
Aufgabensammlung ADS-Repetitorium WS 24/25
O-Notation – inkrementelle Algorithmen – Sortieren

Aufgabe 1: Schleifeninvariante
Gegeben sei der folgende Algorithmus, der die Fakultät einer Zahl k berechnet.

Algorithmus 1: int fakultät(int k)

1 if k = 0 then
2 return 1

3 f = j = k
4 while j > 1 do
5 j = j − 1
6 f = f · j
7 return f

(a) Geben Sie eine geeignete Invariante an, mit der wir zeigen können, dass fakultät für Eingaben ≥ 1
korrekt arbeitet.

(b) Zeigen Sie mit Hilfe der in (a) aufgestellten Invariante die Korrektheit des Algorithmus.

Aufgabe 2: SelectionSort
Gegeben sei der folgende Sortieralgorithmus.

Algorithmus 2: SelectionSort(int[] A)

1 n = A.length
2 for i = 1 to n− 1 do
3 ℓ = i
4 for j = i to n do
5 if A[j] < A[ℓ] then
6 ℓ = j

7 Swap(A, i, ℓ)

8 return A

(a) Welche Laufzeit hat SelectionSort jeweils im besten und im schlechtesten Fall?

(b) Geben Sie eine geeignete Invariante an, um die Korrektheit von SelectionSort zu beweisen.

(c) Beweisen Sie die Korrektheit von SelectionSort. Für die innere Schleife muss kein Korrektheitsbeweis
angegeben werden, es ist ausreichend zu beschreiben, was die Schleife berechnet.

Aufgabe 3: O-, Θ- und Ω-Notation
Beweisen oder widerlegen Sie die Behauptungen. Arbeiten Sie mit der Definition aus der Vorlesung.

(a) f(n) = 1
2n− 2 ∈ Ω(log2 n)

(b) f(n) = nn + n2 ∈ O(nn−1)

(c) f(n) = n4−4n2

2n+7 /∈ O(n3)

(d) f(n) = log3(n
5 · 9n2

) ∈ Ω(n log3 n)

Seite 1



31.03.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

(e) f(n) = loga n ∈ Θ(logb n) für beliebige a, b > 1

(f) f(n) = 1
100n

2 + n sinn ∈ Θ(n2)

(g) f(n) = n4 − 10n3 + 2n ∈ O(n3)

(h) f(n) = 9
n /∈ Ω( 1√

n
)

Aufgabe 4: Asymptotisches Wachstum von Funktionen
Ordnen Sie die Liste von Funktionen nach ihrem asymptotischen Wachstum (O(. . . ) ⊊ O(. . . ) · · · ⊊ O(. . . )).
Nutzen Sie = für das gleiche asymptotische Wachstum und ⊊ für unterschiedliches Wachstum. Beispiel:
f(n) = n, g(n) = 2n, h(n) = n2 dann gilt: O(f(n)) = O(g(n)) ⊊ O(h(n)).

√
n log4(n

2), 5
√
n, 2n, log2(n), n

2 − 7n, n log10(n/3), n
log3(4), log4(n

3),
√
n log2(n

√
n),

4log3 n, 22n, (n+ 1)2, n(log2(n))
2, n!, 23n log2(n)

Aufgabe 5: Aufwandsanalyse
Gegeben seien die Funktionen f ∈ Θ(log n) und g(n) ∈ Θ(n). Bestimmen Sie die Laufzeit der folgenden
Programmfragmente in der Θ-Notation.

(a)

Algorithmus 3:

1 for i = 1 to n do
2 g(n)

(b)

Algorithmus 4:

1 i = 1
2 while i < n do
3 f(n)
4 g(n)
5 i = i · 2

(c)

Algorithmus 5:

1 i = n
2 while i > 0 do
3 f(n)

4 i = i
2

(d)

Algorithmus 6:

1 for i = 1 to n do
2 j = n
3 while j ≥ 1 do
4 for k = 1 to n do
5 g(n)

6 j = j
2

Aufgabe 6: Laufzeiten von Pseudocodes bestimmen
Analysieren Sie die Algorithmen 7-9 bezüglich der Laufzeit. Geben Sie asymptotisch scharfe Schranken in
Θ-Notation an!

Seite 2



31.03.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Algorithmus 7: Algo1(int[] A)

1 k = 5
2 i = 0
3 while i ≤ A.length− k do
4 MergeSort(A, i+ 1, i+ k)
5 i = i+ k

6 MergeSort(A, i+ 1, A.length)

Algorithmus 8: Algo2(int[] A)

1 x = 0
2 i = 1
3 while i ≤ A.length do
4 x = x+A[i]
5 i = 2 · i
6 return x

Algorithmus 9: Algo1(int n)

1 total = 0
2 for i = 1 to n do
3 x = 0
4 for j = 1 to i do
5 x = x+ 1

6 total = total + x

7 return total

Aufgabe 7: Sortieralgorithmen

(a) Sortieren Sie das Feld A = [4, 3, 7, 2, 0, 9 ,8, 1, 5, 6] mit InsertionSort. Geben Sie nach jeder Iteration
der äußeren Schleife das Feld an.

(b) Sortieren Sie das Feld B = [3, 7, 2, 9, 1, 4, 6, 5, 8, 0] mit HeapSort. Geben Sie bei jedem Schritt den
entstandenen Heap an.

(c) MergeSort arbeitet rekursiv. Geben Sie für das Feld C = [9, 4, 1, 3, 5, 2, 6, 0, 8, 7] den Rekursionsbaum
von MergeSort an. In jedem Knoten soll der jeweilige Aufruf von MergeSort und die zu sortierende
Teilliste stehen, jeweils vor der Sortierung.

(d) Sortieren Sie das Feld D = [6, 4, 7, 9, 2, 3, 1, 5, 0, 8] mit einem vereinfachten QuickSort. Dieser
schreibt alle Elemente, die kleiner als das Pivotelement sind, links und alle größeren rechts neben das
Pivotelement. Zeichnen Sie den Rekursionsbaum. Schreiben Sie in jeden Knoten das zu sortierende
Teilfeld nach dem Aufruf von Partition und markieren Sie das Pivotelement, die Wurzel sieht also so
aus: [6, 4, 7, 0, 2, 3, 1, 5, 8, 9]. Achtung: Das ist nicht der VL-Algorithmus, aber die Idee ist die gleiche!

Aufgabe 8: Sortieren mit Quicksort

(a) Gegeben ist die Ausgabe der Methode Partition des Quicksort Algorithmus. Rekonstruieren Sie die Ein-
gabe. Konkret sollen Sie das Array A = ⟨ , , 1, , ⟩ so vervollständigen, dass der Aufruf Partition(A,
1, 5) die Zahl 3 zurückgibt und nach dem Aufruf gilt, dass A = ⟨1, 2, 3, 4, 5⟩ ist.

(b) Beweisen Sie die Korrektheit von Partition mittels Schleifeninvariante.

(c) Geben Sie für jede natürliche Zahl n eine Instanz der Länge n an, sodass QuickSort Ω(n2) Zeit benötigt.
Begründen Sie ihre Behauptung.

(d) Was müsste Partition (in Linearzeit) leisten, damit QuickSort Instanzen der Länge n in O(n log n) Zeit
sortiert? Zeigen Sie, dass Partition mit der von Ihnen geforderten Eigenschaft zur gewünschten Laufzeit
von QuickSort führt.

Seite 3



31.03.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

Aufgabe 9: Suppentöpfe
Sie kennen das. Man will sich eine Nudelsuppe kochen, findet aber nicht den passenden Deckel für den Topf,
da alle Deckel und Töpfe durcheinandergekommen sind. Da Sie immer auf Ihre Töpfe geachtet haben wissen
Sie, dass zu jedem Topf ein Deckel vorhanden ist.

(a) Sie möchten ein beliebiges passendes Deckel-Topf-Paar finden. Wie viele Vergleiche sind dafür im besten
Fall nötig?

(b) Geben Sie einen Algorithmus in Pseudocode an, der ein Feld T mit Topfgrößen und ein Feld mit
Deckelgrößen D entgegennimmt. Die Ausgabe soll aus zwei Indizes i und j bestehen, sodass D[i] = T[j].
Wie viele Vergleiche braucht Ihr Algorithmus am schlechtesten Fall, um ein solches Paar zu finden?
Können Sie Ihren Algorithmus verbessern, sodass er im schlechtesten Fall weniger Vergleiche braucht?

(c) Nun haben Sie genug von der Unordnung und möchten zu jedem Topf den passenden Deckel finden.
Wie gehen Sie vor, um jedem Topf einen passenden Deckel zuzuordnen? Sie dürfen dabei nur Topf mit
Topf und Deckel mit Deckel vergleichen. Verwenden Sie Θ(n log n) Vergleiche.

(d) Lösen Sie nun Teilaufgabe c), aber diesmal sollen nur Vergleiche zwischen je einem Topf und einem
Deckel verwendet werden. Die Anzahl der Vergleiche soll wieder in (erwartet) Θ(n log n) liegen. Welchem
Verfahren aus der Vorlesung ähnelt Ihre Vorgehensweise?

Aufgabe 10: Min-Heaps
Gegen sei folgender Min-Heap in Feld-Darstellung:

[−5, 6, 3, 11, 18, 10, 8, 13, 17, 19]

(a) Wandeln Sie den Min-Heap in Baumdarstellung um und begründen Sie, dass es sich um einen Min-Heap
handelt.

(b) Fügen Sie in den Min-Heap die Zahl 15 ein. Geben Sie das Ergebnis als Feld an.

(c) Führen Sie auf dem originalem (nicht auf dem aus Teilaufgabe b) enstandenem) Min-Heap die Methode
ExtractMin aus. Geben Sie das Ergebnis als Feld an.

(d) Geben Sie an, ob folgende Aussage korrekt ist. Begründen Sie ihre Antwort:
In einem Min-Heap hat der Knoten mit dem größten Element immer maximale Tiefe.

(e) Geben Sie an, ob folgende Aussage korrekt ist. Begründen Sie ihre Antwort:
Das drittkleinste Element in einem Min-Heap ist nicht notwendigerweise ein Kind der Wurzel.

Aufgabe 11: Pseudocode – Spot the Error
Die folgenden Algorithmen berechnen nicht das, was sie sollen. Erklären Sie, was der Fehler ist und schreiben
Sie den richtigen Algorithmus auf. Geben Sie auch die asymptotische Worst-Case-Laufzeit in Θ-Notation an.

(a) Der Algorithmus soll f(n) = n berechnen.

Algorithmus 11: int Algo1(int n)

1 zähler = 0
2 for i = 1 to n do
3 return zähler +1

(b) Der Algorithmus soll f(n) =
∑n

i=0 i berechnen

Algorithmus 12: int Algo2(int n)

1 zähler = 0
2 for i = 1 to n do
3 zähler+1

4 return zähler

Seite 4



31.03.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

(c) Der Algorithmus soll f(n) = n! berechnen.

Algorithmus 13: int Algo3(int n)

1 return Algo3(n− 1) · n

(d) Der Algorithmus soll true zurückgeben, wenn i im Array A enthalten ist, sonst false.

Algorithmus 14: boolean Algo4(int i, int[] A, int l = 0)

1 if A.length == l then
2 return false

3 else
4 return (i == A[l]) or Algo4(i, l + 1)

Aufgabe 12: Algorithmen und Laufzeiten

(a) Was berechnet der Algorithmus?
Wie viele Vergleiche, Additionen und Multiplikationen werden in Abhängigkeit von n ausgeführt?

Algorithmus 15: SomeAlgo(n)

1 int j = 0; int s = 1; int S = 0
2 while j < n do
3 S = S + s
4 j = j + 1
5 s = s · 2
6 return S

(b) Sei folgender Algorithmus zur Berechnung des Produkts i · (i+ 1) · . . . · (j − 1) · j für natürliche Zahlen
i und j mit i < j gegeben:

Algorithmus 16: int Produkt(int j, int i)

1 return Fakultaet(j)/Fakultaet(i− 1)

Algorithmus 17: int Fakulaet(int x)

1 if x == 0 then
2 return 1

3 return x · Fakultaet(x− 1)

Begründen Sie kurz, warum der Algorithmus Produkt korrekt ist. Geben Sie die Worst-Case-Laufzeit
von Produkt in Abhängigkeit von i und j an.

Aufgabe 13: Polynome evaluieren
Die Regel von Horner ist eine Möglichkeit Polynome zu evaluieren:

P (x) =

n∑
k=0

akx
k = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + xan) . . . ))

Folgender Pseudocode implementiert diese Regel:

Algorithmus 18: evaluatePolynomial(a0, . . . , an, x)

1 y = 0
2 for k = n downto 0 do
3 y = ak + x · y
4 return y

Seite 5



31.03.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

(a) Welche asymptotische Laufzeit hat evaluatePolynomial? Begründen Sie Ihre Antwort kurz!

(b) Schreiben Sie einen Pseudocode, der naiv das Polynom evauliert, indem jedes xk komplett neu berechnet
wird. Schätzen Sie die Laufzeit Ihres Algorithmus asymptotisch scharf in Θ-Notation ab!

(c) Zeigen Sie die Korrektheit von evaluatePolynomial mittels Schleifeninvariante!

Aufgabe 14: Vollständige Induktion
Zeigen Sie die folgenden Aussagen mittels vollständiger Induktion.

(a) Für jede natürliche Zahl n ist 3 ein Teiler von n3 − n.

(b) Zeigen Sie, dass für alle n ∈ N gilt: 1 + 3 + · · ·+ (2n− 1) = n2

(c) Die Fibonacci-Folge ist eine rekursiv definierte Zahlenfolge. Dabei ist F (0) = 0 und F (1) = 1. Die n-te
Fibonacci-Zahl für ein n > 1 ist dann F (n− 1) + F (n− 2). Die Berechnungsvorschrift dauert für große
n jedoch sehr lange. Mit der Formel von Moivre-Binet kann die n-te Fibonacci-Zahl direkt ausgerechnet
werden. Beweisen Sie die Richtigkeit der Formel:

F (n) =
( 1+

√
5

2 )n − ( 1−
√
5

2 )n
√
5

(d) Auf einem quadratischen Schachbrett mit einer Seitenlänge von mehr als drei Feldern kann der Springer
jedes Feld von jedem anderen Feld erreichen. Dafür hat er beliebig viele Züge zur Verfügung.

Aufgabe 15: Ähnliche Zahlen
Sei A ein Feld der Länge n > 1 von zufälligen Zahlen, wobei Zahlen mehrfach vorkommen dürfen.

(a) Geben Sie einen Algorithmus in Pseudocode an, der zwei Zahlen A[i] und A[j] mit i ̸= j sucht, so-
dass |A[i]−A[j]| minimal ist. Der Algorithmus soll die Indizes beider Zahlen ausgeben und Θ(n2) Zeit
benötigen.

(b) Begründen Sie die Korrektheit Ihres Algorithmus, indem Sie die Korrektheit der inneren Schleife mit
einer Invariante zeigen.

Aufgabe 16: Vereinigung
Geben Sie in gut kommentiertem Pseudocode einen Algorithmus an, der als Eingabe zwei aufsteigend sortierte
Felder A und B erhält. die Ausgabe soll ein Feld C sein, das jede Zahl aus A und B genau einmal enthält.
Die Laufzeit soll O(n) sein, wobei n = A.length + B.length.

Aufgabe 17: Zusammenhängende Mengen
Gegeben sei ein Feld A von positiven, natürlichen Zahlen. Das Feld habe n Elemente. Das Feld A heißt zusam-
menhängend, wenn es zwei Zahlenm, l ∈ N gibt, sodass {A[1], . . . , A[n]} = {m,m+1, . . . ,m+l}. Zum Beispiel
ist das Feld ⟨10, 5, 6, 10, 8, 7, 8, 9⟩ zusammenhängend, wobei ⟨10, 5, 6, 10, 8, 9⟩ nicht zusammenhängend ist, da
die Zahl 7 fehlt. Geben Sie einen Algorithmus an, der in O(n) Zeit entscheidet, ob das gegebene Feld A
zusammenhängend ist.

Aufgabe 18: Elemente ausgeben
Gegeben seien zwei unsortierte Arrays mit ganzen Zahlen A und B mit jeweils n Elementen. Die Elemente
eines Arrays sind dabei paarweise verschieden. Entwickeln Sie einen Algorithmus, dessen worst-case Lauf-
zeit O(n log n) ist, der alle Elemente von A ausgibt, die nicht in B vorkommen. Finden Sie auch einen
Algorithmus, der das Problem in (erwartet) O(n) löst?

Aufgabe 19: Vereinigung von Intervallen
Gegeben sei eine Liste R = ⟨[x1, y1], . . . , [xn, yn]⟩ von gegebenenfalls überlappenden Intervallen. Geben Sie
einen Algorithmus an, der die Gesamtlänge der Vereinigung von den Intervallen in R angibt. Der Algorithmus
soll eine asymptotische worst-case Laufzeit von O(n log n) haben!
Hinweis: Abbildung 1 zeigt ein Beispiel. Könnte eine gewisse Sortierung der Intervalle helfen?

Seite 6



31.03.2025 Aufgabensammlung ADS-Repetitorium
Lehrstuhl für Informatik I

Universität Würzburg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Abbildung 1: Mögliche Intervalle in R. Die Gesamtlänge der Vereinigung dieser Intervalle ist 15.

Aufgabe 20: Flugsicherheit
Im Flugverkehr müssen die Flugzeuge gewisse Abstände einhalten. Gegeben ist eine unsortierte Liste von
Flugzeugen. Jedes Flugzeug a hat drei Attribute, nämlich a.x, a.y und a.z. Diese Attribute geben die Ko-
ordinaten im Luftraum an. Sie sollen einen Algorithmus angeben, der true ausgibt, falls sich zwei Flugzeuge
näher als den Abstand d kommen. Ihr Kommilitone hat einen Algorithmus entwickelt (siehe Algo 24), der
dieses Problem lösen soll.

Algorithmus 24: planesTooClose(Plane[ ] planes, d)

1 mergeSort(planes) // Sortiere nach y-Koordinate
2 if planes.length < 2 then
3 return false

4 for i = 2 to planes.length do
5 f1 = planes[i]
6 f2 = planes[i− 1]
7 yDistance = |f1.y − f2.y|
8 if yDistance < d then

9 e =
√

(f1.x− f2.x)2 + (f1.y − f2.y)2 + (f1.z − f2.z)2

10 if e < d then
11 return true

12 return false

(a) Welche Laufzeit hat dieser Algorithmus, wenn man davon ausgeht, dass eine Wurzeloperation O(1) Zeit
benötigt?

(b) Ist der Algorithmus korrekt? Begründen Sie Ihre Antwort.

Seite 7


