vor Beginn der Ausführung des ersten Schleifendurchlaufs gilt i = l. Trivialerweise
gilt, dass A[l..l − 1] nur Elemente enthält, die kleiner gleich dem pivot sind. Außerdem gilt
j = l, wodurch auch gilt, dass alle Elemente in A[l..l − 1] größer sind, als das pivot Element.
pivot = A[r] wurde gesetzt und nicht mehr verändert und weil A[l..l − 1] leer ist und nichts
verändert wurde, gilt auch die letzte Schleifeninvariante.

Aufrechterhaltung: Gelten die Schleifeninvarianten (1)-(4) bei der Ausführung des Schleifenkopfs
bei der j. Iteration. Wir unterscheiden zwei Fälle: A[j] ≤ pivot: Laut (1) enthält das Feld
A[l..i − 1] nur Elemente, die kleiner gleich dem pivot sind. Nun wird das Element in A[j]
mit dem Element in A[i] vertauscht und i inkrementiert. Weil A[j] ≤ pivot war, gilt nun,
dass das Feld A[l..i− 1] erneut nur Elemente ≤ pivot enthält. Somit bleibt die Invariante (1)
erhalten. Aufgrund der Invariante (2) gilt, dass das Element, dass in A[i] war und nun an
Stelle A[j] steht größer als das pivot war. Diese Variante bleibt also auch erhalten. (3) und
(4) bleiben natürlich auch erhalten, weil wir nur swappen und das Element A[r] nie angerührt
werden kann. Falls A[j] > pivot passiert in der Schleife nichts (bis auf die Erhöhung von j),
weil A[j] > pivot, bleibt (2) erhalten. Der Rest verändert sich nicht und bleibt deshalb auch
erhalten.

Terminierung: Beim Abbruch der Schleife gilt, j = r. Aus den Invarianten folgt, dass wir das
Feld A[l..r] in drei Teile partitioniert haben. Wegen (1) haben wir ein Feld A[l..m−1], das nur
Elemente enthält, die kleiner gleich dem pivot sind, ein Teilfeld, das nur ein Element enthält
und zwar A[m], was aus dem letzten swap resultiert und Invariante (3), sowie dem letzten
Teilfeld A[m+ 1..r], das nur Elemente enthält, die größer sind, als das pivot (2).

(c) Geben Sie für jede natürliche Zahl n eine Instanz der Länge n an, sodass QuickSort Ω(n2) Zeit benötigt.
Begründen Sie ihre Behauptung.

Lösung: Wir erhalten eine Laufzeit von Ω(n2), falls die beiden Rekursionsaufrufe möglichst ungleich
verteilt werden, weil die Rekursionsgleichung von Quicksort folgendermaßen aussieht: T (n) = T (m−
1) + T (n − m) + (n − 1), wobei m das Resultat vom jeweiligen Partition Aufruf ist. Für m = 1
oder m = n, was bei einer aufsteigenden bzw. absteigenden Sortierung der Fall wäre, würden die
Rekursionsaufrufe an ungleichsten verteilt werden, sodass eine Laufzeit von Θ(n2) entstünde, da
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eine Rekursionsgleichung der Form T (n) = T (n− 1) + (n− 1) folgen würde.

(d) Was müsste Partition (in Linearzeit) leisten, damit QuickSort Instanzen der Länge n in O(n log n) Zeit
sortiert? Zeigen Sie, dass Partition mit der von Ihnen geforderten Eigenschaft zur gewünschten Laufzeit
von QuickSort führt.

Lösung: Damit die Rekursionsaufrufe balanciert sind, sollte das pivot Element der Median des
Feldes sein. Den Median kann man deterministisch in O(n) Zeit bestimmen und dann mit einem
swap an die letzte Stelle des Feldes setzen, sodass wir die ursprüngliche Version von Partition
anschließend nicht mehr verändern müssen, wodurch ein Gesamtaufwand von O(n) folgt. Nach
Definition ist der Median das ⌊n/2⌋ kleinste Element in einem Feld, wodurch die Laufzeit von
QuickSort durch die Rekursionsgleichung T (n) = 2T (n/2) + O(n) verkörpert wird. Durch den
zweiten Fall der Meistermethode lässt sich bestimmen, dass T ∈ O(n log n) ist.
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Aufgabe 9: Suppentöpfe
Sie kennen das. Man will sich eine Nudelsuppe kochen, findet aber nicht den passenden Deckel für den Topf,
da alle Deckel und Töpfe durcheinandergekommen sind. Da Sie immer auf Ihre Töpfe geachtet haben wissen
Sie, dass zu jedem Topf ein Deckel vorhanden ist.

(a) Sie möchten ein beliebiges passendes Deckel-Topf-Paar finden. Wie viele Vergleiche sind dafür im besten
Fall nötig?

Lösung: Da ein beliebiges Paar gesucht wird, nehmen Sie irgendeinen Topf und probieren alle
Deckel aus. Im besten Fall passt gleich der erste Deckel, Sie benötigen nur einen Vergleich.

(b) Geben Sie einen Algorithmus in Pseudocode an, der ein Feld T mit Topfgrößen und ein Feld mit
Deckelgrößen D entgegennimmt. Die Ausgabe soll aus zwei Indizes i und j bestehen, sodass D[i] = T[j].
Wie viele Vergleiche braucht Ihr Algorithmus am schlechtesten Fall, um ein solches Paar zu finden?
Können Sie Ihren Algorithmus verbessern, sodass er im schlechtesten Fall weniger Vergleiche braucht?

Lösung: Die Algorithmus soll also ein beliebiges passendes Paar finden. Wir suchen einfach den
Deckel zum ersten Topf:

Algorithmus 10: findPair(int[ ] T, int[ ] D)

1 for j = 1 to D.length do
2 if D[j] = T[1] then
3 /* Da das Topfset vollständig ist, wird die folgende Zeile irgendwann

erreicht und der Algo gibt immer ein Ergebnis zurück. */

4 return (1, j)

Der Algorithmus braucht im schlechtesten Fall D.length −1 Vergleiche. Dies kann nicht verbessert
werden, da wir im schlechtesten Fall immer den passenden Topf zuletzt erwischen, egal welchen
Topf wir zuerst auswählen.

(c) Nun haben Sie genug von der Unordnung und möchten zu jedem Topf den passenden Deckel finden.
Wie gehen Sie vor, um jedem Topf einen passenden Deckel zuzuordnen? Sie dürfen dabei nur Topf mit
Topf und Deckel mit Deckel vergleichen. Verwenden Sie Θ(n log n) Vergleiche.

Lösung: Man sortiert die Deckel und die Töpfe zum Beispiel mit Quicksort. Anschließend kann
man den ersten Deckel auf den ersten Topf setzen . . .

(d) Lösen Sie nun Teilaufgabe c), aber diesmal sollen nur Vergleiche zwischen je einem Topf und einem
Deckel verwendet werden. Die Anzahl der Vergleiche soll wieder in (erwartet) Θ(n log n) liegen. Welchem
Verfahren aus der Vorlesung ähnelt Ihre Vorgehensweise?

Lösung: Sie wählen einen beliebigen Deckel und sortieren alle Töpfe, die zu klein für den Deckel
sind, nach links und alle Töpfe die zu groß für den Deckel sind, nach rechts. Es bleibt ein Topf in der
Mitte übrig, der zu diesem Deckel passt. Nun nehmen Sie einen Topf aus der linken Topfreihe und
sortieren die Deckel mit diesem. Deckel, die zu klein sind, kommen nach links, Deckel die zu groß
sind, kommen nach rechts. Es bleibt wieder ein Deckel übrig, mit dem Sie ein Paar bilden können.
Sie haben nun je eine linke und rechte Seite für Deckel und Töpfe. Sie wissen, dass die Deckel auf
der linken Seite zu den Töpfen auf der linken Seite passen müssen und ebenso auf der rechten Seite.
Sie wiederholen den Vorgang also für links und rechts rekursiv, bis Sie alle Paare gefunden haben.
Dieses Vorgehen ähnelt der QuickSort-Sortierung.

Aufgabe 10: Min-Heaps
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Gegen sei folgender Min-Heap in Feld-Darstellung:

[−5, 6, 3, 11, 18, 10, 8, 13, 17, 19]

(a) Wandeln Sie den Min-Heap in Baumdarstellung um und begründen Sie, dass es sich um einen Min-Heap
handelt.

Lösung:

-5

6 3

11 18 10 8

13 17 19

Dies ist ein korrekter Min-Heap, da jeder Knoten kleiner als seine beiden Kindknoten ist.

(b) Fügen Sie in den Min-Heap die Zahl 15 ein. Geben Sie das Ergebnis als Feld an.

Lösung:
[−5, 6, 3, 11, 15, 10, 8, 13, 17, 19, 18]

(c) Führen Sie auf dem originalem (nicht auf dem aus Teilaufgabe b) enstandenem) Min-Heap die Methode
ExtractMin aus. Geben Sie das Ergebnis als Feld an.

Lösung:
[3, 6, 8, 11, 18, 10, 19, 13, 17]

(d) Geben Sie an, ob folgende Aussage korrekt ist. Begründen Sie ihre Antwort:
In einem Min-Heap hat der Knoten mit dem größten Element immer maximale Tiefe.

Lösung: Die Aussage ist falsch. Betrachten Sie folgendes Gegenbeispiel:

[1, 2, 10, 3]

(e) Geben Sie an, ob folgende Aussage korrekt ist. Begründen Sie ihre Antwort:
Das drittkleinste Element in einem Min-Heap ist nicht notwendigerweise ein Kind der Wurzel.

Lösung: Die Aussage ist korrekt. Betrachten Sie folgendes Beispiel:

[1, 2, 10, 3]

Aufgabe 11: Pseudocode – Spot the Error
Die folgenden Algorithmen berechnen nicht das, was sie sollen. Erklären Sie, was der Fehler ist und schreiben
Sie den richtigen Algorithmus auf. Geben Sie auch die asymptotische Worst-Case-Laufzeit in Θ-Notation an.
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(a) Der Algorithmus soll f(n) = n berechnen.

Algorithmus 11: int Algo1(int n)

1 zähler = 0
2 for i = 1 to n do
3 return zähler +1

Lösung: return beendet den Algorithmus im ersten Schleifendurchlauf.

(b) Der Algorithmus soll f(n) =
∑n

i=0 i berechnen

Algorithmus 12: int Algo2(int n)

1 zähler = 0
2 for i = 1 to n do
3 zähler+1

4 return zähler

Lösung: Der Zähler wird nicht verändert.

(c) Der Algorithmus soll f(n) = n! berechnen.

Algorithmus 13: int Algo3(int n)

1 return Algo3(n− 1) · n

Lösung: Der Basisfall fehlt.

(d) Der Algorithmus soll true zurückgeben, wenn i im Array A enthalten ist, sonst false.

Algorithmus 14: boolean Algo4(int i, int[] A, int l = 0)

1 if A.length == l then
2 return false

3 else
4 return (i == A[l]) or Algo4(i, l + 1)

Lösung: Das Array wird nicht übergeben.

Aufgabe 12: Algorithmen und Laufzeiten

(a) Was berechnet der Algorithmus?
Wie viele Vergleiche, Additionen und Multiplikationen werden in Abhängigkeit von n ausgeführt?

Algorithmus 15: SomeAlgo(n)

1 int j = 0; int s = 1; int S = 0
2 while j < n do
3 S = S + s
4 j = j + 1
5 s = s · 2
6 return S
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Lösung: Die Funktion berechnet: 1 + 2 + 4 + · · ·+ 2n−1 = 2n − 1
Insgesamt gibt es n + 1 Vergleiche von j und n (n positive Vergleiche und 1 Vergleich, der die
Schleife abbricht) sowie n Multiplikationen von s mit 2, sowie 2n Additionen, je Durchlauf eine für
j und eine für S.

(b) Sei folgender Algorithmus zur Berechnung des Produkts i · (i+ 1) · . . . · (j − 1) · j für natürliche Zahlen
i und j mit i < j gegeben:

Algorithmus 16: int Produkt(int j, int i)

1 return Fakultaet(j)/Fakultaet(i− 1)

Algorithmus 17: int Fakulaet(int x)

1 if x == 0 then
2 return 1

3 return x · Fakultaet(x− 1)

Begründen Sie kurz, warum der Algorithmus Produkt korrekt ist. Geben Sie die Worst-Case-Laufzeit
von Produkt in Abhängigkeit von i und j an.

Lösung: Methode Produkt ist korrekt, da j!
(i−1)! =

1·2·...·(i−1)·i·(i+1)·...·j
1·2·...·(i−1) = i · (i+ 1) · . . . · j.

Die Worst-Case-Laufzeit von Produkt ist Θ(j).

Aufgabe 13: Polynome evaluieren
Die Regel von Horner ist eine Möglichkeit Polynome zu evaluieren:

P (x) =

n∑
k=0

akx
k = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + xan) . . . ))

Folgender Pseudocode implementiert diese Regel:

Algorithmus 18: evaluatePolynomial(a0, . . . , an, x)

1 y = 0
2 for k = n downto 0 do
3 y = ak + x · y
4 return y

(a) Welche asymptotische Laufzeit hat evaluatePolynomial? Begründen Sie Ihre Antwort kurz!

Lösung: n+1 Schleifendurchläufe, wobei in jedem Durchlauf eine Addition und eine Multiplikation
durchgeführt wird ⇒ (n+ 1) ·Θ(1) = Θ(n)

(b) Schreiben Sie einen Pseudocode, der naiv das Polynom evauliert, indem jedes xk komplett neu berechnet
wird. Schätzen Sie die Laufzeit Ihres Algorithmus asymptotisch scharf in Θ-Notation ab!

Lösung: Die Laufzeit der naiven Variante ist Θ(n2).
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Algorithmus 19: evaluatePolynomialNaive(a0, . . . , an, x)

1 y = 0
2 for i = 0 to n do
3 xi = 1
4 for j = 1 to i do
5 xi = xi · x
6 y = y + ai · xi

7 return y

(c) Zeigen Sie die Korrektheit von evaluatePolynomial mittels Schleifeninvariante!

Lösung: Wir benutzen folgende Schleifeninvariante:
Bei der i.-ten Ausführung des Schleifenkopfes in Zeile 2 gilt:

y =

n−(i+1)∑
k=0

ak+i+1x
k

Inititialisierung: Beim ersten Durchlauf des Schleifenkopfes gilt i = n. Somit gilt

y =

n−(i+1)∑
k=0

ak+i+1x
k =

−1∑
k=0

ak+n+1x
k = 0

Aufrechterhaltung: Sei die Schleifeninvariante vor dem i-ten Schleifendurchlauf erfüllt, d.h. es

gilt y =
∑n−(i+1)

k=0 ak+i+1x
k. Bei der Durchführung wird y auf ai + xẏ gesetzt, wodurch dann

gilt:

y = ai + x

n−(i+1)∑
k=0

ak+i+1x
k = ai + x

n−i∑
k=1

ak+ix
k−1 = ai +

n−i∑
k=1

ak+ix
k =

n−i∑
k=0

ak+ix
k

Damit gilt für den i+1-ten Schleifendurchlauf, dass y =
∑n−(i+1)

k=0 ak+i+1x
k und somit ist die

Schleifeninvariante wieder erfüllt.

Terminierung: Beim Abbruch der Schleifenbedingung gilt i = −1 und somit ist nach Schleifenin-
variante

y =

n−(i+1)∑
k=0

ak+i+1x
k =

n∑
k=0

akx
k

Somit berechnet evaluatePolynomial genau das gesuchte Polynom P (x).

Aufgabe 14: Vollständige Induktion
Zeigen Sie die folgenden Aussagen mittels vollständiger Induktion.

(a) Für jede natürliche Zahl n ist 3 ein Teiler von n3 − n.

Lösung: Wir beweisen die Aussage mit vollständiger Induktion über n:

Induktionsanfang Sei n = 1. Dann ist n3 = 1 und n3 − n = 0. Die Zahl 3 ist tatsächlich ein
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Teiler von 0.

Induktionsschritt Sei die Aussage richtig für beliebiges, festes n. Wir zeigen, dass sie auch für
n+ 1 richtig ist.

(n+ 1)3 − (n+ 1) = n3 + n2 + 2n2 + 2n+ n+ 1− (n+ 1)

= (n3 − n) + 3n2 + 3n

= (n3 − n) + 3(n2 + n)

Laut Induktionsannahme ist n3−n durch 3 teilbar. Nun addieren wir zu einer durch 3 teilbaren
Zahl ein Vielfaches von 3. Folglich ist die Summe ebenfalls durch 3 teilbar.

(b) Zeigen Sie, dass für alle n ∈ N gilt: 1 + 3 + · · ·+ (2n− 1) = n2

Lösung:

Induktionsanfang Sei n = 1. Dann gilt 2 · 1− 1 = 1 = 12.

Induktionsschritt . Sei die Aussage richtig für ein beliebiges aber festes n. Wir zeigen, dass sie
auch für n+ 1 richtig ist.

1 + 3 + · · ·+ (2(n+ 1)− 1) = 1 + 3 + · · ·+ (2n− 1) + (2(n+ 1)− 1)

= n2 + 2(n+ 1)− 1 = n2 + 2n+ 1

= (n+ 1)2

(c) Die Fibonacci-Folge ist eine rekursiv definierte Zahlenfolge. Dabei ist F (0) = 0 und F (1) = 1. Die n-te
Fibonacci-Zahl für ein n > 1 ist dann F (n− 1) + F (n− 2). Die Berechnungsvorschrift dauert für große
n jedoch sehr lange. Mit der Formel von Moivre-Binet kann die n-te Fibonacci-Zahl direkt ausgerechnet
werden. Beweisen Sie die Richtigkeit der Formel:

F (n) =
( 1+

√
5

2 )n − ( 1−
√
5

2 )n
√
5

Lösung: Sei a = (1 +
√
5)/2 und b = (1 −

√
5)/2. Wir zeigen die Korrektheit der Aussage durch

eine Induktion über n.

Induktionsanfang Sei n′ = 2. Dann ist F (n) = F (0) + F (1) = 1. Setzen wir n′ = 2 direkt in die
obige Gleichung ein, erhalten wir ebenfalls 1. Da die Fibonacci-Zahlen auf den jeweils zwei
vorherigen Folgengliedern aufbauen, müssen wir auch n′ = 3 testen: F (n) = F (2)+F (1) = 3,
was mit dem Ergebnis der direkten Gleichung übereinstimmt.

Induktionschritt Sei die Aussage richtig für n− 1 und n− 2. Wir zeigen, dass die Aussage dann
auch für n richtig ist:

F (n) = F (n− 1) + F (n− 2) =︸︷︷︸
IA

an−1 − bn−1

√
5

+
an−2 − bn−2

√
5

=
an−1 − bn−1 + an−2 − bn−2

√
5

=
an−1(1 + 1

a )− bn−1(1 + 1
b )√

5
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Es wäre schön, wenn 1 + 1/a = a. Also überprüfen wir das:

1 +
1

a
= a⇒ a+ 1 = a2 ⇒ a2 − a− 1 = 0⇒ a =

1±
√
1− 4 · (−1)
2

=
1±
√
5

2

Wir setzen a = 1 + 1/a oben ein und erhalten das gewünschte Ergebnis:

an−1a− bn−1b√
5

=
an − bn√

5
=

( 1+
√
5

2 )n − ( 1−
√
5

2 )n
√
5

(d) Auf einem quadratischen Schachbrett mit einer Seitenlänge von mehr als drei Feldern kann der Springer
jedes Feld von jedem anderen Feld erreichen. Dafür hat er beliebig viele Züge zur Verfügung.

Lösung: Wir zeigen die Aussage durch Induktion über die Seitenlänge n in Feldern:

Induktionsanfang Für n = 4 finden wir durch Versuchen heraus, dass die Aussage stimmt.

Induktionsschritt Sei die Aussage für n− 1 bewiesen. Wir zeigen die Richtigkeit der Aussage für
n. Dank der Induktionsannahme wissen wir, dass sich der Springer im Teilbrett n− 1×n− 1
überallhin bewegen kann. Betrachten wir das Brett n × n. Alle Randfelder sind durch nur
einen

”
Springersprung “ von einem Mittelfeld erreichbar. Jedes Mittelfeld ist aber wegen der

Induktionsannahme ebenfalls erreichbar. Deshalb kann der Springer auch im n×n Schachbrett
mit beliebig vielen Sprüngen auf alle Felder springen.

Aufgabe 15: Ähnliche Zahlen
Sei A ein Feld der Länge n > 1 von zufälligen Zahlen, wobei Zahlen mehrfach vorkommen dürfen.

(a) Geben Sie einen Algorithmus in Pseudocode an, der zwei Zahlen A[i] und A[j] mit i ̸= j sucht, so-
dass |A[i]−A[j]| minimal ist. Der Algorithmus soll die Indizes beider Zahlen ausgeben und Θ(n2) Zeit
benötigen.

Lösung:

Algorithmus 20: findClosestPair(int[ ] A)

1 n = A.length
2 minI = 1
3 minJ = 2
4 min = ∞
5 for i = 1 to n− 1 do
6 for j = i+ 1 to n do
7 abs = |A[i] − A[j]|
8 if abs < min then
9 min = abs

10 minI = i
11 minJ = j

12 return (minI,minJ)

(b) Begründen Sie die Korrektheit Ihres Algorithmus, indem Sie die Korrektheit der inneren Schleife mit
einer Invariante zeigen.
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Lösung: Wir geben eine Schleifeninvariante für die innere Schleife bei einem festen i an:
”
Vor der

k. Ausführung enthält min den minimalen Abstand eines Tupels in der Menge
{(s, t) ∈ N2 | (s = i⇒ t < i+ k) ∧ (s < i⇒ t < n+ 1) ∧ (0 < s ≤ i < t ≤ n)} “.

Initialisierung Vor der 1. Iteration der inneren for-Schleife kann min nur den minimalen Abstand
eines Tupels (s, t) mit s < i beinhalten, da min noch gar nicht angefasst wurde.

Aufrechterhaltung Gelte die Invariante vor der k. Iteration, also enthalte min das Minimum
obiger Menge. In der k. Iteration ist j = i+ k. Falls nun |A[i] − A[j]| kleiner als das bisherige
Minimum war, wird es ausgetauscht, andernfalls passiert nichts. Vor der k + 1. Iteration ist
also die Invariante wieder korrekt.

Terminierung Bei Beendigung der for-Schleife sind n−i Iterationen vergangen, also k = n−i+1.
Setzen wir diesen Wert in die obige Menge ein, fallen die ersten beiden Terme zusammen und
min enthält folglich das Minimum der Tupel in
{(s, t) ∈ N2 | (t < n+ 1) ∧ (0 < s ≤ i < t ≤ n)}.

Die Korrekheit der äußeren for-Schleife lässt sich analog zeigen; sie folgt sofort aus der Korrektheit
der inneren for-Schleife.

Aufgabe 16: Vereinigung
Geben Sie in gut kommentiertem Pseudocode einen Algorithmus an, der als Eingabe zwei aufsteigend sortierte
Felder A und B erhält. die Ausgabe soll ein Feld C sein, das jede Zahl aus A und B genau einmal enthält.
Die Laufzeit soll O(n) sein, wobei n = A.length + B.length.

Lösung: Wie Merge von MergeSort, wobei Vielfache entweder gleich ignoriert, oder herausgefiltert
werden, wenn das Hilfsfeld in C kopiert wird.

Aufgabe 17: Zusammenhängende Mengen
Gegeben sei ein Feld A von positiven, natürlichen Zahlen. Das Feld habe n Elemente. Das Feld A heißt zusam-
menhängend, wenn es zwei Zahlenm, l ∈ N gibt, sodass {A[1], . . . , A[n]} = {m,m+1, . . . ,m+l}. Zum Beispiel
ist das Feld ⟨10, 5, 6, 10, 8, 7, 8, 9⟩ zusammenhängend, wobei ⟨10, 5, 6, 10, 8, 9⟩ nicht zusammenhängend ist, da
die Zahl 7 fehlt. Geben Sie einen Algorithmus an, der in O(n) Zeit entscheidet, ob das gegebene Feld A
zusammenhängend ist.

Lösung: Betrachte den folgendne Algorithmus. Sei max, min das größte bzw. das kleinste Element in A.
Ein Feld A ist genau dann zusammenhängend, wenn {A[1], . . . , A[n]} = {min,min+1, . . . ,max}. Teste für
jede natürliche Zahl in [min,max], ob diese in A enthalten ist. Falls ja, gib true zurück, sonst false. Wir
können den Test mithilfe eines zweiten Felds B durchführen. Die Länge des Feldes B ist max−min+ 1
und B[j] gibt an, ob ein A[i] existiert, sodass j = A[i] −max + 1. Das heißt, wenn am Ende des Algos
ein B[j] gibt, das false ist, kann A nicht zusammenhängend sein. Damit der Algorithmus tatsächlich in
O(n) läuft, muss sichergestellt werden, dass B.length ∈ O(n). Falls max−min+1 > n, so kann A nicht
zusammenhängend sein, da dann l > n ist aufgrund der vorherigen Beobachtung.
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Algorithmus 21:

1 max, min = −∞,∞
2 for i = 1 to n do
3 if A[i] < min then
4 min = A[i]

5 if A[i] > max then
6 max = A[i]

7 if max − min + 1 > n then
8 return false

9 bool[ ] B = new bool[max − min + 1] // Standardwert ist false

10 for i = 1 to B.length do
11 B[A[i] − max +1] = true

12 for i = 1 to n do
13 if B[i] == false then
14 return false

15 return true

Aufgabe 18: Elemente ausgeben
Gegeben seien zwei unsortierte Arrays mit ganzen Zahlen A und B mit jeweils n Elementen. Die Elemente
eines Arrays sind dabei paarweise verschieden. Entwickeln Sie einen Algorithmus, dessen worst-case Lauf-
zeit O(n log n) ist, der alle Elemente von A ausgibt, die nicht in B vorkommen. Finden Sie auch einen
Algorithmus, der das Problem in (erwartet) O(n) löst?

Lösung: Idee: Baue einen binären Suchbaum T aus dem Feld B. Iteriere anschließend durch das Feld
A und suche das Element A[i] in T . Falls es nicht enhalten ist, gib das Element zurück. Alternativ
kann man auch das Feld B sortieren und anschließend mit Hilfe einer binären Suche nach den jeweiligen
Elementen suchen.

Algorithmus 22: setDifference(int[] A, int[] B)

1 T ← BinarySearchTree()
2 for i = 1 to B.length do
3 T .Insert(B[i])

4 for i = 1 to A.length do
5 if T .Search(A[i]) == null then
6 print(A[i])

Laufzeit: Um T zu bauen benötigen wir O(n log n) Zeit. Anschließend rufen wir n mal Search auf, sodass
dies auch nochmal O(n log n) Zeit beansprucht. Insgesamt hat der Algorithmus also eine Laufzeit von
O(n log n).

Anstatt einen binären Suchbaum zu benutzen, könnte man auch eine geeignete Hash-Tabelle benutzen,
wobei das Einfügen in die Hash-Tabelle erwartet O(n) benötigt und der zweite For-Loop in den Zeilen
4-6 ebenfalls nur O(n) Zeit verbraucht. Somit hätten wir eine Gesamtlaufzeit von erwartet O(n).

Aufgabe 19: Vereinigung von Intervallen
Gegeben sei eine Liste R = ⟨[x1, y1], . . . , [xn, yn]⟩ von gegebenenfalls überlappenden Intervallen. Geben Sie
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einen Algorithmus an, der die Gesamtlänge der Vereinigung von den Intervallen in R angibt. Der Algorithmus
soll eine asymptotische worst-case Laufzeit von O(n log n) haben!
Hinweis: Abbildung 1 zeigt ein Beispiel. Könnte eine gewisse Sortierung der Intervalle helfen?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Abbildung 1: Mögliche Intervalle in R. Die Gesamtlänge der Vereinigung dieser Intervalle ist 15.

Lösung: Die Idee ist, sich eine Linie zu denken, die von links nach rechts durch die Intervalle geht
(sweep-line Algorithmus). Siehe folgende Abbildung:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Die Linie stoppt nur an Anfängen bzw. and Enden von Intervallen. Diese Stopps nennen wir opening
events (für Intervallanfänge) und closing events (für Intervallenden). Nachdem die Linie mehr als ein
Intervall gleichzeitig schneiden kann, müssen wir die Anzahl der derzeit geschnittenen Intervalle auf-
rechterhalten. Die Variable, die diese Anzahl angibt nennen wir activeIntervals. Außerdem müssen wir
den

”
ältesten“ Startpunkt eines Intervalls kennen, um die Gesamtlänge berechnen zu können. Diesen

”
ältesten“ Startpunkt speichern wir in der Variable lastOpenInterval. Je nachdem, welchen Eventypen
wir haben, müssen wir anders reagieren:

opening event : Falls wir gerade kein lastOpenInterval haben, speichern wir das gerade entdeckte Inter-
val und inkrementieren den Counter activeIntervals. Andernfalls wird nur der Counter activeIntervals
inkrementiert.

closing event : Wir dekrementieren den Counter activeIntervals. Falls dieser 0 wird addieren wir zur
Gesamtlänge die Differenz des Endpunktes des derzeitigen Intervalls und des Startwertes des las-
tOpenIntervals. Nachdem die Linie nun kein Intervall mehr schneidet, setzen wir lastOpenInterval
auf null.

Folgender Pseudocode setzt diese Idee um:

Algorithmus 23: FindUnionOfIntervals(List R = ⟨[x1, y1], . . . , [xn, yn]⟩)
1 Definiere Objekt Event, das ein key enthält und einen Pointer auf das dazugehörige Intervall.

Die Variable key ist entweder ein Start- oder Endwert des Intervalls.
2 events = Array von Events aus R
3 MergeSort(events) // Sortiere nach key

4

5 totalLength = 0
6 lastOpenInterval = null
7 activeIntervals = 0
8

9 for i = 1 to events.length do
10 if lastOpenInterval == null then
11 lastOpenInterval = events[i]
12 activeIntervals = 1

13 else
14 if events[i] is closing event then
15 activeIntervals = activeIntervals − 1
16 if activeIntervals == 0 then
17 totalLength = totalLength + events[i].key − lastOpenInterval.x
18 lastOpenInterval = null

19 else
20 activeIntervals = activeIntervals + 1

21 return totalLength
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Laufzeit: Insgesamt haben wir 2n Events, da jedes Interval genau 2 Events beiträgt. Das Feld aus
Events wird mit MergeSort sortiert, was Θ(n log n) worst-case Laufzeit in Anspruch nimmt. Anschließend
iterieren wir über alle Events, wobei eine Iteration konstanten Aufwand hat. Dementsprechend haben
wir eine Laufzeit von Θ(n log n) + Θ(n) = Θ(n log n)

Aufgabe 20: Flugsicherheit
Im Flugverkehr müssen die Flugzeuge gewisse Abstände einhalten. Gegeben ist eine unsortierte Liste von
Flugzeugen. Jedes Flugzeug a hat drei Attribute, nämlich a.x, a.y und a.z. Diese Attribute geben die Ko-
ordinaten im Luftraum an. Sie sollen einen Algorithmus angeben, der true ausgibt, falls sich zwei Flugzeuge
näher als den Abstand d kommen. Ihr Kommilitone hat einen Algorithmus entwickelt (siehe Algo 24), der
dieses Problem lösen soll.

Algorithmus 24: planesTooClose(Plane[ ] planes, d)

1 mergeSort(planes) // Sortiere nach y-Koordinate
2 if planes.length < 2 then
3 return false

4 for i = 2 to planes.length do
5 f1 = planes[i]
6 f2 = planes[i− 1]
7 yDistance = |f1.y − f2.y|
8 if yDistance < d then

9 e =
√

(f1.x− f2.x)2 + (f1.y − f2.y)2 + (f1.z − f2.z)2

10 if e < d then
11 return true

12 return false

(a) Welche Laufzeit hat dieser Algorithmus, wenn man davon ausgeht, dass eine Wurzeloperation O(1) Zeit
benötigt?

Lösung: Der Algorithmus ruft mergeSort auf die Eingabe auf und iteriert dann anschließend über
die sortierte Eingabe, wobei eine Iteration laut Angabe in O(1) ist. Die Gesamtlaufzeit ist demnach
O(n log n) +O(n) = O(n log n).

(b) Ist der Algorithmus korrekt? Begründen Sie Ihre Antwort.

Lösung: Der Algorithmus ist nicht korrekt. Gegenbeispiel: d = 3 mit Flugzeugen p1 = (0, 0, 0), p2 =
(0, 1, 100), p3 = (0, 2, 0). p1 und p3 sind sich zu nah; das erkennt der Algo aber nicht, weil er p1 und
p3 nie miteinander vergleicht.
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