Aufgabensammlung ADS-Repetitorium WS 24 /25

O-Notation — inkrementelle Algorithmen — Sortieren

Aufgabe 1: Schleifeninvariante
Gegeben sei der folgende Algorithmus, der die Fakultét einer Zahl k£ berechnet.

Algorithmus 1: int fakultat(int k)

1 if k =0 then
2 L return 1

3 f=j=k

4 while j > 1 do
5 Lj_j—l
6 | f=FJ

7 return f

(a)

Geben Sie eine geeignete Invariante an, mit der wir zeigen konnen, dass fakultdt fiir Eingaben > 1

korrekt arbeitet.

Lésung: Vor jeder Ausfithrung des Schleifenkopfes in Zeile 2 hat f den Wert k!/(5 — 1)\

Zeigen Sie mit Hilfe der in (a) aufgestellten Invariante die Korrektheit des Algorithmus.

Losung:
Initialisierung Vor der ersten Iteration (j = k) hat f den Wert k = k!/(k — 1)! =k!/(j — 1)L

Aufrechterhaltung Sei die Invariante korrekt zu Beginn einer Iteration. Zunéchst wird j = j — 1
gesetzt, es gilt also nun f = k!/j!. Danach wird f = f - j berechnet, wonach wieder f =
k!l/(5 — 1)! gilt. Damit ist die Schleifeninvariante auch weiterhin erfiillt.

Terminierung Die Schleife bricht ab, wenn 7 < 1. Da zu Beginn j = k£ > 1 war und j nur
dekrementiert wurde, gilt also genau j = 1. Wegen der Schleifeninvariante gilt also f =

kG — 1)l =kl/(1— 1) = kl/0! = k.

Aufgabe 2: SelectionSort
Gegeben sei der folgende Sortieralgorithmus.

(a)

(b)

Welche Laufzeit hat SelectionSort jeweils im besten und im schlechtesten Fall?

Losung: Die innere Schleife benttigt n — i + 1 Schritte mit jeweils konstantem Aufwand. Dadurch
erhalten wir {iber alle Iterationen eine Laufzeit von

n—1 n
Zlni+122in(n2+l)1€®(n2)

=

Geben Sie eine geeignete Invariante an, um die Korrektheit von SelectionSort zu beweisen.

Seite 1

Lehrstuhl fiir Informatik I

31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Algorithmus 2: SelectionSort(int[] A)

1 n = Alength
2 fori=1ton—1do

3

o oA

;N

(=i
for j =i to n do

if A[j] < A[{] then
e

Swap(A,i,£)

8 return A

Losung: Zu Beginn der iten Iteration

(i) enthélt A[l..i — 1] die ¢ — 1 kleinsten Zahlen aus A aufsteigend sortiert und

(ii) A enthilt noch die gleichen Zahlen wie zu Beginn.

(c) Beweisen Sie die Korrektheit von SelectionSort. Fiir die innere Schleife muss kein Korrektheitsbeweis

angegeben werden, es ist ausreichend zu beschreiben, was die Schleife berechnet.

Loésung:

Initialisierung Vor der ersten Iteration (i = 1) wurde A noch nicht verindert. Daher ist (ii)
erfiillt. AuBerdem enthélt A[1..0] trivialerweise die kleinsten 0 Elemente aus A.

Aufrechterhaltung Seien (i) und (ii) zu Beginn der iten Iteration erfiillt. Innerhalb der Iteration
wird A nur durch einen Tauschbefehl verdindert. Somit bleibt (ii) auch nach der Iteration
erhalten. Die innere Schleife berechnet den Index des kleinsten Elements aus Afi..n] und
tauscht dieses Minimum an die Stelle A[i]. Wegen (i) ist A[{] mindestens so groff wie die
Zahlen in A[l..i — 1], daher enthélt A[1..i] nun die ¢ kleinsten Zahlen aufsteigend sortiert.
Somit bleibt auch (i) erhalten.

Terminierung Der Algorithmus terminiert fiir ¢ = n. Aus (ii) folgt direkt, dass A noch die gleichen
Zahlen wie zu Beginn enthélt. Dabei ist wegen (i) das Teilfeld A[l..n — 1] bereits korrekt
sortiert. Die Zahl in A[n] muss wegen (i) mindestens so grofi wie A[n — 1] sein, folglich ist A
korrekt aufsteigend sortiert.

Aufgabe 3: O-, ©- und)-Notation
Beweisen oder widerlegen Sie die Behauptungen. Arbeiten Sie mit der Definition aus der Vorlesung.

(a) f(n) = %n —2 € Qlogyn)

Losung: Die Aussage ist wahr. Dementsprechend ist zu zeigen: Ing3cvVn > ng: c-logyn < %n -2
Man wéhle ¢ = 1/2, dann gilt:

1 1
ilogzngin—2élog2n+4§n

Also wihle ng = 8, da log, n < n fiir alle n > 0.

(b) f(n) =n"+n?ec Om" 1)

Seite 2

31.03.2025 Aufgabensammlung ADS-Repetitorium

Lehrstuhl fiir Informatik I
Universitdt Wiirzburg

Losung: Die Aussage ist falsch. Dementsprechend ist zu zeigen: VeVnoIn > ng: ¢-n"~t < f(n)
Seien ng und ¢ beliebig. Wir beobachten zunéchst ¢ -n"~t < n" = c-n"~! < f(n).

n

— c< =N

nnfl

Damit wihlen wir n = max(ng,c+ 1). Fiir diese Wahl gilt n > ¢ und somit auch ¢-n"~! < n", aus

der Beobachtung folgt die gewiinschte Aussage.

(c) f

(n) = "5t2® ¢ O(n?)

Losung: Die Aussage ist falsch. Dementsprechend ist zu zeigen: Ing3cvn > ng: ";;jj?Q <c-n?

Wir vereinfachen die Ungleichung;:

nt — 4n? < 3
—<c¢'n
2n+7

nt —dn? <c-n®-(2n+7)
n* —4n? < c-(2n* + ™n?)

Mit der letzten Ungleichung wihlen wir ng =1 und ¢ = 1.

(d) f(n) = logs(n®-9") € Q(nlogs n)

Lésung: Die Aussage ist wahr. Also ist zu zeigen: IngIcvVn > ng: ¢ - nloggn < logg(n® - 9"2). Wir
zeigen dies:
5 n? 5 n? 2 2
c-nloggn <logs(n° - 9™) =logsn” + logz 9" = 5logsn + n-logs 9 = 5logsn + 2n

c-nlogsn < 2n? < 5logs n + 2n?
g3 > > g3

Wir miissen dieses zeigen

c-logsm < 2n

Also konnen wir ¢ = 1 wihlen und ny = 0, da logsn < 2n fiir alle n.

f(n) =log, n € ©(log, n) fir beliebige a,b > 1

Losung: Die Aussage ist wahr. Also ist zu zeigen: Inpg3ciVn > np: ¢1 - logyn < log,n und
dngdeaVn > ng: log, n < co - log, n. Die Auflésung der Ungleichung liefert auch gleich die Werte

fiir ¢; und ¢y, unabhéngig von n, also kdnnen wir ng = 0 wéhlen.

c1 logyn <log,n < cylog, n
1

o < 0g, 1

log, n

log, n

<c2

€ S—— <
log, a - log, n

1 < < e

“logy a

(f)

f(n) = 155n* + nsinn € O(n?)

Seite 3

31.

Lehrstuhl fiir Informatik I
Universitdt Wiirzburg

03.2025 Aufgabensammlung ADS-Repetitorium

Losung: Die Aussage ist wahr. Wir zeigen zuniichst f(n) € Q(n?), dafiir ist folgendes zu zeigen:
InideiVn > nq: e - n? < ﬁ?ﬂ + nsinn:

¢ -n?< in2 + nsinn
— 100
2 < 1 n2
~— 100

Das zeigen wir

ci1n —

n < 100712 +nsinn

ci-n<—n-—1

Nun wihlen wir n; = 101, sodass f(n) > 0. Anschlieflend wihlen wir passendes c;, sodass die
Ungleichung erfiillt ist, zum Beispiel ¢; = 1/100—1/101 (diesen Wert erhélt man durch Multipliation

obiger Ungleichung mit 1/n. Jetzt zeigen wir noch f(n) € O(n?), dafiir miissen wir zeigen, dass
dngdeaVn > noy: ﬁnz +nsinn < ¢y -n?:

in2 +nsinn < ¢y - n?
100 -
1
mn2+nsinn§mn2+n < cz~n2

Das zeigen wir

1
—n+1<c-n

100
L1
n T100 =

Fiir no = 2 und ¢ = 1 ist die obige Ungleichung immer erfiillt. Fiir das geforderte ng nehmen wir
max(ny,ng) = 100.

f(n) =n*—10n3 + 2n € O(n?)

Losung: Die Aussage ist falsch. Also ist zu zeigen: VeVn3ng > n: n* — 10n3 + 2n > ¢ - n3. Seien ¢
und ng beliebig:

c-nd<nt*—10n% +2n
c-n®<n*—10n% <n*—10n% +2n

c+10<n

Wihle also n = max(ng,c+ 11).

Losung: Die Aussage ist korrekt. Also ist zu zeigen: VeVn3ng > n: ¢-1/4/n > 9/n. Seien ng und ¢
beliebig:

9 1

~ < ¢+ — Néchste Gleichung erhilt man durch n/v/n = v/n
n Vn

9

=< Vvn

— <n
c?

Wihle also n = max(ng,81/c? +1).

Seite 4

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Aufgabe 4: Asymptotisches Wachstum von Funktionen

Ordnen Sie die Liste von Funktionen nach ihrem asymptotischen Wachstum (O(...) C O(...)--- C O(...)).
Nutzen Sie = fiir das gleiche asymptotische Wachstum und C fiir unterschiedliches Wachstum. Beispiel:
f(n) =n, g(n) = 2n, h(n) = n? dann gilt: O(f(n)) = O(g(n)) < O(h(n)).

Vnlog,(n?), 5v/n,2", logy(n), n® — Tn, nlog,o(n/3), n'°&:@W log,(n?), v/nlogy(n¥™),
4105;37;7 22n7 (n+ 1)27 n(logQ(n))Q, n!7 23n10g2(n)

Loésung:
o /nlog(n?) = 2y/nlog(n) o 4logs(n) — plogs(4)
e nlog(n/3) = nlog(n) —nlog(3) o n'ogs(1) ~ 126
e log,(n3) = 3log,(n) e O(n!) C O(n™) = O(2"1°827) C O(8" 1082)

e /nlog(nV™) = nlog(n) Basiswechsel fiir Logarithmen

O(logy(n)) = O(logy(n®)) € O(5v/n) C O(v/nlog,(n?)) € O(v/nlog(nV™)) = O(nlog,o(n/3))
C O(nlog3(n)) C O(n'&W) = O#&M) C O(n? — Tn) = O((n +1)?)
C 0(2") € O(2*") ¢ O(n!) G O(2%"18=("))

Aufgabe 5: Aufwandsanalyse
Gegeben seien die Funktionen f € ©(logn) und g(n) € ©(n). Bestimmen Sie die Laufzeit der folgenden
Programmfragmente in der ©-Notation.

(a)

Algorithmus 3:

1 fori=1to n do

2 | g(n)

Losung: ©(n?), da g(n) n-mal aufgerufen wird.

Algorithmus 4:

11=1

2 while i < n do
f(n)

g9(n)
1=1-2

(S B]

Seite 5

Lehrstuhl fiir Informatik I

31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

()

Lésung: ©(nlogn). i wird in jedem Schleifendurchlauf verdoppelt, deswegen wird die while-Schleife
O (log, n)-mal ausgefiihrt. Innerhalb der Schleife ist der Aufwand ©(logn)+0(n) = O(n). Insgesamt
ist der Aufwand also:

O(logyn) - ©(n) = O(nlogn)

Algorithmus 5:

1i1=n
2 while 7 > 0 do

5 Lf(n)
4 =3

Losung: O(log? n). Die Schleife wird ©(log, n)-mal ausgefiihrt. Also ist der Aufwand:

O(log, n) - ©(logn) = O(log* n)

Algorithmus 6:

1 fori=1tondo

2 j=n

3 while j > 1 do

4 for k=1tondo
5 | g(n)

6 j:%

Losung: ©(n®logn). Die innere Schleife wird n-mal betreten, hat also einen Gesamtaufwand
von O(n?). Die while Schleife wird ©(logn)-mal betreten, hat also einen Gesamtaufwand von
O(n?logn). Die dufere for-Schleife wird n-mal betreten, also ist der Gesamtaufwand ©(n?logn).

Aufgabe 6: Laufzeiten von Pseudocodes bestimmen
Analysieren Sie die Algorithmen 7-9 beziiglich der Laufzeit. Geben Sie asymptotisch scharfe Schranken in
©-Notation an!

Algorithmus 7: Algol(int[] A) Algorithmus 8: Algo2(int[] A)
1 k=5 1z2=0

21=0 2i=1

3 while i < A.length — k do 3 while i < A.length do

4 MergeSort(A, i+ 1, i + k) 4 x=x+ Ali]

5 i=i+k 5 i=2-1

6 MergeSort(A, i + 1, A.length) 6 return z

Seite 6

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Algorithmus 9: Algol(int n)

1 total =0

2 fori=1tondo

3 =0

4 for j =1to i do
5 Lx:x—l—l

6 total = total + x

7 return total

Losung:

e Algol: MergeSort wird immer fiir ein Teilfeld der Lange hochstens k = 5 aufgerufen und somit ist
die Laufzeit aller MergeSort Aufrufe konstant. Die While-Schleife in Zeile 2 wird n/k = n/5 mal
aufgerufen. Das heifit ingesamt hat Algol eine Laufzeit von O(n)

e Algo2: Pro Schleifendurchlauf haben wir konstanten Aufwand. Mit jedem Aufruf der Schleife wird 4
verdoppelt. Um die Anzahl der Schleifendurchliaufe k zubestimmen, miissen wir herausfinden wann
2F > n ist, wobei n = A.length. Dies ist der Fall, wenn k > log,(n). Ingesamt liuft Algo2 also in
O(logn) Zeit.

e Algo3: Der Aufwand des Schleifenkorpers der inneren Schleife in Zeile 4-5 ist konstant. Demnach
konnen wir die Gesamtlaufzeit von Algo3 mit folgender Gleichung ausdriicken:

n n

dle@m+d o) | =6+ e()=06(n)+6(n?) =6(n?)
j=1

i=1 i=1

Aufgabe 7: Sortieralgorithmen

(a) Sortieren Sie das Feld A =[4, 3,7, 2,0, 9,8, 1, 5, 6] mit InsertionSort. Geben Sie nach jeder Iteration
der duleren Schleife das Feld an.

Losung:
1. A=1[3,4,7,2,0,9,8 1,5, 6] — Die 3 wird eingeordnet
2. A=1[3,4,7,2,0,9,8,1,5, 6] - Die 4 ist bereits richtig
3. A=1[3,4,7,2,0,9,8, 1,5, 6] - Die 7 ist bereits richtig
4. A=12,3,4,7,0,9,8, 1,5, 6] - Die 2 wird eingeordnet
5. A=10,23,4,79,8 1,5, 6] - Die 0 wird eingeordnet
A=10,234,7,9,8 1,5, 6] - Die 9 ist bereits richtig
A=10,234,738,9 1,5, 6] - Die 8 wird eingeordnet
A=10,1,2 34,7895, 6] - Die 1 wird eingeordnet

© »® N

A=101,23 457,809, 6] — Die 5 wird eingeordnet
10. A=10,1,2, 3,4,5, 6,7, 8, 9] — Die 6 wird eingeordnet

Seite 7

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

(b) Sortieren Sie das Feld B =[3, 7, 2, 9, 1, 4, 6, 5, 8, 0] mit HeapSort. Geben Sie bei jedem Schritt den
entstandenen Heap an.

Losung: Zuerst miissen wir das Feld in einen Heap umbauen. Die Schritte dafiir sind:
1.B=13,7,2,9,1,4,6,5, 8, 0] — Heap [1, 0] ist bereits ein Heap.
2.B=1[3,7,2,9,1,4,6,5,8,0] — Heap [9, 5, 8] ist bereits ein Heap.
3.B=1[3,7,6,91,4,2,5 8 0] - Heap [6, 4, 2] wird gebildet.

B=1[3.9.671,4, 25,8, 0] - Heap [9, 7, 1] wird gebildet.

B=13,9681,4, 2,5 7, 0] -7 versickert.

B=19 36,814, 25,7 0] - Heap [9, 3, 6] wird gebildet.

B=19, 86 31,4, 25,7, 0] -3 versickert.

® N o o e

B=1986,71, 4,25, 3, 0] - 3 versickert.

Nun zur Sortierung:

—_

.B=1[8,7,6,5 1, 4,20 3| 9] -0 mit 9 tauschen und versickern

[\)

.B=1[7,56,314,20]8, 9] — 3 mit 8 tauschen und versickern
B=16,543102]|7 8, 9] - 0mit 7 tauschen und versickern
B=1523,4210]|6,7, 8 9] - 2 mit 6 tauschen und versickern
B=1[4,3,021]|5,6,7, 8 9] - 0 mit 5 tauschen und versickern
B=1[3,201]4,56,7, 8 9] - 1 mit 4 tauschen und versickern
B=1[210]34,56,7, 8 9] - 1 mit 3 tauschen und versickern
B=1[1,0]23,4,5,6,7, 8 9] - 0 mit 2 tauschen und versickern

© X N e oo w

B=101,23456,7, 8, 9] -1 mit 0 tauschen und versickern

(¢) MergeSort arbeitet rekursiv. Geben Sie fiir das Feld C =9, 4, 1, 3, 5, 2, 6, 0, 8, 7] den Rekursionsbaum
von MergeSort an. In jedem Knoten soll der jeweilige Aufruf von MergeSort und die zu sortierende
Teilliste stehen, jeweils vor der Sortierung.

Loésung:

Seite 8

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

MergeSort(A,10,10) |

| MergeSort(A,9,10

MergeSort(A.9,9) |

| MergeSort(A,6,10) |

MergeSort(A,8,8) ‘

’ MergeSort(A,6,8) MergeSort(A,7,7) ‘

MergeSort(A,6,7)

) i
[ijw MergeSort(A,5,5) ‘

’ MergeSort(A,1,10) ‘ MergeSort(A,6,6) ‘

’ MergeSort(A,4,5)

MergeSort(A,4,4) ‘

’ MergeSort(A,1,5) ‘

MergeSort(A,3,3) ‘

’ MergeSort(A,1,3) MergeSort(A,2,2) ‘

MergeSort(A,1,2)

MergeSort(A,1,1) ‘

(d) Sortieren Sie das Feld D = [6, 4, 7, 9, 2, 3, 1, 5, 0, 8] mit einem vereinfachten QuickSort. Dieser
schreibt alle Elemente, die kleiner als das Pivotelement sind, links und alle groBleren rechts neben das
Pivotelement. Zeichnen Sie den Rekursionsbaum. Schreiben Sie in jeden Knoten das zu sortierende
Teilfeld nach dem Aufruf von Partition und markieren Sie das Pivotelement, die Wurzel sieht also so
aus: [6,4,7,0,2,3,1,5, 8, 9]. Achtung: Das ist nicht der VL-Algorithmus, aber die Idee ist die gleiche!

Loésung:

[9]

][6, 4,7,0,23,1,5,8, 9]\

[6, 7]

][4, 2.3,1,0,5, 6, 7]\

[0, 4, 2, 3, 1]

Aufgabe 8: Sortieren mit Quicksort

(a) Gegeben ist die Ausgabe der Methode Partition des Quicksort Algorithmus. Rekonstruieren Sie die Ein-
gabe. Konkret sollen Sie das Array A = (_,_,1,_,) so vervollstindigen, dass der Aufruf Partition(A,
1, 5) die Zahl 3 zuriickgibt und nach dem Aufruf gilt, dass A = (1,2, 3,4, 5) ist.

Losung: Die Aufgabenstellung gibt bereits vor, dass A[3] = 1 sein soll und dass das gewihlte pivot
Element an Index 3 des resulticrenden Arrays A ist, also A[3] = 3, wodurch die 3 im vorherigen
Array an letzter Stelle stehen muss. Nachdem nach der Ausfithrung von Partition(A4, 1, 5) das Feld
aufsteigend sortiert sein soll, muss 1 als erstes und 2 als zweites geswapt werden. Das heifit, dass
in den ersten beiden Feldern nur die 4 und die 5 stehen darf. Wenn A[1] = 4 wiire, dann wiirde der

Seite 9

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

letzte swap nach der for-Schleife die Sortierung zerstéren. = das Feld muss vor der Ausfithrung von
Partition(A, 1, 5) also folgendermafien aussehen: A = (5,4,1,2,3).

(b) Beweisen Sie die Korrektheit von Partition mittels Schleifeninvariante.

Lésung: Die Idee von Partition ist die Folgende: Bestimme einen Index m € {l,...,r} und teile
All..r] so in A[l..m—1] und A[m+1,r] auf, dass alle Elemente im ersten Teilfeld kleiner gleich A[m]
sind und alle im zweiten Teilfeld grofier als A[m] sind. Dies schafft Partition durch eine Schleife, die
das vordere Teilfeld aufrechterhélt und alle Elemente, die kleiner gleich das pivot Element sind in
das vordere Teilfeld swapt. Unsere Schleifeninvarianten miissen also diese Eigenschaften reflektieren,
damit wir die Korrektheit von Partition beweisen konnen. Wir werden vier Invarianten benutzen,
um die Korrektheit zu zeigen:

1) Fiir alle Elemente in A[l..i — 1] gilt, dass A[k] < pivot

(1)
(2) Fiir alle Elemente in Afi..j — 1] gilt, dass A[k] > pivot
(3) Wihrend der gesamten Ausfithrung bleibt pivot = A[r]
(4)

4) All..j — 1] enthéilt die gleichen Elemente wie zu Beginn

Initialisierung: Vor Beginn der Ausfithrung des ersten Schleifendurchlaufs gilt ¢ = [. Trivialerweise
gilt, dass A[l..l — 1] nur Elemente enthilt, die kleiner gleich dem pivot sind. Auflerdem gilt
j =1, wodurch auch gilt, dass alle Elemente in A[l..l — 1] grofler sind, als das pivot Element.
pivot = Alr] wurde gesetzt und nicht mehr verédndert und weil A[l..l — 1] leer ist und nichts
verandert wurde, gilt auch die letzte Schleifeninvariante.

Aufrechterhaltung: Gelten die Schleifeninvarianten (1)-(4) bei der Ausfithrung des Schleifenkopfs
bei der j. Iteration. Wir unterscheiden zwei Félle: A[j] < pivot: Laut (1) enthilt das Feld
All..i — 1] nur Elemente, die kleiner gleich dem pivot sind. Nun wird das Element in A[j]
mit dem Element in A[i] vertauscht und ¢ inkrementiert. Weil A[j] < pivot war, gilt nun,
dass das Feld A[l..i — 1] erneut nur Elemente < pivot enthélt. Somit bleibt die Invariante (1)
erhalten. Aufgrund der Invariante (2) gilt, dass das Element, dass in A[i] war und nun an
Stelle A[j] steht grofier als das pivot war. Diese Variante bleibt also auch erhalten. (3) und
(4) bleiben natiirlich auch erhalten, weil wir nur swappen und das Element A[r] nie angeriihrt
werden kann. Falls A[j] > pivot passiert in der Schleife nichts (bis auf die Erhéhung von j),
weil A[j] > pivot, bleibt (2) erhalten. Der Rest verdndert sich nicht und bleibt deshalb auch
erhalten.

Terminierung: Beim Abbruch der Schleife gilt, j = r. Aus den Invarianten folgt, dass wir das
Feld A[l..r] in drei Teile partitioniert haben. Wegen (1) haben wir ein Feld A[l..m —1], das nur
Elemente enthélt, die kleiner gleich dem pivot sind, ein Teilfeld, das nur ein Element enthlt
und zwar A[m], was aus dem letzten swap resultiert und Invariante (3), sowie dem letzten
Teilfeld A[m + 1..r], das nur Elemente enthiilt, die gréBler sind, als das pivot (2).

(c) Geben Sie fiir jede natiirliche Zahl n eine Instanz der Linge n an, sodass QuickSort (n?) Zeit benétigt.
Begriinden Sie ihre Behauptung.

Lésung: Wir erhalten eine Laufzeit von 2(n?), falls die beiden Rekursionsaufrufe moglichst ungleich
verteilt werden, weil die Rekursionsgleichung von Quicksort folgendermafien aussieht: T'(n) = T'(m—
1)+ T(n—m)+ (n— 1), wobei m das Resultat vom jeweiligen Partition Aufruf ist. Fiir m = 1
oder m = n, was bei einer aufsteigenden bzw. absteigenden Sortierung der Fall wére, wiirden die
Rekursionsaufrufe an ungleichsten verteilt werden, sodass eine Laufzeit von ©(n?) entstiinde, da

Seite 10

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

eine Rekursionsgleichung der Form T'(n) = T'(n — 1) + (n — 1) folgen wiirde.

(d) Was miisste Partition (in Linearzeit) leisten, damit QuickSort Instanzen der Lénge n in O(nlogn) Zeit
sortiert? Zeigen Sie, dass Partition mit der von Thnen geforderten Eigenschaft zur gewiinschten Laufzeit
von QuickSort fiihrt.

Loésung: Damit die Rekursionsaufrufe balanciert sind, sollte das pivot Element der Median des
Feldes sein. Den Median kann man deterministisch in O(n) Zeit bestimmen und dann mit einem
swap an die letzte Stelle des Feldes setzen, sodass wir die urspriingliche Version von Partition
anschlieffend nicht mehr verdndern miissen, wodurch ein Gesamtaufwand von O(n) folgt. Nach
Definition ist der Median das |n/2| kleinste Element in einem Feld, wodurch die Laufzeit von
QuickSort durch die Rekursionsgleichung T'(n) = 2T'(n/2) + O(n) verkérpert wird. Durch den
zweiten Fall der Meistermethode ldsst sich bestimmen, dass T' € O(nlogn) ist.

Seite 11

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Aufgabe 9: Suppentopfe

Sie kennen das. Man will sich eine Nudelsuppe kochen, findet aber nicht den passenden Deckel fiir den Topf,
da alle Deckel und T6pfe durcheinandergekommen sind. Da Sie immer auf Thre Tépfe geachtet haben wissen
Sie, dass zu jedem Topf ein Deckel vorhanden ist.

(a) Sie mochten ein beliebiges passendes Deckel-Topf-Paar finden. Wie viele Vergleiche sind dafiir im besten
Fall notig?

Loésung: Da ein beliebiges Paar gesucht wird, nehmen Sie irgendeinen Topf und probieren alle
Deckel aus. Im besten Fall passt gleich der erste Deckel, Sie benétigen nur einen Vergleich.

(b) Geben Sie einen Algorithmus in Pseudocode an, der ein Feld T mit Topfgréfen und ein Feld mit
Deckelgrofien D entgegennimmt. Die Ausgabe soll aus zwei Indizes ¢ und j bestehen, sodass D[] = T[j].
Wie viele Vergleiche braucht Thr Algorithmus am schlechtesten Fall, um ein solches Paar zu finden?
Konnen Sie Thren Algorithmus verbessern, sodass er im schlechtesten Fall weniger Vergleiche braucht?

Losung: Die Algorithmus soll also ein beliebiges passendes Paar finden. Wir suchen einfach den
Deckel zum ersten Topf:

Algorithmus 10: findPair(int[| T, int[] D)
1 for j =1 to D.length do

2 if D[j] = T[1] then

3 /* Da das Topfset vollstandig ist, wird die folgende Zeile irgendwann
erreicht und der Algo gibt immer ein Ergebnis zuriick. */

4 return (1, j)

Der Algorithmus braucht im schlechtesten Fall D.length —1 Vergleiche. Dies kann nicht verbessert
werden, da wir im schlechtesten Fall immer den passenden Topf zuletzt erwischen, egal welchen
Topf wir zuerst auswihlen.

(¢) Nun haben Sie genug von der Unordnung und méchten zu jedem Topf den passenden Deckel finden.
Wie gehen Sie vor, um jedem Topf einen passenden Deckel zuzuordnen? Sie diirfen dabei nur Topf mit
Topf und Deckel mit Deckel vergleichen. Verwenden Sie ©(nlogn) Vergleiche.

Losung: Man sortiert die Deckel und die Topfe zum Beispiel mit Quicksort. Anschlieend kann
man den ersten Deckel auf den ersten Topf setzen ...

(d) Losen Sie nun Teilaufgabe c), aber diesmal sollen nur Vergleiche zwischen je einem Topf und einem
Deckel verwendet werden. Die Anzahl der Vergleiche soll wieder in (erwartet) ©(nlogn) liegen. Welchem
Verfahren aus der Vorlesung &hnelt Thre Vorgehensweise?

Losung: Sie wihlen einen beliebigen Deckel und sortieren alle Topfe, die zu klein fiir den Deckel
sind, nach links und alle T6pfe die zu grof fiir den Deckel sind, nach rechts. Es bleibt ein Topf in der
Mitte tibrig, der zu diesem Deckel passt. Nun nehmen Sie einen Topf aus der linken Topfreihe und
sortieren die Deckel mit diesem. Deckel, die zu klein sind, kommen nach links, Deckel die zu grof3
sind, kommen nach rechts. Es bleibt wieder ein Deckel {ibrig, mit dem Sie ein Paar bilden kénnen.
Sie haben nun je eine linke und rechte Seite fiir Deckel und Topfe. Sie wissen, dass die Deckel auf
der linken Seite zu den To6pfen auf der linken Seite passen miissen und ebenso auf der rechten Seite.
Sie wiederholen den Vorgang also fiir links und rechts rekursiv, bis Sie alle Paare gefunden haben.
Dieses Vorgehen #hnelt der QuickSort-Sortierung.

Aufgabe 10: Min-Heaps

Seite 12

Lehrstuhl fiir Informatik I

31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Gegen sei folgender Min-Heap in Feld-Darstellung:

[-5,6,3,11,18,10,8,13, 17, 19]

(a) Wandeln Sie den Min-Heap in Baumdarstellung um und begriinden Sie, dass es sich um einen Min-Heap

handelt.

Losung:

()
@@@f

Dies ist ein korrekter Min-Heap, da jeder Knoten kleiner als seine beiden Kindknoten ist.

Fiigen Sie in den Min-Heap die Zahl 15 ein. Geben Sie das Ergebnis als Feld an.

Losung:
[-5,6,3,11,15,10,8,13,17, 19, 18]

Fiihren Sie auf dem originalem (nicht auf dem aus Teilaufgabe b) enstandenem) Min-Heap die Methode
ExtractMin aus. Geben Sie das Ergebnis als Feld an.

Loésung:
[3,6,8,11,18,10,19,13,17)

Geben Sie an, ob folgende Aussage korrekt ist. Begriinden Sie ihre Antwort:
In einem Min-Heap hat der Knoten mit dem grofiten Element immer maximale Tiefe.

Loésung: Die Aussage ist falsch. Betrachten Sie folgendes Gegenbeispiel:

[1,2,10,3]

Geben Sie an, ob folgende Aussage korrekt ist. Begriinden Sie ihre Antwort:
Das drittkleinste Element in einem Min-Heap ist nicht notwendigerweise ein Kind der Wurzel.

Losung: Die Aussage ist korrekt. Betrachten Sie folgendes Beispiel:

[1,2,10,3]

Aufgabe 11: Pseudocode — Spot the Error
Die folgenden Algorithmen berechnen nicht das, was sie sollen. Erklaren Sie, was der Fehler ist und schreiben
Sie den richtigen Algorithmus auf. Geben Sie auch die asymptotische Worst-Case-Laufzeit in ©-Notation an.

Seite 13

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

(a) Der Algorithmus soll f(n) = n berechnen.

Algorithmus 11: int Algol(int n)

1 zdhler =0
2 fori=1tondo
3 L return zihler +1

Loésung: return beendet den Algorithmus im ersten Schleifendurchlauf.

(b) Der Algorithmus soll f(n) = >_" i berechnen

Algorithmus 12: int Algo2(int n)

1 zahler =0
2 fori=1 to n do
3 Lz'aihler—l—l

4 return zihler

Loésung: Der Zahler wird nicht veréndert.

(¢) Der Algorithmus soll f(n) = n! berechnen.

Algorithmus 13: int Algo3(int n)

1 return Algo3(n —1) - n

Losung: Der Basisfall fehlt.

(d) Der Algorithmus soll true zuriickgeben, wenn ¢ im Array A enthalten ist, sonst false.

Algorithmus 14: boolean Algo4(int 7, int[] A, int I =0)

1 if A.length == then
2 | return false

3 else
4 L return (i == A[l]) or Algo4(i, [+ 1)

Losung: Das Array wird nicht iibergeben.

Aufgabe 12: Algorithmen und Laufzeiten

(a) Was berechnet der Algorithmus?
Wie viele Vergleiche, Additionen und Multiplikationen werden in Abhéingigkeit von n ausgefiihrt?

Algorithmus 15: SomeAlgo(n)
1int j=0;int s =1;int S =0
2 while j < n do

3 S=85+s
4 j=j+1
5 s=5-2

6 return S

Seite 14

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Losung: Die Funktion berechnet: 1 +2 444 --- 4271 =27 —1

Insgesamt gibt es n + 1 Vergleiche von j und n (n positive Vergleiche und 1 Vergleich, der die
Schleife abbricht) sowie n Multiplikationen von s mit 2, sowie 2n Additionen, je Durchlauf eine fiir
7 und eine fiir S.

(b) Sei folgender Algorithmus zur Berechnung des Produkts ¢- (i + 1) -...- (j — 1) - j fiir natiirliche Zahlen
¢ und j mit ¢ < j gegeben:
Algorithmus 16: int Produkt(int j, int %)
1 return Fakultaet(;)/Fakultaet(i — 1)

Algorithmus 17: int Fakulaet(int x)

1 if x == 0 then
2 L return 1

3 return z - Fakultaet(x — 1)

Begriinden Sie kurz, warum der Algorithmus Produkt korrekt ist. Geben Sie die Worst-Case-Laufzeit
von Produkt in Abhéngigkeit von ¢ und j an.

Loésung: Methode Produkt ist korrekt, da (z'—j!1)! = 121(12—1)27(_14{)1); =i-(i4+1)-...-7.
Die Worst-Case-Laufzeit von Produkt ist ©(y).

Aufgabe 13: Polynome evaluieren
Die Regel von Horner ist eine Moglichkeit Polynome zu evaluieren:

P(x) :Zakxk =ag+x(a1 +z(az + -+ 2(an—1 +2a,)...))
k=0

Folgender Pseudocode implementiert diese Regel:

Algorithmus 18: evaluatePolynomial(aq, . .., a,, x)

1y=0
2 for £k = n downto 0 do
3 Lyzak—kaj-y

4 return y

(a) Welche asymptotische Laufzeit hat evaluatePolynomial? Begriinden Sie Thre Antwort kurz!

Losung: n+1 Schleifendurchldufe, wobei in jedem Durchlauf eine Addition und eine Multiplikation
durchgefithrt wird = (n +1) - (1) = ©(n)

(b) Schreiben Sie einen Pseudocode, der naiv das Polynom evauliert, indem jedes ¥ komplett neu berechnet
wird. Schétzen Sie die Laufzeit Thres Algorithmus asymptotisch scharf in ©-Notation ab!

Lésung: Die Laufzeit der naiven Variante ist ©(n?).

Seite 15

Lehrstuhl fiir Informatik I

31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg
Algorithmus 19: evaluatePolynomialNaive(ayo, . . . , an, x)
1y=0
2 for i =0 to n do
3 ;=1
4 for j =1toido
5 L ;i =x; X

(=]

y=yta;

7 return y

(c) Zeigen Sie die Korrektheit von evaluatePolynomial mittels Schleifeninvariante!

Losung: Wir benutzen folgende Schleifeninvariante:
Bei der i.-ten Ausfithrung des Schleifenkopfes in Zeile 2 gilt:

n—(i+1)
Y= Z ak+i+1$k
k=0
Inititialisierung: Beim ersten Durchlauf des Schleifenkopfes gilt ¢ = n. Somit gilt

n—(i+1) -1
_ k_ k_
Y= Ap+i+1L = Ag4n+1L =
k=0 k=0

Aufrechterhaltung: Sei die Schleifeninvariante vor dem ¢-ten Schleifendurchlauf erfiillt, d.h. es

gilt y = Z;(()H_l) ag4ir12”. Bei der Durchfiihrung wird y auf a; + 29 gesetzt, wodurch dann
gilt:
n—(i+1) n—i n—i n—i
Y = a, +x Z ak+i+1$k =a; +x Z ak+il'k71 =a; + Z ak+i$k = Z ak+1‘l'k
k=0 k=1 k=1 k=0

n—(i+1

Damit gilt fiir den i + 1-ten Schleifendurchlauf, dass y = » ,) ap1ir12® und somit ist die

Schleifeninvariante wieder erfiillt.

Terminierung: Beim Abbruch der Schleifenbedingung gilt i = —1 und somit ist nach Schleifenin-
variante

n—(i+1)

n

k k

Yy = E Q4412 :E apx
k=0 k=0

Somit berechnet evaluatePolynomial genau das gesuchte Polynom P(z).

Aufgabe 14: Volistdndige Induktion
Zeigen Sie die folgenden Aussagen mittels vollstindiger Induktion.

(a) Fiir jede natiirliche Zahl n ist 3 ein Teiler von n3 — n.

Losung: Wir beweisen die Aussage mit vollstindiger Induktion iiber n:

Induktionsanfang Sei n = 1. Dann ist n® = 1 und n® — n = 0. Die Zahl 3 ist tats#chlich ein

Seite 16

Lehrstuhl fiir Informatik I

31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

()

Teiler von 0.

Induktionsschritt Sei die Aussage richtig fiir beliebiges, festes n. Wir zeigen, dass sie auch fiir
n + 1 richtig ist.
n+1P —m+1)=n+n>+2n>+2n+n+1—-(n+1)
=(n®—n)+3n%+3n
= (n® —n)+3(n*+n)

Laut Induktionsannahme ist n® —n durch 3 teilbar. Nun addieren wir zu einer durch 3 teilbaren
Zahl ein Vielfaches von 3. Folglich ist die Summe ebenfalls durch 3 teilbar.

Zeigen Sie, dass fiir allen € N gilt: 1 +3+ -+ + (2n — 1) = n?

Loésung:
Induktionsanfang Sein = 1. Dann gilt 2-1—-1=1=12.

Induktionsschritt . Sei die Aussage richtig fiir ein beliebiges aber festes n. Wir zeigen, dass sie
auch fiir n + 1 richtig ist.

1434+ +2n+1)-1)=14+3+---+2n—-1)+(2(n+1)—-1)
=n*4+2n+1)—1=n’+2n+1
= (n+1)?

Die Fibonacci-Folge ist eine rekursiv definierte Zahlenfolge. Dabei ist F/(0) = 0 und F'(1) = 1. Die n-te
Fibonacci-Zahl fir ein n > 1 ist dann F(n — 1) + F(n — 2). Die Berechnungsvorschrift dauert fiir grofie
n jedoch sehr lange. Mit der Formel von Moivre-Binet kann die n-te Fibonacci-Zahl direkt ausgerechnet
werden. Beweisen Sie die Richtigkeit der Formel:

(1+2\/5)n _ (1—2\/5)11
V5

F(n) =

Lésung: Sei a = (1 ++/5)/2 und b = (1 — 1/5)/2. Wir zeigen die Korrektheit der Aussage durch
eine Induktion iiber n.

Induktionsanfang Sei n’ = 2. Dann ist F(n) = F(0) + F(1) = 1. Setzen wir n’ = 2 direkt in die
obige Gleichung ein, erhalten wir ebenfalls 1. Da die Fibonacci-Zahlen auf den jeweils zwei
vorherigen Folgengliedern aufbauen, miissen wir auch n’ = 3 testen: F(n) = F(2)+ F(1) = 3,
was mit dem Ergebnis der direkten Gleichung iibereinstimmt.

Induktionschritt Sei die Aussage richtig fiir n — 1 und n — 2. Wir zeigen, dass die Aussage dann
auch fiir n richtig ist:

an—l _ bn—l an—2 _ bn—2
= +
PR NG

an—l _ bn—l + an—2 _ bn—2
V5
anfl(l 4 %) . bnfl(l + %)

V5

Fn)=F(n—-1)+ F(n—2)

Seite 17

31.03.2025

Lehrstuhl fiir Informatik I
Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Es wire schon, wenn 1+ 1/a = a. Also iiberpriifen wir das:

1 1+/1—4-(—1) 1++5
l+-=a=a+l=a*=2d*-a-1=0=>a= (): V5
a

2 2

Wir setzen a = 1 + 1/a oben ein und erhalten das gewiinschte Ergebnis:

an—la _ bn—lb a — b

V5 Vi V5

e

(d) Auf einem quadratischen Schachbrett mit einer Seitenlédnge von mehr als drei Feldern kann der Springer
jedes Feld von jedem anderen Feld erreichen. Dafiir hat er beliebig viele Ziige zur Verfiigung.

Losung: Wir zeigen die Aussage durch Induktion iiber die Seitenlénge n in Feldern:

Induktionsanfang Fiir n = 4 finden wir durch Versuchen heraus, dass die Aussage stimmt.

Induktionsschritt Sei die Aussage fiir n — 1 bewiesen. Wir zeigen die Richtigkeit der Aussage fiir

n. Dank der Induktionsannahme wissen wir, dass sich der Springer im Teilbrett n —1 xn —1
iiberallhin bewegen kann. Betrachten wir das Brett n x n. Alle Randfelder sind durch nur
einen , Springersprung “ von einem Mittelfeld erreichbar. Jedes Mittelfeld ist aber wegen der
Induktionsannahme ebenfalls erreichbar. Deshalb kann der Springer auch im n xn Schachbrett
mit beliebig vielen Spriingen auf alle Felder springen.

Aufgabe 15: Ahnliche Zahlen
Sei A ein Feld der Lange n > 1 von zufilligen Zahlen, wobei Zahlen mehrfach vorkommen diirfen.

(a) Geben Sie einen Algorithmus in Pseudocode an, der zwei Zahlen A[i] und A[j] mit ¢ # j sucht, so-

dass |A[i]—A[j]| minimal ist. Der Algorithmus soll die Indizes beider Zahlen ausgeben und ©(n?) Zeit
bendétigen.

Loésung:

Algorithmus 20: findClosestPair(int[] A)

12

1 n = A.length

2 minl =1

3 min) = 2

4 min = 00

5 fori=1ton—1do

6 for j=i+1tondo
7 abs = |A[i] — A[j]]
8 if abs < min then
9 min = abs

10 minl = ¢

11 minJ = j

return (minl,minJ)

(b) Begriinden Sie die Korrektheit Thres Algorithmus, indem Sie die Korrektheit der inneren Schleife mit
einer Invariante zeigen.

Seite 18

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Losung: Wir geben eine Schleifeninvariante fiir die innere Schleife bei einem festen i an: ,, Vor der
k. Ausfithrung enthélt min den minimalen Abstand eines Tupels in der Menge
{(s,) eN? | (s=i=t<ith)A(s<i=t<n+1)A0<s<i<t<n)}*“

Initialisierung Vor der 1. Iteration der inneren for-Schleife kann min nur den minimalen Abstand
eines Tupels (s,t) mit s < ¢ beinhalten, da min noch gar nicht angefasst wurde.

Aufrechterhaltung Gelte die Invariante vor der k. Iteration, also enthalte min das Minimum
obiger Menge. In der k. Iteration ist j = ¢ + k. Falls nun |A[i] — A[j]| kleiner als das bisherige
Minimum war, wird es ausgetauscht, andernfalls passiert nichts. Vor der k + 1. Iteration ist
also die Invariante wieder korrekt.

Terminierung Bei Beendigung der for-Schleife sind n—i Iterationen vergangen, also k = n—i+1.
Setzen wir diesen Wert in die obige Menge ein, fallen die ersten beiden Terme zusammen und
min enthélt folglich das Minimum der Tupel in
{(s,t) eN? |t <n+1)A(0<s<i<t<n)}

Die Korrekheit der dufleren for-Schleife ldsst sich analog zeigen; sie folgt sofort aus der Korrektheit
der inneren for-Schleife.

Aufgabe 16: Vereinigung

Geben Sie in gut kommentiertem Pseudocode einen Algorithmus an, der als Eingabe zwei aufsteigend sortierte
Felder A und B erhalt. die Ausgabe soll ein Feld C sein, das jede Zahl aus A und B genau einmal enthélt.
Die Laufzeit soll O(n) sein, wobei n = A.length + B.length.

Losung: Wie Merge von MergeSort, wobei Vielfache entweder gleich ignoriert, oder herausgefiltert
werden, wenn das Hilfsfeld in C' kopiert wird.

Aufgabe 17: Zusammenhdngende Mengen

Gegeben sei ein Feld A von positiven, natiirlichen Zahlen. Das Feld habe n Elemente. Das Feld A heifit zusam-
menhdngend, wenn es zwei Zahlen m, ! € N gibt, sodass {A[1],..., A[n]} = {m,m+1,...,m+I}. Zum Beispiel
ist das Feld (10, 5,6, 10, 8,7, 8,9) zusammenhingend, wobei (10, 5,6, 10, 8,9) nicht zusammenhéngend ist, da
die Zahl 7 fehlt. Geben Sie einen Algorithmus an, der in O(n) Zeit entscheidet, ob das gegebene Feld A
zusammenhéangend ist.

Losung: Betrachte den folgendne Algorithmus. Sei max, min das grofite bzw. das kleinste Element in A.
Ein Feld A ist genau dann zusammenhéngend, wenn {A[1], ..., A[n]} = {min,min+1, ..., max}. Teste fiir
jede natiirliche Zahl in [min, max], ob diese in A enthalten ist. Falls ja, gib true zuriick, sonst false. Wir
konnen den Test mithilfe eines zweiten Felds B durchfiithren. Die Linge des Feldes B ist max — min + 1
und B[j] gibt an, ob ein A[i] existiert, sodass j = A[i] — max + 1. Das heifit, wenn am Ende des Algos
ein B[j] gibt, das false ist, kann A nicht zusammenhéngend sein. Damit der Algorithmus tatséchlich in
O(n) lduft, muss sichergestellt werden, dass B.length € O(n). Falls max — min 4+ 1 > n, so kann A nicht
zusammenhéngend sein, da dann [> n ist aufgrund der vorherigen Beobachtung.

Seite 19

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Algorithmus 21:

1 max, min = —00, 00

2 fori=1ton do

3 if Afi] < min then
4 L min = A[i]

5 if A[i] > max then
6 | max = A
7 if max — min + 1 > n then

0]

L return false

bool[| B = new bool[max — min + 1] // Standardwert ist false
10 for i =1 to B.length do

11 | B[A[i] — max +1] = true

12 for i =1 to n do

13 if B[i] == false then

14 L L return false

©

15 return true

Aufgabe 18: Elemente ausgeben

Gegeben seien zwel unsortierte Arrays mit ganzen Zahlen A und B mit jeweils n Elementen. Die Elemente
eines Arrays sind dabei paarweise verschieden. Entwickeln Sie einen Algorithmus, dessen worst-case Lauf-
zeit O(nlogn) ist, der alle Elemente von A ausgibt, die nicht in B vorkommen. Finden Sie auch einen
Algorithmus, der das Problem in (erwartet) O(n) 16st?

Losung: Idee: Baue einen bindren Suchbaum T aus dem Feld B. Iteriere anschlielend durch das Feld
A und suche das Element A[i] in T. Falls es nicht enhalten ist, gib das Element zuriick. Alternativ
kann man auch das Feld B sortieren und anschliefend mit Hilfe einer binédren Suche nach den jeweiligen
Elementen suchen.

Algorithmus 22: setDifference(int[| A, int]] B)

1 T < BinarySearchTree()
2 for i =1 to B.length do

3 L T.Insert(B]i])

4 for i =1 to A.length do

5 if T.Search(A[i]) == null then
6 | print(A[i])

Laufzeit: Um T zu bauen benstigen wir O(n logn) Zeit. AnschlieBend rufen wir n mal Search auf, sodass
dies auch nochmal O(nlogn) Zeit beansprucht. Insgesamt hat der Algorithmus also eine Laufzeit von
O(nlogn).

Anstatt einen bindren Suchbaum zu benutzen, kénnte man auch eine geeignete Hash-Tabelle benutzen,
wobei das Einfiigen in die Hash-Tabelle erwartet O(n) benétigt und der zweite For-Loop in den Zeilen
4-6 ebenfalls nur O(n) Zeit verbraucht. Somit hétten wir eine Gesamtlaufzeit von erwartet O(n).

Aufgabe 19: Vereinigung von Intervallen
Gegeben sei eine Liste R = ([x1,91],- .-, [Zn, yn]) von gegebenenfalls iiberlappenden Intervallen. Geben Sie

Seite 20

31.03.2025

Aufgabensammlung ADS-Repetitorium

Lehrstuhl fiir Informatik I
Universitdt Wiirzburg

einen Algorithmus an, der die Gesamtléinge der Vereinigung von den Intervallen in R angibt. Der Algorithmus
soll eine asymptotische worst-case Laufzeit von O(nlogn) haben!
Hinweis: Abbildung 1 zeigt ein Beispiel. Konnte eine gewisse Sortierung der Intervalle helfen?

| | | | |
I I I I
0 1 2 3 4

| | |
I I I
6 7 8

o ——

Abbildung 1: Mégliche Intervalle in R. Die Gesamtlinge der Vereinigung dieser Intervalle ist 15.

Losung: Die Idee ist, sich eine Linie zu denken, die von links nach rechts durch die Intervalle geht

(sweep-line Algorithmus). Siehe folgende Abbildung:

_>

Die Linie stoppt nur an Anfingen bzw. and Enden von Intervallen. Diese Stopps nennen wir opening
events (fiir Intervallanfinge) und closing events (fiir Intervallenden). Nachdem die Linie mehr als ein
Intervall gleichzeitig schneiden kann, miissen wir die Anzahl der derzeit geschnittenen Intervalle auf-
rechterhalten. Die Variable, die diese Anzahl angibt nennen wir activelntervals. Aulerdem miissen wir
den ,idltesten“ Startpunkt eines Intervalls kennen, um die Gesamtldnge berechnen zu kénnen. Diesen
»altesten“ Startpunkt speichern wir in der Variable lastOpenlinterval. Je nachdem, welchen Eventypen

wir haben, miissen wir anders reagieren:

opening event: Falls wir gerade kein lastOpenlinterval haben, speichern wir das gerade entdeckte Inter-
val und inkrementieren den Counter activelntervals. Andernfalls wird nur der Counter activelntervals

inkrementiert.

closing event: Wir dekrementieren den Counter activelntervals. Falls dieser 0 wird addieren wir zur
Gesamtlinge die Differenz des Endpunktes des derzeitigen Intervalls und des Startwertes des las-
tOpenlntervals. Nachdem die Linie nun kein Intervall mehr schneidet, setzen wir lastOpenlnterval

auf null.

Folgender Pseudocode setzt diese Idee um:

Algorithmus 23: FindUnionOfIntervals(List R = ([z1,y1], .- -, [Tn,Yn]))

1 Definiere Objekt Event, das ein key enthélt und einen Pointer auf das dazugehorige Intervall.
Die Variable key ist entweder ein Start- oder Endwert des Intervalls.

2 events = Array von Events aus R

3 MergeSort(events) // Sortiere nach key
4

5 totalLength =0

6 lastOpenlnterval = null

7 activelntervals =0

8

9 for i =1 to events.length do

10 if lastOpenlinterval == null then

11 lastOpenlnterval = events][i]

12 activelntervals =1
13 else

14 if events[i] is closing event then

15 activelntervals = activelntervals — 1 Seite 21
16 if activelntervals == 0 then

17 totalLength = totalLength + events[i].key — lastOpenlnterval.x

18 L lastOpenlinterval = null

. Y

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Laufzeit: Insgesamt haben wir 2n Events, da jedes Interval genau 2 Events beitridgt. Das Feld aus
Events wird mit MergeSort sortiert, was O(nlogn) worst-case Laufzeit in Anspruch nimmt. AnschliefSend
iterieren wir iiber alle Events, wobei eine Iteration konstanten Aufwand hat. Dementsprechend haben
wir eine Laufzeit von ©(nlogn) + 0(n) = O(nlogn)

Aufgabe 20: Flugsicherheit

Im Flugverkehr miissen die Flugzeuge gewisse Absténde einhalten. Gegeben ist eine unsortierte Liste von
Flugzeugen. Jedes Flugzeug a hat drei Attribute, ndmlich a.z, a.y und a.z. Diese Attribute geben die Ko-
ordinaten im Luftraum an. Sie sollen einen Algorithmus angeben, der true ausgibt, falls sich zwei Flugzeuge
niher als den Abstand d kommen. Thr Kommilitone hat einen Algorithmus entwickelt (siche Algo 24), der
dieses Problem l6sen soll.

Algorithmus 24: planesTooClose(Plane[] planes, d)

[y

mergeSort(planes) // Sortiere nach y-Koordinate
if planes.length < 2 then
L return false

w N

4 for ¢ = 2 to planes.length do

5 f1 = planes[i]

6 f2 = planes[i — 1]

7 yDistance = |f1.y — f2.y]

8 if yDistance < d then

9 e=/(fix— fox)2+ (fry — f29)* + (f1.2 — f2.2)?
10 if e < d then

11 L return true

12 return false

(a) Welche Laufzeit hat dieser Algorithmus, wenn man davon ausgeht, dass eine Wurzeloperation O(1) Zeit
benotigt?

Losung: Der Algorithmus ruft mergeSort auf die Eingabe auf und iteriert dann anschlieflend iiber
die sortierte Eingabe, wobei eine Iteration laut Angabe in O(1) ist. Die Gesamtlaufzeit ist demnach
O(nlogn) + O(n) = O(nlogn).

(b) Ist der Algorithmus korrekt? Begriinden Sie Thre Antwort.

Lésung: Der Algorithmus ist nicht korrekt. Gegenbeispiel: d = 3 mit Flugzeugen p; = (0,0,0),p2 =
(0,1,100), ps = (0,2,0). p; und p3 sind sich zu nah; das erkennt der Algo aber nicht, weil er p; und
p3 nie miteinander vergleicht.

Seite 22

