
1

Algorithmen und Datenstrukturen

Vorlesung 19:
Kürzeste Wege und
Dijkstras Algorithmus

?

Alexander Wolff Wintersemester 2024

2

Routenplanung

3 - 1

Modellierung des Problems Routenplanung

Straßenkreuzung ➡ Knoten

Straßenabschnitt ➡ zwei entgegengerichtete Kanten

Einbahnstraßenabschnitt ➡ in Fahrtrichtung gerichtete Kante

Fahrtzeit für Abschnitt e ➡ Kantengewicht w(e) ≥ 0

Straßennetz ➡ gerichteter, gewichteter und zusammenhängender Graph G

Start ➡ Knoten s ∈ V (G)

Ziel ➡ Knoten t ∈ V (G)

Start-Ziel-Route ➡ s-t-Weg: Folge von Kanten (s, v1), (v1, v2), . . . , (vk , t) in G

3 - 2

Modellierung des Problems Routenplanung

Straßenkreuzung ➡ Knoten

Straßenabschnitt ➡ zwei entgegengerichtete Kanten

Einbahnstraßenabschnitt ➡ in Fahrtrichtung gerichtete Kante

Fahrtzeit für Abschnitt e ➡ Kantengewicht w(e) ≥ 0

Straßennetz ➡ gerichteter, gewichteter und zusammenhängender Graph G

Start ➡ Knoten s ∈ V (G)

Ziel ➡ Knoten t ∈ V (G)

Start-Ziel-Route ➡ s-t-Weg: Folge von Kanten (s, v1), (v1, v2), . . . , (vk , t) in G

3 - 3

Modellierung des Problems Routenplanung

Straßenkreuzung ➡ Knoten

Straßenabschnitt ➡ zwei entgegengerichtete Kanten

Einbahnstraßenabschnitt ➡ in Fahrtrichtung gerichtete Kante

Fahrtzeit für Abschnitt e ➡ Kantengewicht w(e) ≥ 0

Straßennetz ➡ gerichteter, gewichteter und zusammenhängender Graph G

Start ➡ Knoten s ∈ V (G)

Ziel ➡ Knoten t ∈ V (G)

Start-Ziel-Route ➡ s-t-Weg: Folge von Kanten (s, v1), (v1, v2), . . . , (vk , t) in G

3 - 4

Modellierung des Problems Routenplanung

Straßenkreuzung ➡ Knoten

Straßenabschnitt ➡ zwei entgegengerichtete Kanten

Einbahnstraßenabschnitt ➡ in Fahrtrichtung gerichtete Kante

Fahrtzeit für Abschnitt e ➡ Kantengewicht w(e) ≥ 0

Straßennetz ➡ gerichteter, gewichteter und zusammenhängender Graph G

Start ➡ Knoten s ∈ V (G)

Ziel ➡ Knoten t ∈ V (G)

Start-Ziel-Route ➡ s-t-Weg: Folge von Kanten (s, v1), (v1, v2), . . . , (vk , t) in G

3 - 5

Modellierung des Problems Routenplanung

Straßenkreuzung ➡ Knoten

Straßenabschnitt ➡ zwei entgegengerichtete Kanten

Einbahnstraßenabschnitt ➡ in Fahrtrichtung gerichtete Kante

Fahrtzeit für Abschnitt e ➡ Kantengewicht w(e) ≥ 0

Straßennetz ➡ gerichteter, gewichteter und zusammenhängender Graph G

Start ➡ Knoten s ∈ V (G)

Ziel ➡ Knoten t ∈ V (G)

Start-Ziel-Route ➡ s-t-Weg: Folge von Kanten (s, v1), (v1, v2), . . . , (vk , t) in G

3 - 6

Modellierung des Problems Routenplanung

Straßenkreuzung ➡ Knoten

Straßenabschnitt ➡ zwei entgegengerichtete Kanten

Einbahnstraßenabschnitt ➡ in Fahrtrichtung gerichtete Kante

Fahrtzeit für Abschnitt e ➡ Kantengewicht w(e) ≥ 0

Straßennetz ➡ gerichteter, gewichteter und zusammenhängender Graph G

Start ➡ Knoten s ∈ V (G)

Ziel ➡ Knoten t ∈ V (G)

Start-Ziel-Route ➡ s-t-Weg: Folge von Kanten (s, v1), (v1, v2), . . . , (vk , t) in G

3 - 7

Modellierung des Problems Routenplanung

Straßenkreuzung ➡ Knoten

Straßenabschnitt ➡ zwei entgegengerichtete Kanten

Einbahnstraßenabschnitt ➡ in Fahrtrichtung gerichtete Kante

Fahrtzeit für Abschnitt e ➡ Kantengewicht w(e) ≥ 0

Straßennetz ➡ gerichteter, gewichteter und zusammenhängender Graph G

Start ➡ Knoten s ∈ V (G)

Ziel ➡ Knoten t ∈ V (G)

Start-Ziel-Route ➡ s-t-Weg: Folge von Kanten (s, v1), (v1, v2), . . . , (vk , t) in G

3 - 8

Modellierung des Problems Routenplanung

Straßenkreuzung ➡ Knoten

Straßenabschnitt ➡ zwei entgegengerichtete Kanten

Einbahnstraßenabschnitt ➡ in Fahrtrichtung gerichtete Kante

Fahrtzeit für Abschnitt e ➡ Kantengewicht w(e) ≥ 0

Straßennetz ➡ gerichteter, gewichteter und zusammenhängender Graph G

Start ➡ Knoten s ∈ V (G)

Ziel ➡ Knoten t ∈ V (G)

Start-Ziel-Route ➡ s-t-Weg: Folge von Kanten (s, v1), (v1, v2), . . . , (vk , t) in G

4 - 1

Routenplanung

4 - 2

Routenplanung

4 - 3

Routenplanung

5

Routenplanung mit Zeitkomponente

6 - 1

Was ist das Problem?

Eingabe:

■ gerichteter, zusammenhängender Graph G
mit nicht-negativen Kantengewichten w : E (G) → Q+

0 ,

6 - 2

Was ist das Problem?

Eingabe:

■ gerichteter, zusammenhängender Graph G
mit nicht-negativen Kantengewichten w : E (G) → Q+

0 ,

6 - 3

Was ist das Problem?

5

7

7
4

2

6

2 1

3

3

Eingabe:

■ gerichteter, zusammenhängender Graph G
mit nicht-negativen Kantengewichten w : E (G) → Q+

0 ,

6 - 4

Was ist das Problem?

s

t

a b

c

5

7

7
4

2

6

2 1

3

3

Eingabe:

■ gerichteter, zusammenhängender Graph G
mit nicht-negativen Kantengewichten w : E (G) → Q+

0 ,

■ Knoten s und t

6 - 5

Was ist das Problem?

s

t

a b

c

5

7

7
4

2

6

2 1

3

3

Eingabe:

■ gerichteter, zusammenhängender Graph G
mit nicht-negativen Kantengewichten w : E (G) → Q+

0 ,

■ Knoten s und t

Ausgabe:

■ kürzester s-t-Weg W in G , d.h.
∑

e∈W w(e) minimal.

Darstellung durch Vorgänger-Zeiger π:
für jeden Knoten v sei π(v) ∈ V (G) ∪ {nil} Vorgänger von v
auf kürzestem s-v -Weg.

6 - 6

Was ist das Problem?

s

t

a b

c

5

7

7
4

2

6

2 1

3

3

Eingabe:

■ gerichteter, zusammenhängender Graph G
mit nicht-negativen Kantengewichten w : E (G) → Q+

0 ,

■ Knoten s und t

Ausgabe:

■ kürzester s-t-Weg W in G , d.h.
∑

e∈W w(e) minimal.

Darstellung durch Vorgänger-Zeiger π:
für jeden Knoten v sei π(v) ∈ V (G) ∪ {nil} Vorgänger von v
auf kürzestem s-v -Weg.

6 - 7

Was ist das Problem?

s

t

a b

c

5

7

7
4

2

6

2 1

3

3

Eingabe:

■ gerichteter, zusammenhängender Graph G
mit nicht-negativen Kantengewichten w : E (G) → Q+

0 ,

■ Knoten s und t

Ausgabe:

■ kürzester s-t-Weg W in G , d.h.
∑

e∈W w(e) minimal.

Darstellung durch Vorgänger-Zeiger π:
für jeden Knoten v sei π(v) ∈ V (G) ∪ {nil} Vorgänger von v
auf kürzestem s-v -Weg.

6 - 8

Was ist das Problem?

s

t

a b

c

5

7

7
4

2

6

2 1

3

3

Eingabe:

■ gerichteter, zusammenhängender Graph G
mit nicht-negativen Kantengewichten w : E (G) → Q+

0 ,

■ Knoten s und t

Ausgabe:

■ kürzester s-t-Weg W in G , d.h.
∑

e∈W w(e) minimal.

Darstellung durch Vorgänger-Zeiger π:
für jeden Knoten v sei π(v) ∈ V (G) ∪ {nil} Vorgänger von v
auf kürzestem s-v -Weg.

6 - 9

Was ist das Problem?

s

t

a b

c

5

7

7
4

2

6

2 1

3

3

Eingabe:

■ gerichteter, zusammenhängender Graph G
mit nicht-negativen Kantengewichten w : E (G) → Q+

0 ,

■ Knoten s und t

Ausgabe:

■ kürzester s-t-Weg W in G , d.h.
∑

e∈W w(e) minimal.

Darstellung durch Vorgänger-Zeiger π:
für jeden Knoten v sei π(v) ∈ V (G) ∪ {nil} Vorgänger von v
auf kürzestem s-v -Weg.

e t

für jedes t ∈ V (G)︸ ︷︷ ︸

6 - 10

Was ist das Problem?

s

t

a b

c

5

7

7
4

2

6

2 1

3

3

Eingabe:

■ gerichteter, zusammenhängender Graph G
mit nicht-negativen Kantengewichten w : E (G) → Q+

0 ,

■ Knoten s und t

Ausgabe:

■ kürzester s-t-Weg W in G , d.h.
∑

e∈W w(e) minimal.

Darstellung durch Vorgänger-Zeiger π:
für jeden Knoten v sei π(v) ∈ V (G) ∪ {nil} Vorgänger von v
auf kürzestem s-v -Weg.

Nebenbemerkung: Analoge Berechnungsverfahren?

e t

für jedes t ∈ V (G)︸ ︷︷ ︸

6 - 11

Was ist das Problem?

s

t

a b

c

5

7

7
4

2

6

2 1

3

3

Eingabe:

■ gerichteter, zusammenhängender Graph G
mit nicht-negativen Kantengewichten w : E (G) → Q+

0 ,

■ Knoten s und t

Ausgabe:

■ kürzester s-t-Weg W in G , d.h.
∑

e∈W w(e) minimal.

Darstellung durch Vorgänger-Zeiger π:
für jeden Knoten v sei π(v) ∈ V (G) ∪ {nil} Vorgänger von v
auf kürzestem s-v -Weg.

Nebenbemerkung: Analoge Berechnungsverfahren?

e t

für jedes t ∈ V (G)︸ ︷︷ ︸

Abbildung aus:
Solving the Shortest Path Problem Using an Analog Network
Linkai Bu & Tzi-Dar Chiueh

(nur für ungerichtete Graphen!)

7 - 1

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞∞

0

7 - 2

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

s

Q:

∞

0

7 - 3

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Q:

∞

0

7 - 4

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Q:

∞

0

7 - 5

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Q:

∞

0

7 - 6

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Q:1

∞

0

7 - 7

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Q:1

∞

0

7 - 8

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Q:1

r

∞

0

7 - 9

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Q:1

r

∞

0

7 - 10

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Q:1

r

∞

0

7 - 11

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Q:1

r

1

0

7 - 12

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Q:1

r

1

0

7 - 13

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Q:1

1

r w

0

7 - 14

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Q:1

1

r w

0

7 - 15

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Q:1

1

r w

0

7 - 16

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Q:1

1

r w

0

7 - 17

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Q:1

1

0

w

7 - 18

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Q:1

1

0

w

7 - 19

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

Q:1

1

0

w

2

7 - 20

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

Q:1

1

0

w v

2

7 - 21

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

Q:1

1

0

w v

2

7 - 22

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

Q:1

1

0

v

2

7 - 23

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

Q:1

1

0

v

2

7 - 24

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Q:1

1

0

v

2

2

7 - 25

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Q:1

1

0

v t

2

2

7 - 26

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Q:1

1

0

v t

2

2

7 - 27

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Q:1

1

0

v t

2

2

2

7 - 28

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Q:1

1

0

v t x

2

2

2

7 - 29

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Q:1

1

0

v t x

2

2

2

7 - 30

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Q:1

1

0

t x

2

2

2

7 - 31

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Q:1

1

0

t x

2

2

2

7 - 32

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Q:1

1

0

2

x

2

2

7 - 33

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Q:1

1

0

2

x

2

2

7 - 34

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Q:1

1

0

2

2

2

7 - 35

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Q:1

1

0

2

2

2

7 - 36

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Q:1

1

0

2

2

2

7 - 37

Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Q:1

1

0

2

2

2

Laufzeit? O(|V |) + O(|V |) + O(|E |) = O(|V |+ |E |)
Initialize En-/Dequeues Adjazenzlisten (foreach-Schleifen)

Beob. über Knotengrade!

8 - 1

Ausbreitung

G
s

Breitensuche (breadth-first search, BFS)
Alle Kanten gleich schwer

8 - 2

Ausbreitung

G
s

Breitensuche (breadth-first search, BFS)

Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

Alle Kanten gleich schwer

8 - 3

Ausbreitung

G
s

Breitensuche (breadth-first search, BFS)

Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

Alle Kanten gleich schwer

Dijkstra
Kanten unterschiedlich schwer

8 - 4

Ausbreitung

G
s

Breitensuche (breadth-first search, BFS)

Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

Alle Kanten gleich schwer

Dijkstra
Kanten unterschiedlich schwer

G

s

8 - 5

Ausbreitung

G
s

Breitensuche (breadth-first search, BFS)

Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

Alle Kanten gleich schwer

Dijkstra
Kanten unterschiedlich schwer

G

s

9 - 1

Dijkstra r s t

v w x

9 - 2

Dijkstra r s t

v w x

1

5
3

7
2

4

1

9 - 3

Dijkstra r s t

v w x

1

5
3

7
2

4

1

Edsger W. Dijkstra
(Rotterdam 1930–2002 Nuenen)

9 - 4

Dijkstra r s t

v w x

1

5
3

7
2

4

1

Edsger W. Dijkstra
(Rotterdam 1930–2002 Nuenen)

A note on two problems in connexion with graphs.
In: Numerische Mathematik, Band 1, 1959

9 - 5

Dijkstra r s t

v w x

1

5
3

7
2

4

1

Edsger W. Dijkstra
(Rotterdam 1930–2002 Nuenen)

A note on two problems in connexion with graphs.
In: Numerische Mathematik, Band 1, 1959

9 - 6

Dijkstra r s t

v w x

1

5
3

7
2

4

1

Edsger W. Dijkstra
(Rotterdam 1930–2002 Nuenen)

A note on two problems in connexion with graphs.
In: Numerische Mathematik, Band 1, 1959

9 - 7

Dijkstra r s t

v w x

1

5
3

7
2

4

1

Edsger W. Dijkstra
(Rotterdam 1930–2002 Nuenen)

ARMAC, 1960

9 - 8

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

9 - 9

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

9 - 10

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

0∞

∞ ∞

∞

∞

9 - 11

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

0∞

∞ ∞

∞

∞

9 - 12

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

0

Q

∞

∞ ∞

∞

∞

9 - 13

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

0

Q

∞

∞ ∞

s t v w r x
0 ∞∞∞∞∞

∞

∞

9 - 14

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

0

Q

∞

∞ ∞

s t v w r x
0 ∞∞∞∞∞

∞

∞

9 - 15

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

0

Q

∞

∞ ∞

s t v w r x
0 ∞∞∞∞∞

∞

∞

9 - 16

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

0

Q

∞

∞ ∞

s t v w r x
0 ∞∞∞∞∞

∞

∞

9 - 17

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

0

Q

∞

∞ ∞

s t v w r x
0 ∞∞∞∞∞

∞

∞

9 - 18

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

Q

∞

∞ ∞

s t v w r x
0 ∞∞∞∞∞

∞

∞

9 - 19

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

Q

∞ ∞

s t v w r x
0 ∞∞∞∞∞

∞

∞

9 - 20

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

Q

∞ ∞

s t v w r x
0 ∞∞∞∞∞

∞

∞

9 - 21

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

Q

∞

s t v w r x
0 ∞∞∞∞∞

∞

∞

9 - 22

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

Q

∞

s t v w r x
0 ∞∞∞∞∞

∞

∞

9 - 23

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

Q

∞

s t v w r x
0 ∞∞∞∞∞

∞

∞

Q.DecreaseKey(v , v .d)

9 - 24

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

Q

∞

s t v w
x

0 ∞∞∞ ∞
r

1

∞

∞

Q.DecreaseKey(v , v .d)

9 - 25

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

Q

∞

s x
0 ∞

r

1
w

∞
v
∞

t
∞

∞

∞

Q.DecreaseKey(v , v .d)

9 - 26

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

Q

∞

s x
0 ∞

r

1
v
∞

t
∞

w

5

∞

∞

Q.DecreaseKey(v , v .d)

9 - 27

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

Q

∞

s x
0 ∞

r

1
v
∞

t
∞

w

5

∞

∞

Q.DecreaseKey(v , v .d)

9 - 28

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

Q

∞

x
∞

r

1
v
∞

t
∞

w

5

∞

∞

Q.DecreaseKey(v , v .d)

9 - 29

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

Q

∞

x
∞

r

1
v
∞

t
∞

w

5

∞

∞

Q.DecreaseKey(v , v .d)

9 - 30

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

Q

∞

x
∞

r

1
v
∞

t
∞

w

5

∞

∞

Q.DecreaseKey(v , v .d)

9 - 31

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

8

Q x
∞

r

1
v
∞

t
∞

w

5

∞

∞

Q.DecreaseKey(v , v .d)

9 - 32

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

8

Q x
∞

r

1
t
∞

w

5
v

8

∞

∞

Q.DecreaseKey(v , v .d)

9 - 33

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

8

Q x
∞

r

1

w

5
v

8
t
∞

∞

∞

Q.DecreaseKey(v , v .d)

9 - 34

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

8

Q x
∞

r

1

w

5
v

8
t
∞

∞

∞

Q.DecreaseKey(v , v .d)

9 - 35

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

0

5

1

8

Q x
∞

r

1

w

5
v

8
t
∞

∞

∞

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 36

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q x
∞

r

1

w

5
v

8
t
∞

∞

∞

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 37

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q x
∞

r

1

w

5
v

8
t
∞

∞

∞

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 38

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q x
∞

r

1
v

8
t
∞

w

4

∞

∞

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 39

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q x
∞

v

8
t
∞

w

4

∞

∞

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 40

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q x
∞

v

8
t
∞

w

4

∞

∞

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 41

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q x
∞

v

8
t
∞

w

4

8

6

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 42

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q x
∞

v

8
t
∞

w

4

8

6

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 43

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q
v

8

w

4
t

6
x

8

8

6

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 44

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q
w

4
x

8

t

6
v

8

8

6

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 45

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q x

8

t

6
v

8

8

6

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 46

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q x

8

t

6
v

8

8

6

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 47

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q x

8

t

6
v

8

8

6

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 48

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q x

8

t

6
v

8

6

7

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 49

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q x

8

t

6
v

8

6

7

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 50

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q
t

6
x

7
v

8

6

7

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 51

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q x

7
v

8

6

7

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 52

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q

6

7

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 53

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q

6

7

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 54

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q

6

7

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

9 - 55

Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q

6

7

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then

https://algo.uni-trier.de/demos/graphtraversal.htmlDemo.

https://algo.uni-trier.de/demos/graphtraversal.html

10 - 1

Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V (G), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

10 - 2

Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V (G), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

10 - 3

Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

O() Zeit
Initialize(G , s)
Q = new PriorityQueue(V (G), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

10 - 4

Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

O() ZeitV
Initialize(G , s)
Q = new PriorityQueue(V (G), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

10 - 5

Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

O() ZeitV
Initialize(G , s)
Q = new PriorityQueue(V (G), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

Abk. für O(|V (G)|)

10 - 6

Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

O() ZeitV
Initialize(G , s)
Q = new PriorityQueue(V (G), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

Abk. für O(|V (G)|)

10 - 7

Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

genau |V | mal

O() ZeitV
Initialize(G , s)
Q = new PriorityQueue(V (G), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

Abk. für O(|V (G)|)

10 - 8

Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

genau |V | mal

O() ZeitV
Initialize(G , s)
Q = new PriorityQueue(V (G), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

Abk. für O(|V (G)|)

10 - 9

Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

genau |V | mal

Wie oft wird der
Schleifeninhalt aufgerufen?

O() ZeitV
Initialize(G , s)
Q = new PriorityQueue(V (G), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

Abk. für O(|V (G)|)

10 - 10

Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

genau |V | mal

Wie oft wird der
Schleifeninhalt aufgerufen?

Für jeden Knoten u von G

genau |Adj[u]| mal,

O() ZeitV
Initialize(G , s)
Q = new PriorityQueue(V (G), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

Abk. für O(|V (G)|)

10 - 11

Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

genau |V | mal

Wie oft wird der
Schleifeninhalt aufgerufen?

Für jeden Knoten u von G

genau |Adj[u]| mal,= deg(u)

O() ZeitV

(out-)

Initialize(G , s)
Q = new PriorityQueue(V (G), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

Abk. für O(|V (G)|)

10 - 12

Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

genau |V | mal

Wie oft wird der
Schleifeninhalt aufgerufen?

Für jeden Knoten u von G

genau |Adj[u]| mal,

also insg. Θ(E) mal.

= deg(u)

O() ZeitV

(out-)

Initialize(G , s)
Q = new PriorityQueue(V (G), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

Abk. für O(|V (G)|)

10 - 13

Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

genau |V | mal

Wie oft wird der
Schleifeninhalt aufgerufen?

Für jeden Knoten u von G

genau |Adj[u]| mal,

also insg. Θ(E) mal.

= deg(u)

Also wird DecreaseKey
O(E) mal aufgerufen.

O() ZeitV

(out-)

Initialize(G , s)
Q = new PriorityQueue(V (G), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

Abk. für O(|V (G)|)

10 - 14

Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

genau |V | mal

Wie oft wird der
Schleifeninhalt aufgerufen?

Für jeden Knoten u von G

genau |Adj[u]| mal,

also insg. Θ(E) mal.

= deg(u)

Also wird DecreaseKey
O(E) mal aufgerufen.

O() ZeitV

(out-)

Initialize(G , s)
Q = new PriorityQueue(V (G), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

Abk. für O(|V (G)|)

11 - 1

Dijkstra – die Laufzeit

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 2

Dijkstra – die Laufzeit

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n) TDijkstra(|V |, |E |)

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 3

Dijkstra – die Laufzeit

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n) TDijkstra(|V |, |E |)

n = (max.) Anzahl der Elemente in der PriorityQueue

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 4

Dijkstra – die Laufzeit

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n) TDijkstra(|V |, |E |)

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 5

Dijkstra – die Laufzeit

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

TDijkstra(|V |, |E |)

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 6

Dijkstra – die Laufzeit

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld O(n)

TDijkstra(|V |, |E |)

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 7

Dijkstra – die Laufzeit

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld O(1)O(n)

TDijkstra(|V |, |E |)

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 8

Dijkstra – die Laufzeit

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld O(1)O(n)

TDijkstra(|V |, |E |)

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 9

Dijkstra – die Laufzeit

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E)

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 10

Dijkstra – die Laufzeit

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E)

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 11

Dijkstra – die Laufzeit

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E)

O(log n)

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 12

Dijkstra – die Laufzeit

⋆⋆) Das geht, obwohl

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E)

O(log n) O(log n) ⋆⋆

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 13

Dijkstra – die Laufzeit

⋆⋆) Das geht, obwohlwir im Heap nicht suchen können (!). Wir merken uns ständig für jeden Knoten, wo er im Heap steht.

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E)

O(log n) O(log n) ⋆⋆

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 14

Dijkstra – die Laufzeit

⋆⋆) Das geht, obwohlwir im Heap nicht suchen können (!). Wir merken uns ständig für jeden Knoten, wo er im Heap steht.

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E)

O(log n) O(log n) O((E + V) logV)⋆⋆

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 15

Dijkstra – die Laufzeit

⋆⋆) Das geht, obwohlwir im Heap nicht suchen können (!). Wir merken uns ständig für jeden Knoten, wo er im Heap steht.

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

als FibonacciHeap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E)

O(log n) O(log n) O((E + V) logV)⋆⋆

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 16

Dijkstra – die Laufzeit

⋆⋆) Das geht, obwohlwir im Heap nicht suchen können (!). Wir merken uns ständig für jeden Knoten, wo er im Heap steht.

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

als FibonacciHeap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E)

O(log n) O(log n) O((E + V) logV)

O(log n)

⋆⋆

amortisiert

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 17

Dijkstra – die Laufzeit

⋆⋆) Das geht, obwohlwir im Heap nicht suchen können (!). Wir merken uns ständig für jeden Knoten, wo er im Heap steht.

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

als FibonacciHeap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E)

O(log n) O(log n) O((E + V) logV)

O(log n) O(1)

⋆⋆

amortisiert amortisiert

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 18

Dijkstra – die Laufzeit

⋆⋆) Das geht, obwohlwir im Heap nicht suchen können (!). Wir merken uns ständig für jeden Knoten, wo er im Heap steht.

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

als FibonacciHeap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E)

O(log n) O(log n) O((E + V) logV)

O(log n) O(1) O(E+V logV)

⋆⋆

amortisiert amortisiert im Worst-Case!

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 19

Dijkstra – die Laufzeit

⋆⋆) Das geht, obwohlwir im Heap nicht suchen können (!). Wir merken uns ständig für jeden Knoten, wo er im Heap steht.

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

als FibonacciHeap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E)

O(log n) O(log n) O((E + V) logV)

O(log n) O(1) O(E+V logV)

⋆⋆

amortisiert amortisiert im Worst-Case!siehe Master-Vorlesung Fortgeschrittene Algorithmen

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 20

Dijkstra – die Laufzeit

⋆⋆) Das geht, obwohlwir im Heap nicht suchen können (!). Wir merken uns ständig für jeden Knoten, wo er im Heap steht.

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

als FibonacciHeap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E)

O(log n) O(log n) O((E + V) logV)

O(log n) O(1) O(E+V logV)

⋆⋆

amortisiert amortisiert im Worst-Case!

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 21

Dijkstra – die Laufzeit

⋆⋆) Das geht, obwohlwir im Heap nicht suchen können (!). Wir merken uns ständig für jeden Knoten, wo er im Heap steht.

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

als FibonacciHeap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E)

O(log n) O(log n) O((E + V) logV)

O(log n) O(1) O(E+V logV)

⋆⋆

amortisiert amortisiert im Worst-Case!

Korollar. In einem Graphen G = (V ,E ;w) mit w : E → Q≥0 kann
man in O(E + V logV) Zeit die kürzesten Wege von einem
zu allen Knoten berechnen (SSSP-Problem).

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

11 - 22

Dijkstra – die Laufzeit

⋆⋆) Das geht, obwohlwir im Heap nicht suchen können (!). Wir merken uns ständig für jeden Knoten, wo er im Heap steht.

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

als FibonacciHeap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E)

O(log n) O(log n) O((E + V) logV)

O(log n) O(1) O(E+V logV)

⋆⋆

amortisiert amortisiert im Worst-Case!

Korollar. In einem Graphen G = (V ,E ;w) mit w : E → Q≥0 kann
man in O(E + V logV) Zeit die kürzesten Wege von einem
zu allen Knoten berechnen (SSSP-Problem).

≥0

Satz. Gegeben ein Graph G=(V,E), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.

12 - 1

Dijkstra – die Korrektheit

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

12 - 2

Dijkstra – die Korrektheit

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 3

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 4

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

Im Allgemeinen gilt nur ≤ Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 5

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 6

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 7

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 8

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 9

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 10

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn
III) gilt vk = Q.ExtractMin()

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 11

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

1. Initialisierung (k = 1)

III) gilt vk = Q.ExtractMin()

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 12

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

1. Initialisierung (k = 1)
Offensichtlich ist v1 = s und δ(s, s) = 0.

III) gilt vk = Q.ExtractMin()

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 13

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

1. Initialisierung (k = 1)
Offensichtlich ist v1 = s und δ(s, s) = 0.
In Initialize(G , s) wird s.d = 0 gesetzt ⇒ I)

III) gilt vk = Q.ExtractMin()

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 14

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

1. Initialisierung (k = 1)
Offensichtlich ist v1 = s und δ(s, s) = 0.
In Initialize(G , s) wird s.d = 0 gesetzt ⇒ I)

III) gilt vk = Q.ExtractMin()

Alle Knoten sind in Q ⇒ II)

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 15

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

1. Initialisierung (k = 1)
Offensichtlich ist v1 = s und δ(s, s) = 0.
In Initialize(G , s) wird s.d = 0 gesetzt ⇒ I)

Für jeden Knoten v ̸= s wird v .d = ∞ gesetzt

III) gilt vk = Q.ExtractMin()

Alle Knoten sind in Q ⇒ II)

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 16

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

1. Initialisierung (k = 1)
Offensichtlich ist v1 = s und δ(s, s) = 0.
In Initialize(G , s) wird s.d = 0 gesetzt ⇒ I)

Für jeden Knoten v ̸= s wird v .d = ∞ gesetzt ⇒ III)

III) gilt vk = Q.ExtractMin()

Alle Knoten sind in Q ⇒ II)

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

12 - 17

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

1. Initialisierung (k = 1)
Offensichtlich ist v1 = s und δ(s, s) = 0.
In Initialize(G , s) wird s.d = 0 gesetzt ⇒ I)

Für jeden Knoten v ̸= s wird v .d = ∞ gesetzt ⇒ III)

✓

III) gilt vk = Q.ExtractMin()

Alle Knoten sind in Q ⇒ II)

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).

13 - 1

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 2

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 3

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 4

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

P
Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 5

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

vi

Sei vi der Vorgänger von vk auf P.

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

P
Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 6

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

vi

Sei vi der Vorgänger von vk auf P.
Dann ist i < k.

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

P
Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 7

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

vi

Sei vi der Vorgänger von vk auf P.
Dann ist i < k.

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

P

δ(s, vi)
Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 8

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

vi

Sei vi der Vorgänger von vk auf P.
Dann ist i < k.

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

P

δ(s, vi)
w(vi , vk)

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 9

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

vi

Sei vi der Vorgänger von vk auf P.
Dann ist i < k. I) ⇒ vi .d = δ(s, vi)

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

P

δ(s, vi)
w(vi , vk)

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 10

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

vi

Sei vi der Vorgänger von vk auf P.
Dann ist i < k. I) ⇒ vi .d = δ(s, vi)

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

P

δ(s, vi)
w(vi , vk)

Betrachte i-ten Schleifendurchlauf mit u = vi , v = vk

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 11

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

vi

Sei vi der Vorgänger von vk auf P.
Dann ist i < k. I) ⇒ vi .d = δ(s, vi)

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

P

δ(s, vi)
w(vi , vk)

Betrachte i-ten Schleifendurchlauf mit u = vi , v = vk

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 12

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

vi

Sei vi der Vorgänger von vk auf P.
Dann ist i < k. I) ⇒ vi .d = δ(s, vi)

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

P

⇒ vk .d = vi .d + w(vi , vk) = δ(s, vi) + w(vi , vk) = δ(s, vk)

δ(s, vi)
w(vi , vk)

Betrachte i-ten Schleifendurchlauf mit u = vi , v = vk

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 13

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

vi

Sei vi der Vorgänger von vk auf P.
Dann ist i < k. I) ⇒ vi .d = δ(s, vi)

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

P

⇒ vk .d = vi .d + w(vi , vk) = δ(s, vi) + w(vi , vk) = δ(s, vk)

δ(s, vi)
w(vi , vk)

Betrachte i-ten Schleifendurchlauf mit u = vi , v = vk

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 14

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

vi

Sei vi der Vorgänger von vk auf P.
Dann ist i < k. I) ⇒ vi .d = δ(s, vi)

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

P

⇒ vk .d = vi .d + w(vi , vk) = δ(s, vi) + w(vi , vk) = δ(s, vk)

δ(s, vi)
w(vi , vk)

Betrachte i-ten Schleifendurchlauf mit u = vi , v = vk

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 15

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

vi

Sei vi der Vorgänger von vk auf P.
Dann ist i < k. I) ⇒ vi .d = δ(s, vi)

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

P

⇒ vk .d = vi .d + w(vi , vk) = δ(s, vi) + w(vi , vk) = δ(s, vk)

δ(s, vi)
w(vi , vk)

Betrachte i-ten Schleifendurchlauf mit u = vi , v = vk

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 16

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

vi

Sei vi der Vorgänger von vk auf P.
Dann ist i < k. I) ⇒ vi .d = δ(s, vi)

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

P

⇒ vk .d = vi .d + w(vi , vk) = δ(s, vi) + w(vi , vk) = δ(s, vk)

δ(s, vi)
w(vi , vk)

Betrachte i-ten Schleifendurchlauf mit u = vi , v = vk
⇒ I)

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 17

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

vi

Sei vi der Vorgänger von vk auf P.
Dann ist i < k. I) ⇒ vi .d = δ(s, vi)

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

P

⇒ vk .d = vi .d + w(vi , vk) = δ(s, vi) + w(vi , vk) = δ(s, vk)

δ(s, vi)
w(vi , vk)

Betrachte i-ten Schleifendurchlauf mit u = vi , v = vk
⇒ I)

✓

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 18

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()✓

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 19

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()✓

Betrachte (k − 1)-ten Schleifendurchlauf

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 20

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

Q enthielt genau die Knoten vk−1, . . . , vn

✓

II) ⇒

Betrachte (k − 1)-ten Schleifendurchlauf

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 21

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

Q enthielt genau die Knoten vk−1, . . . , vn

✓

II) ⇒

III) ⇒ es wurde genau vk−1 aus Q entfernt

Betrachte (k − 1)-ten Schleifendurchlauf

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 22

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

Q enthielt genau die Knoten vk−1, . . . , vn

✓

II) ⇒

III) ⇒ es wurde genau vk−1 aus Q entfernt ⇒ II)

Betrachte (k − 1)-ten Schleifendurchlauf

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 23

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

Q enthielt genau die Knoten vk−1, . . . , vn

✓

II) ⇒

III) ⇒ es wurde genau vk−1 aus Q entfernt ⇒ II)

✓

Betrachte (k − 1)-ten Schleifendurchlauf

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 24

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()✓
✓

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 25

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()✓
✓

Betrachte Knoten vℓ mit ℓ > k.

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 26

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()✓
✓

Betrachte Knoten vℓ mit ℓ > k.

Dann gilt vℓ.d ≥ δ(s, vℓ) > δ(s, vk) = vk .d

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 27

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()✓
✓

Betrachte Knoten vℓ mit ℓ > k.

Dann gilt vℓ.d ≥ δ(s, vℓ) > δ(s, vk) = vk .d

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 28

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()✓
✓

Betrachte Knoten vℓ mit ℓ > k.

Dann gilt vℓ.d ≥ δ(s, vℓ) > δ(s, vk) = vk .d

δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 29

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()✓
✓

Betrachte Knoten vℓ mit ℓ > k.

Dann gilt vℓ.d ≥ δ(s, vℓ) > δ(s, vk) = vk .d

δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 30

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()✓
✓

Betrachte Knoten vℓ mit ℓ > k.

Dann gilt vℓ.d ≥ δ(s, vℓ) > δ(s, vk) = vk .d

δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

I)

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 31

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()✓
✓

Betrachte Knoten vℓ mit ℓ > k.

Dann gilt vℓ.d ≥ δ(s, vℓ) > δ(s, vk) = vk .d

δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

I)

✓

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 32

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()✓
✓

Betrachte Knoten vℓ mit ℓ > k.

Dann gilt vℓ.d ≥ δ(s, vℓ) > δ(s, vk) = vk .d

δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

I)

✓

✓
Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 33

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

✓
3. Terminierung

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 34

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

✓
3. Terminierung

I) ⇒ vi .d = δ(s, vi) für alle 1 ≤ i ≤ n

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

13 - 35

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()

✓
3. Terminierung

I) ⇒ vi .d = δ(s, vi) für alle 1 ≤ i ≤ n

✓

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

14 - 1

Kürzeste Wege nach Dijkstra

Eingabe Algorithmus Laufzeit

ungewichteter Graph Breitensuche O(E + V)

nicht-neg. Kantengew. Dijkstra O(E + V logV)

azyklischer Graph Topol. Sortieren O(E + V)

negative Kantengew. Bellman-Ford O(EV)

für alle Knotenpaare |V | × Dijkstra O(V (E + V logV))

+ negative Kantengew. Floyd-Warshall O(V 3)

Johnson O(V (E + V logV))

k kürzeste s-t-Wege Eppstein O(k + E + V logV)

14 - 2

Kürzeste Wege nach Dijkstra

Eingabe Algorithmus Laufzeit

ungewichteter Graph Breitensuche O(E + V)

nicht-neg. Kantengew. Dijkstra O(E + V logV)

azyklischer Graph Topol. Sortieren O(E + V)

negative Kantengew. Bellman-Ford O(EV)

für alle Knotenpaare |V | × Dijkstra O(V (E + V logV))

+ negative Kantengew. Floyd-Warshall O(V 3)

Johnson O(V (E + V logV))

k kürzeste s-t-Wege Eppstein O(k + E + V logV)

Vorlesung 18

14 - 3

Kürzeste Wege nach Dijkstra

Eingabe Algorithmus Laufzeit

ungewichteter Graph Breitensuche O(E + V)

nicht-neg. Kantengew. Dijkstra O(E + V logV)

azyklischer Graph Topol. Sortieren O(E + V)

negative Kantengew. Bellman-Ford O(EV)

für alle Knotenpaare |V | × Dijkstra O(V (E + V logV))

+ negative Kantengew. Floyd-Warshall O(V 3)

Johnson O(V (E + V logV))

k kürzeste s-t-Wege Eppstein O(k + E + V logV)

heute

Vorlesung 18

14 - 4

Kürzeste Wege nach Dijkstra

Eingabe Algorithmus Laufzeit

ungewichteter Graph Breitensuche O(E + V)

nicht-neg. Kantengew. Dijkstra O(E + V logV)

azyklischer Graph Topol. Sortieren O(E + V)

negative Kantengew. Bellman-Ford O(EV)

für alle Knotenpaare |V | × Dijkstra O(V (E + V logV))

+ negative Kantengew. Floyd-Warshall O(V 3)

Johnson O(V (E + V logV))

k kürzeste s-t-Wege Eppstein O(k + E + V logV)

heute

Vorlesung 18

Vorlesung 20

14 - 5

Kürzeste Wege nach Dijkstra

Eingabe Algorithmus Laufzeit

ungewichteter Graph Breitensuche O(E + V)

nicht-neg. Kantengew. Dijkstra O(E + V logV)

azyklischer Graph Topol. Sortieren O(E + V)

negative Kantengew. Bellman-Ford O(EV)

für alle Knotenpaare |V | × Dijkstra O(V (E + V logV))

+ negative Kantengew. Floyd-Warshall O(V 3)

Johnson O(V (E + V logV))

k kürzeste s-t-Wege Eppstein O(k + E + V logV)

heute

Vorlesung 18

Vorlesung 20

14 - 6

Kürzeste Wege nach Dijkstra

Eingabe Algorithmus Laufzeit

ungewichteter Graph Breitensuche O(E + V)

nicht-neg. Kantengew. Dijkstra O(E + V logV)

azyklischer Graph Topol. Sortieren O(E + V)

negative Kantengew. Bellman-Ford O(EV)

für alle Knotenpaare |V | × Dijkstra O(V (E + V logV))

+ negative Kantengew. Floyd-Warshall O(V 3)

Johnson O(V (E + V logV))

k kürzeste s-t-Wege Eppstein O(k + E + V logV)

heute

heute

Vorlesung 18

Vorlesung 20

14 - 7

Kürzeste Wege nach Dijkstra

Eingabe Algorithmus Laufzeit

ungewichteter Graph Breitensuche O(E + V)

nicht-neg. Kantengew. Dijkstra O(E + V logV)

azyklischer Graph Topol. Sortieren O(E + V)

negative Kantengew. Bellman-Ford O(EV)

für alle Knotenpaare |V | × Dijkstra O(V (E + V logV))

+ negative Kantengew. Floyd-Warshall O(V 3)

Johnson O(V (E + V logV))

k kürzeste s-t-Wege Eppstein O(k + E + V logV)

heute

heute

Vorlesung 18

Vorlesung 20

14 - 8

Kürzeste Wege nach Dijkstra

Eingabe Algorithmus Laufzeit

ungewichteter Graph Breitensuche O(E + V)

nicht-neg. Kantengew. Dijkstra O(E + V logV)

azyklischer Graph Topol. Sortieren O(E + V)

negative Kantengew. Bellman-Ford O(EV)

für alle Knotenpaare |V | × Dijkstra O(V (E + V logV))

+ negative Kantengew. Floyd-Warshall O(V 3)

Johnson O(V (E + V logV))

k kürzeste s-t-Wege Eppstein O(k + E + V logV)

heute

heute

Vorlesung 18

Vorlesung 20

14 - 9

Kürzeste Wege nach Dijkstra

Eingabe Algorithmus Laufzeit

ungewichteter Graph Breitensuche O(E + V)

nicht-neg. Kantengew. Dijkstra O(E + V logV)

azyklischer Graph Topol. Sortieren O(E + V)

negative Kantengew. Bellman-Ford O(EV)

für alle Knotenpaare |V | × Dijkstra O(V (E + V logV))

+ negative Kantengew. Floyd-Warshall O(V 3)

Johnson O(V (E + V logV))

k kürzeste s-t-Wege Eppstein O(k + E + V logV)

heute

heute

Vorlesung 18

Vorlesung 20

	Kürzeste Wege
	Routenplanung
	Modellierung

	Routenplanung
	Routenplanung mit Zeitkomponente
	Was ist das Problem?
	Wiederholung Breitensuche
	Ausbreitung
	Dijkstra
	Algorithmus
	Laufzeit
	Korrektheit

	Kürzeste Wege nach Dijkstra

