
1

Algorithmen und Datenstrukturen

Vorlesung 19:
Kürzeste Wege und
Dijkstras Algorithmus

?

Alexander Wolff Wintersemester 2024



2

Routenplanung



3 - 1

Modellierung des Problems Routenplanung

Straßenkreuzung ➡ Knoten

Straßenabschnitt ➡ zwei entgegengerichtete Kanten

Einbahnstraßenabschnitt ➡ in Fahrtrichtung gerichtete Kante

Fahrtzeit für Abschnitt e ➡ Kantengewicht w(e) ≥ 0

Straßennetz ➡ gerichteter, gewichteter und zusammenhängender Graph G

Start ➡ Knoten s ∈ V (G )

Ziel ➡ Knoten t ∈ V (G )

Start-Ziel-Route ➡ s-t-Weg: Folge von Kanten (s, v1), (v1, v2), . . . , (vk , t) in G
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Routenplanung mit Zeitkomponente
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Was ist das Problem?

Eingabe:

■ gerichteter, zusammenhängender Graph G
mit nicht-negativen Kantengewichten w : E (G ) → Q+

0 ,
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■ kürzester s-t-Weg W in G , d.h.
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e∈W w(e) minimal.

Darstellung durch Vorgänger-Zeiger π:
für jeden Knoten v sei π(v) ∈ V (G ) ∪ {nil} Vorgänger von v
auf kürzestem s-v -Weg.
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Abbildung aus:
Solving the Shortest Path Problem Using an Analog Network
Linkai Bu & Tzi-Dar Chiueh

(nur für ungerichtete Graphen!)
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Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0
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Initialize En-/Dequeues Adjazenzlisten (foreach-Schleifen)

Beob. über Knotengrade!
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Dijkstra – die Laufzeit

Satz. Gegeben ein Graph G=(V,E ), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.
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Dijkstra – die Laufzeit

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n) TDijkstra(|V |, |E |)

Satz. Gegeben ein Graph G=(V,E ), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.
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Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n) TDijkstra(|V |, |E |)

n = (max.) Anzahl der Elemente in der PriorityQueue

Satz. Gegeben ein Graph G=(V,E ), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.
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Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n) TDijkstra(|V |, |E |)

Satz. Gegeben ein Graph G=(V,E ), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.
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Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

TDijkstra(|V |, |E |)

Satz. Gegeben ein Graph G=(V,E ), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.
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Satz. Gegeben ein Graph G=(V,E ), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.
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Dijkstra – die Laufzeit

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld O(1)O(n)

TDijkstra(|V |, |E |)

Satz. Gegeben ein Graph G=(V,E ), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.
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Dijkstra – die Laufzeit

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld O(1)O(n)

TDijkstra(|V |, |E |)

Satz. Gegeben ein Graph G=(V,E ), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.
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Dijkstra – die Laufzeit

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E )

Satz. Gegeben ein Graph G=(V,E ), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.
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Dijkstra – die Laufzeit

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E )

Satz. Gegeben ein Graph G=(V,E ), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.
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Dijkstra – die Laufzeit

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E )

O(log n)

Satz. Gegeben ein Graph G=(V,E ), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.
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⋆⋆) Das geht, obwohl

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E )

O(log n) O(log n) ⋆⋆

Satz. Gegeben ein Graph G=(V,E ), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.
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⋆⋆) Das geht, obwohlwir im Heap nicht suchen können (!). Wir merken uns ständig für jeden Knoten, wo er im Heap steht.

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)
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wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

als FibonacciHeap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E )

O(log n) O(log n) O((E + V ) logV )

O(log n) O(1) O(E+V logV )

⋆⋆

amortisiert amortisiert im Worst-Case!

Korollar. In einem Graphen G = (V ,E ;w) mit w : E → Q≥0 kann
man in O(E + V logV ) Zeit die kürzesten Wege von einem
zu allen Knoten berechnen (SSSP-Problem).

≥0

Satz. Gegeben ein Graph G=(V,E ), läuft Dijkstras Alg. in
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II) enthält Q genau die Knoten vk , . . . , vn

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G ) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).



12 - 10

Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi ) für alle 1 ≤ i ≤ k
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II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.ExtractMin()✓
✓

Betrachte Knoten vℓ mit ℓ > k.

Dann gilt vℓ.d ≥ δ(s, vℓ) > δ(s, vk) = vk .d

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)



13 - 27

Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi ) für alle 1 ≤ i ≤ k
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Kürzeste Wege nach Dijkstra

Eingabe Algorithmus Laufzeit

ungewichteter Graph Breitensuche O(E + V )

nicht-neg. Kantengew. Dijkstra O(E + V logV )

azyklischer Graph Topol. Sortieren O(E + V )

negative Kantengew. Bellman-Ford O(EV )

für alle Knotenpaare |V | × Dijkstra O(V (E + V logV ))

+ negative Kantengew. Floyd-Warshall O(V 3)

Johnson O(V (E + V logV ))

k kürzeste s-t-Wege Eppstein O(k + E + V logV )
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