Aufgabensammlung ADS-Repetitorium WS 24 /25

O-Notation — inkrementelle Algorithmen — Sortieren

Aufgabe 1: Schleifeninvariante
Gegeben sei der folgende Algorithmus, der die Fakultét einer Zahl k£ berechnet.

Algorithmus 1: int fakultat(int k)
1 if £ =0 then
2 L return 1

while j > 1 do

Lj_j_l
f=1r-j

7 return f

o ot~ W

(a) Geben Sie eine geeignete Invariante an, mit der wir zeigen kénnen, dass fakultdt fiir Eingaben > 1
korrekt arbeitet.

(b) Zeigen Sie mit Hilfe der in (a) aufgestellten Invariante die Korrektheit des Algorithmus.

Aufgabe 2: SelectionSort
Gegeben sei der folgende Sortieralgorithmus.

Algorithmus 2: SelectionSort(int[] A)

1 n = Alength

2 fori=1ton—1do

3 =i

4 for j =i ton do

5 if Afj] < A[{] then
6 L {=3j

N

Swap(A4,i,{)

8 return A

(a) Welche Laufzeit hat SelectionSort jeweils im besten und im schlechtesten Fall?
(b) Geben Sie eine geeignete Invariante an, um die Korrektheit von SelectionSort zu beweisen.

(c) Beweisen Sie die Korrektheit von SelectionSort. Fiir die innere Schleife muss kein Korrektheitsbeweis
angegeben werden, es ist ausreichend zu beschreiben, was die Schleife berechnet.

Aufgabe 3: O-, ©- und 2-Notation
Beweisen oder widerlegen Sie die Behauptungen. Arbeiten Sie mit der Definition aus der Vorlesung.

(a) f(n) = 1n—2 € Qlogyn)
(b) f(n)=n"+n?e€ O(n" 1)
() f(n) =22 ¢ O(n?)
(d) f(n)

n) = logy(n® - 9"°) € Q(nlogs n)

Seite 1

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

(e) f(n)= 1ogan € O(log, n) fiir beliebige a,b > 1
(f) f(n) = 155n* + nsinn € O(n?)

(g) f(n)=n*—10n%+2n € O(n?)

(h) f(n) = 2 ¢ Q(L)

Aufgabe 4: Asymptotisches Wachstum von Funktionen
Ordnen Sie die Liste von Funktionen nach ihrem asymptotischen Wachstum (O(...) C O(...)--- C O(...)).
Nutzen Sie = fiir das gleiche asymptotische Wachstum und C fiir unterschiedliches Wachstum. Beispiel:

F(n) = n, gn) = 2n, h(n) = n? dann gilt: O(f(n)) = O(g(n)) < O(h(n)).

Vnlogy(n®), 5v/n, 2", logy(n), n* — Tn, nlog,(n/3), n'*%®), logy(n®), vnlogy(n¥™),
410g3 n7 22n7 (n+ 1)27 n(logQ(n))Q, n!, 23n10g2(n)

Aufgabe 5: Aufwandsanalyse
Gegeben seien die Funktionen f € ©(logn) und g(n) € ©(n). Bestimmen Sie die Laufzeit der folgenden
Programmfragmente in der ©-Notation.

(a)

Algorithmus 3:

1 fori=1to n do

2 | g(n)
(b)

Algorithmus 4:

11=1

2 while i < n do
s | f(n)

4 | g(n)

5 1=1-2

Algorithmus 5:

1i1=n
2 while i > 0 do

3 Lf(n)v
4 i=%

2

Algorithmus 6:

1 fori=1tondo

2 j=n

3 while j > 1 do

4 for k=1 ton do
5 | g(n)

6 j:%

Aufgabe 6: Laufzeiten von Pseudocodes bestimmen

Analysieren Sie die Algorithmen 7-9 beziiglich der Laufzeit. Geben Sie asymptotisch scharfe Schranken in
©-Notation an!

Seite 2

Lehrstuhl fiir Informatik I

31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg
Algorithmus 7: Algol(int[] A) Algorithmus 8: Algo2(int[] A)
1 k=5 1z=0
21=0 21=1
3 while i < A.length — k do 3 while i < A.length do
4 MergeSort(A, i + 1, i + k) 4 x =z + Al
5 i=1i1+k 5 1=2-1
6 MergeSort(A, i +1, A.length) 6 return z

Algorithmus 9: Algol(int n)

1 total =0

2 fori=1tondo

3 z=0

4 for j =1toido
5 | z=2+1

6 total = total +

7 return total

Aufgabe 7: Sortieralgorithmen

(a) Sortieren Sie das Feld A =[4, 3,7, 2,0, 9,8, 1, 5, 6] mit InsertionSort. Geben Sie nach jeder Iteration
der dufleren Schleife das Feld an.

(b) Sortieren Sie das Feld B =[3, 7, 2, 9, 1, 4, 6, 5, 8, 0] mit HeapSort. Geben Sie bei jedem Schritt den
entstandenen Heap an.

(c) MergeSort arbeitet rekursiv. Geben Sie fiir das Feld C = [9, 4, 1, 3, 5, 2, 6, 0, 8, 7] den Rekursionsbaum
von MergeSort an. In jedem Knoten soll der jeweilige Aufruf von MergeSort und die zu sortierende
Teilliste stehen, jeweils vor der Sortierung.

(d) Sortieren Sie das Feld D = [6, 4, 7, 9, 2, 3, 1, 5, 0, 8] mit einem vereinfachten QuickSort. Dieser
schreibt alle Elemente, die kleiner als das Pivotelement sind, links und alle groeren rechts neben das
Pivotelement. Zeichnen Sie den Rekursionsbaum. Schreiben Sie in jeden Knoten das zu sortierende
Teilfeld nach dem Aufruf von Partition und markieren Sie das Pivotelement, die Wurzel sieht also so
aus: [6,4,7,0,2,3,1,5,8, 9]. Achtung: Das ist nicht der VL-Algorithmus, aber die Idee ist die gleiche!

Aufgabe 8: Sortieren mit Quicksort

(a) Gegeben ist die Ausgabe der Methode Partition des Quicksort Algorithmus. Rekonstruieren Sie die Ein-
gabe. Konkret sollen Sie das Array A = (_,_,1,_,) so vervollstindigen, dass der Aufruf Partition(A,
1, 5) die Zahl 3 zuriickgibt und nach dem Aufruf gilt, dass A = (1,2,3,4,5) ist.

(b) Beweisen Sie die Korrektheit von Partition mittels Schleifeninvariante.

(c) Geben Sie fiir jede natiirliche Zahl n eine Instanz der Linge n an, sodass QuickSort 2(n?) Zeit benétigt.
Begriinden Sie ihre Behauptung.

(d) Was miisste Partition (in Linearzeit) leisten, damit QuickSort Instanzen der Lénge n in O(nlogn) Zeit
sortiert? Zeigen Sie, dass Partition mit der von Ihnen geforderten Eigenschaft zur gewiinschten Laufzeit
von QuickSort fiihrt.

Seite 3

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Aufgabe 9: Suppentopfe

Sie kennen das. Man will sich eine Nudelsuppe kochen, findet aber nicht den passenden Deckel fiir den Topf,
da alle Deckel und T6pfe durcheinandergekommen sind. Da Sie immer auf Thre Tépfe geachtet haben wissen
Sie, dass zu jedem Topf ein Deckel vorhanden ist.

(a) Sie mochten ein beliebiges passendes Deckel-Topf-Paar finden. Wie viele Vergleiche sind dafiir im besten
Fall notig?

(b) Geben Sie einen Algorithmus in Pseudocode an, der ein Feld T mit Topfgréfen und ein Feld mit
Deckelgrofen D entgegennimmt. Die Ausgabe soll aus zwei Indizes ¢ und j bestehen, sodass D[i] = T[j].
Wie viele Vergleiche braucht Thr Algorithmus am schlechtesten Fall, um ein solches Paar zu finden?
Ko6nnen Sie Thren Algorithmus verbessern, sodass er im schlechtesten Fall weniger Vergleiche braucht?

(¢) Nun haben Sie genug von der Unordnung und méchten zu jedem Topf den passenden Deckel finden.
Wie gehen Sie vor, um jedem Topf einen passenden Deckel zuzuordnen? Sie diirfen dabei nur Topf mit
Topf und Deckel mit Deckel vergleichen. Verwenden Sie ©(nlogn) Vergleiche.

(d) Losen Sie nun Teilaufgabe c), aber diesmal sollen nur Vergleiche zwischen je einem Topf und einem
Deckel verwendet werden. Die Anzahl der Vergleiche soll wieder in (erwartet) ©(nlogn) liegen. Welchem
Verfahren aus der Vorlesung &hnelt Thre Vorgehensweise?

Aufgabe 10: Min-Heaps
Gegen sei folgender Min-Heap in Feld-Darstellung:

[-5,6,3,11,18,10,8,13,17,19]

a andeln Sie den Min-Heap in Baumdarstellung um und begriinden Sie, dass es sich um einen Min-Heap
Wandeln Sie den Min-H in B d 11 db den Sie, d ich i Min-H
handelt.
iigen Sie in den Min-Heap die Za ein. Geben Sie das Ergebnis als Feld an.

(b) Fiigen Sie in den Min-Heap die Zahl 15 ein. Geben Sie das Ergebnis als Feld

(c) Fiihren Sie auf dem originalem (nicht auf dem aus Teilaufgabe b) enstandenem) Min-Heap die Methode
ExtractMin aus. Geben Sie das Ergebnis als Feld an.

(d) Geben Sie an, ob folgende Aussage korrekt ist. Begriinden Sie ihre Antwort:
In einem Min-Heap hat der Knoten mit dem grofiten Element immer maximale Tiefe.

(e) Geben Sie an, ob folgende Aussage korrekt ist. Begriinden Sie ihre Antwort:
Das drittkleinste Element in einem Min-Heap ist nicht notwendigerweise ein Kind der Wurzel.

Aufgabe 11: Pseudocode — Spot the Error
Die folgenden Algorithmen berechnen nicht das, was sie sollen. Erkléren Sie, was der Fehler ist und schreiben
Sie den richtigen Algorithmus auf. Geben Sie auch die asymptotische Worst-Case-Laufzeit in ©-Notation an.

(a) Der Algorithmus soll f(n) = n berechnen.

Algorithmus 11: int Algol(int n)

1 zahler =0
2 fori=1 to n do
3 L return zihler +1

(b) Der Algorithmus soll f(n) = >_" ;i berechnen

Algorithmus 12: int Algo2(int n)

1 zdhler =0
2 fori=1 to n do
3 Lzéhler—H

4 return zihler

Seite 4

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

(¢) Der Algorithmus soll f(n) = n! berechnen.

Algorithmus 13: int Algo3(int n)
1 return Algo3(n —1) - n

(d) Der Algorithmus soll true zuriickgeben, wenn ¢ im Array A enthalten ist, sonst false.

Algorithmus 14: boolean Algo4(int 7, int[] A, int I =0)

1 if A.length == then
2 L return false

3 else
4 L return (i == A[l]) or Algo4(s, [+ 1)

Aufgabe 12: Algorithmen und Laufzeiten

(a) Was berechnet der Algorithmus?
Wie viele Vergleiche, Additionen und Multiplikationen werden in Abhéingigkeit von n ausgefiihrt?

Algorithmus 15: SomeAlgo(n)
1int j=0;int s =1;int S =0
2 while j < n do

3 S=85+s
4 j=j+1
5 s=5-2

6 return S

(b) Sei folgender Algorithmus zur Berechnung des Produkts ¢ - (¢ +1)-...- (j — 1) - j fiir natiirliche Zahlen
1 und j mit @ < 7 gegeben:

Algorithmus 16: int Produkt(int j, int)
1 return Fakultaet(j)/Fakultaet(i — 1)

Algorithmus 17: int Fakulaet(int x)

1 if == 0 then
2 L return 1

3 return z - Fakultaet(z — 1)

Begriinden Sie kurz, warum der Algorithmus Produkt korrekt ist. Geben Sie die Worst-Case-Laufzeit
von Produkt in Abhéingigkeit von ¢ und j an.

Aufgabe 13: Polynome evaluieren
Die Regel von Horner ist eine Moglichkeit Polynome zu evaluieren:

n
P(x) = Z arz® = ag + x(ay +x(ag + - + x(an_1 +za,)...))
k=0

Folgender Pseudocode implementiert diese Regel:

Algorithmus 18: evaluatePolynomial(ao, . . ., an, x)

1y=0

2 for £k = n downto 0 do
3 | y=artz-y

4 return y

Seite 5

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

(a) Welche asymptotische Laufzeit hat evaluatePolynomial? Begriinden Sie Thre Antwort kurz!

(b) Schreiben Sie einen Pseudocode, der naiv das Polynom evauliert, indem jedes 2* komplett neu berechnet
wird. Schitzen Sie die Laufzeit Thres Algorithmus asymptotisch scharf in ©-Notation ab!

(¢) Zeigen Sie die Korrektheit von evaluatePolynomial mittels Schleifeninvariante!

Aufgabe 14: Vollstindige Induktion
Zeigen Sie die folgenden Aussagen mittels vollstdndiger Induktion.

(a) Fiir jede natiirliche Zahl n ist 3 ein Teiler von n3 — n.

(b) Zeigen Sie, dass fiir alle n € N gilt: 1+ 3+ -+ (2n — 1) = n?

(c) Die Fibonacci-Folge ist eine rekursiv definierte Zahlenfolge. Dabei ist F(0) = 0 und F (1) = 1. Die n-te
Fibonacci-Zahl fir ein n > 1 ist dann F(n — 1) + F(n — 2). Die Berechnungsvorschrift dauert fiir grofie
n jedoch sehr lange. Mit der Formel von Moivre-Binet kann die n-te Fibonacci-Zahl direkt ausgerechnet
werden. Beweisen Sie die Richtigkeit der Formel:

(d) Auf einem quadratischen Schachbrett mit einer Seitenldnge von mehr als drei Feldern kann der Springer
jedes Feld von jedem anderen Feld erreichen. Dafiir hat er beliebig viele Ziige zur Verfiigung.

Aufgabe 15: Ahnliche Zahlen
Sei A ein Feld der Lange n > 1 von zufilligen Zahlen, wobei Zahlen mehrfach vorkommen diirfen.

(a) Geben Sie einen Algorithmus in Pseudocode an, der zwei Zahlen A[i] und A[j] mit ¢ # j sucht, so-
dass |A[i]—A[j]| minimal ist. Der Algorithmus soll die Indizes beider Zahlen ausgeben und ©(n?) Zeit
benotigen.

(b) Begriinden Sie die Korrektheit Thres Algorithmus, indem Sie die Korrektheit der inneren Schleife mit
einer Invariante zeigen.

Aufgabe 16: Vereinigung

Geben Sie in gut kommentiertem Pseudocode einen Algorithmus an, der als Eingabe zwei aufsteigend sortierte
Felder A und B erhilt. die Ausgabe soll ein Feld C sein, das jede Zahl aus A und B genau einmal enthilt.
Die Laufzeit soll O(n) sein, wobei n = A.length + B.length.

Aufgabe 17: Zusammenhdngende Mengen

Gegeben sei ein Feld A von positiven, natiirlichen Zahlen. Das Feld habe n Elemente. Das Feld A heifit zusam-
menhdngend, wenn es zwei Zahlen m, [€ N gibt, sodass {A[1],..., A[n]} = {m,m+1,...,m+I}. Zum Beispiel
ist das Feld (10, 5,6,10,8,7,8,9) zusammenhingend, wobei (10, 5,6, 10,8, 9) nicht zusammenhiingend ist, da
die Zahl 7 fehlt. Geben Sie einen Algorithmus an, der in O(n) Zeit entscheidet, ob das gegebene Feld A
zusammenhéngend ist.

Aufgabe 18: Elemente ausgeben

Gegeben seien zwei unsortierte Arrays mit ganzen Zahlen A und B mit jeweils n Elementen. Die Elemente
eines Arrays sind dabei paarweise verschieden. Entwickeln Sie einen Algorithmus, dessen worst-case Lauf-
zeit O(nlogn) ist, der alle Elemente von A ausgibt, die nicht in B vorkommen. Finden Sie auch einen
Algorithmus, der das Problem in (erwartet) O(n) lost?

Aufgabe 19: Vereinigung von Intervallen

Gegeben sei eine Liste R = ([z1,y1], ..., [Zn, yn]) von gegebenenfalls iiberlappenden Intervallen. Geben Sie
einen Algorithmus an, der die Gesamtlénge der Vereinigung von den Intervallen in R angibt. Der Algorithmus
soll eine asymptotische worst-case Laufzeit von O(nlogn) haben!

Hinweis: Abbildung 1 zeigt ein Beispiel. Kénnte eine gewisse Sortierung der Intervalle helfen?

Seite 6

Lehrstuhl fiir Informatik I
31.03.2025 Aufgabensammlung ADS-Repetitorium Universitdt Wiirzburg

Abbildung 1: Mdgliche Intervalle in R. Die Gesamtlénge der Vereinigung dieser Intervalle ist 15.

Aufgabe 20: Flugsicherheit

Im Flugverkehr miissen die Flugzeuge gewisse Abstéinde einhalten. Gegeben ist eine unsortierte Liste von
Flugzeugen. Jedes Flugzeug a hat drei Attribute, ndmlich a.z, a.y und a.z. Diese Attribute geben die Ko-
ordinaten im Luftraum an. Sie sollen einen Algorithmus angeben, der true ausgibt, falls sich zwei Flugzeuge
niher als den Abstand d kommen. Thr Kommilitone hat einen Algorithmus entwickelt (siche Algo 24), der
dieses Problem l6sen soll.

Algorithmus 24: planesTooClose(Plane[| planes, d)

-

mergeSort(planes) // Sortiere nach y-Koordinate
if planes.length < 2 then
L return false

w N

4 for i = 2 to planes.length do
5 f1 = planes[i]

6 f2 = planes[i — 1]

7 yDistance = |f1.y — f2.y]
8 if yDistance < d then

9 e=/(frx—fax)2+ (fry — f29)? + (f1.2 — f2.2)?
10 if e < d then

11 L return true

12 return false

(a) Welche Laufzeit hat dieser Algorithmus, wenn man davon ausgeht, dass eine Wurzeloperation O(1) Zeit
benstigt?

(b) Ist der Algorithmus korrekt? Begriinden Sie Thre Antwort.

Seite 7

