
Lehrstuhl für Informatik I
Algorithmen und Komplexität

Universität Würzburg

Würzburg, den 28. November 2024

Prof. Dr. Alexander Wolff
Samuel Wolf, M. Sc.

6. Übungsblatt zur Vorlesung
Algorithmen und Datenstrukturen (Winter 2024/25)

Aufgabe 1 – Hashing

Die Schlüssel 44, 12, 23, 88, 71, 11, 94, 39, 20, 5 und 16 sollen in dieser Reihenfolge nach-
einander in eine Hashtabelle T [0..15] eingefügt werden. Dabei können verschiedene
Verfahren eingesetzt werden, um Kollisionen aufzulösen.

a) Zeichnen Sie für jedes der folgenden Verfahren die resultierende Hashtabelle.

1. Kollisionen werden durch Verkettung aufgelöst;
die Hashfunktion ist h(k) = (3k+ 7) mod 16.

2. Kollisionen werden durch lineares Sondieren aufgelöst;
die Hashfunktion ist h(k, i) = (h0(k) + i) mod 16

mit h0(k) = (3k+ 7) mod 16.

3. Kollisionen werden durch quadratisches Sondieren aufgelöst;
die Hashfunktion ist h(k, i) = (h0(k) + c1i+ c2i

2) mod 16

mit c1 = 1
2
, c2 = 1

2
und h0(k) = (3k+ 7) mod 16.

4. Kollisionen werden durch doppeltes Hashing aufgelöst;
die Hashfunktionen ist h(k, i) = (h1(k) + ih2(k)) mod 16

mit h1(k) = (3k+ 7) mod 16 und h2(k) = 7− 2(k mod 4).

Bei den Verfahren 2. bis 4. durchläuft i die Werte 0, . . . , 15.

Geben Sie bei jedem Verfahren (außer bei 1.) und für jeden Schlüssel an, wie viele
Zellen Sie testen mussten, bevor Sie eine freie Zelle gefunden haben. Geben Sie für
jedes Verfahren auch die Gesamtzahl der erfolglosen Tests an. 6 Punkte

b) Welches Problem tritt beim doppelten Hashing auf, wenn die Hashfunktion
h(k, i) = (h1(k) + ih2(k)) mod 16

mit h1(k) = (3k + 7) mod 16 und h2(k) = 8 − (k mod 8) verwendet wird?
1 Punkt

c) Beim quadratischen Sondieren mit h(k, i) = (h0(k) + c1 · i + c2 · i2) mod m

kann es durch ungeschickte Wahl von c1 und c2 zu dem Problem kommen, dass
{h(k, 0), . . . , h(k,m − 1)} ⊊ {0, . . . ,m − 1}. Geben Sie ein Beispiel mit c1, c2 ∈ N \ {0}

an. 1 Punkt

1

Aufgabe 2 – BinarySearch

Im Folgenden sei A stets ein aufsteigend sortiertes Feld der Länge n.

a) Betrachten Sie folgenden Algorithmus für binäre Suche.

boolean BinarySearch(key[] A, key k, int ℓ = 1, int r = A.length)
if ℓ > r then

return false

m = ⌊(ℓ+ r)/2⌋
if A[m] == k then

return true

if A[m] > k then
return BinarySearch(A, k, ℓ, m− 1)

else
return BinarySearch(A, k, m+ 1, r)

Geben Sie die genaue Anzahl der Vergleiche mit Elementen des Eingabefeldes an,
die BinarySearch im Worst-Case benötigt. Sie dürfen dabei annehmen, dass die Län-
ge des Feldes eine Zweierpotenz ist (also n = 2i und i ∈ N). 2 Punkte

b) Geben Sie einen Algorithmus BinarySearch2(key[] A, key k) an, der das gleiche Pro-
blem löst, jedoch höchstens ⌈log

2
n⌉+1 Vergleiche mit Elementen des Eingabefeldes

benötigt. Sie dürfen nur Hilfsvariablen vom Typ int verwenden (keine vom Type
key). Begründen Sie, warum Ihr Algorithmus tatsächlich nur die geforderte Anzahl
von Vergleichen ausführt. 5 Punkte

Aufgabe 3 – Spezialsuche

Gegeben sei ein Feld A[1..k] mit ganzen Zahlen, für die A[1] < A[2] < · · · < A[k] gilt.
Geben Sie in Worten und im Pseudocode einen Algorithmus an, der ermittelt, ob es
eine Zahl j ∈ {1, . . . , k} mit A[j] = j gibt. Die Worst-Case Laufzeit Ihres Algorithmus soll
Θ(logk) sein. 5 Punkte

Hinweis: Finden Sie ein geeignetes, leicht zu berechnendes Kriterium, um damit den
gesuchten Index zu suchen. Bedenken Sie auch die besondere Struktur von A.

Bitte geben Sie Ihre Lösungen bis Donnerstag, 5. Dezember 2024, 14:00 Uhr einmal pro
Gruppe über Wuecampus als pdf-Datei ab. Vermerken Sie dabei stets die Namen und
Übungsgruppen aller BearbeiterInnen auf der Abgabe.

Grundsätzlich sind stets alle Ihrer Aussagen zu begründen und Ihr Pseudocode ist stets
zu kommentieren.

Die Lösungen zu den mit PABS gekennzeichneten Aufgaben, geben Sie bitte nur über
das PABS-System ab. Vermerken Sie auf Ihrem Übungsblatt, in welchem Repository

2

(sXXXXXX-Nummer) die Abgabe zu finden ist. Geben Sie Ihre Namen hier als Kom-
mentare in den Quelltextdateien an.

3

