A el

Algorithmen und Datenstrukturen

Vorlesung 19:
" Kiirzeste Wege und

% D| jkstras Algorithmus

Alexander Wolff Wintersemester 2024

Routenplanung

EE‘DFEIIIEHEE'raEH

— - - - - S— et i U _w'ln':'[,lﬁll. = . - -
-,‘J,giﬂm'"ﬁ’lm Schiirerstraie _ = ap_m}fna 1 thr--- | I Karte I Satellit Gelande .
Sn’%ng ﬁaﬁg MNovotel Beethovenstralie “ i ™ - ﬂf‘ﬁ""?'?.-_'}e Pﬁ-‘-'b'al: %
:) [T YTty Ay -
Juliusspital %E;d“e' 2 """]f_l"'"” " el D G“;;-i;m ._?f" St ”ﬂrnhwger Sk
it e i LA LIS brg g~ — =
_h y ¥
. ;‘-}aﬁ > é‘ @ Pg' P Barbarasirane f@nglsmﬂstraé‘"‘ ETQer Sir. Mirnberger Sihr.
; r I i] e E— —
Hll:— :"'rlll‘:h'i’;:I:I':'-F""L j II;“'.':‘-I-I A %:9,.- g CE%EJI g III %"%E) Eﬂ'n" t‘ﬂ'f: deang — — = e a—— .-.'::_'IT'IE-I5-EI"IE'N"IE““arI"IE
=L LLLY = L= Ll b j 9 q- T .E"raﬂ s
3 B
- . . Rotkreuzklinik % £ § N oiorraticlie -
[Mainfranken - J\Wiirzburg %ﬁ# 5% Biligy, ?f Klinik aGmbH “wiyata
il L Glfargs a
‘u"uﬁ.almr 9GmbH {a’-"# » L Son, o %_:, i
Wilirzburg oF .
ennueg 2 f‘ﬁ? @ %, & = 8, Lay
Hofsyy Park] Loy o g, ron-Barracks
" / e = Residenz 5 & 5 2 2 lm-.r;-_,&l&:‘
DE;}};? == ,g Wilirzbarger P-.‘;' %éh"ag aﬁg &
1 Residenz =
sresienkinik __g 2 o
& & RUHE“'-'UUFIEr St LHigmn-Eermch b {'%’5‘4'
E“”“érg% Hofgarten 55 ! F?o@-,f&n% ‘%3
e 4 o g
= [=r]
Heubaustralke] z %’ H-'-"’ . Q}TE' G £ qi@ @5‘ Rettendorfer gir
¥ 5{3’ e urll = f {-;i‘-@ E'rhl'h'ﬂn & a&\@ A {E_l f
asp\\ai‘ > g ﬂg % g 9-";1.-59 E , "}'q% %, q hﬂ'Earm
: ! Leighto A
% % Fiie = :; o, g F%&Q% q’&% ghton-Barracks OMtentory,
% ¢ o w3, g, §] e Mt
m
“é% 2, \ B, F ey g Ry oM sust® 2 ? :
. Ersit # i % ', =
W 2T s o,
E o o}
8211 Reuerer _ f A ¢ i o “hy, % = g 1 g @
3 Garten x i o L+ o & %ra E .tt,ﬂrfp o =
darring ﬂ%% .{? dﬁf? ban = %_ %
\ 5 T
* e, N NS & $ & . &
_ o R o F&
/ 4%;%6’?) " E & étf é'-P i .ﬁ’b %ﬂ} e g JakEOT
% & e y. “hbihigyane E tag -3 & & ackson Fve
" &
e
2 %i 1y, : L B f ”
& i " o it 3 “?Ej:'pa. Qﬁ% e
% % Adalberokirche S":"aﬂe Erthalstral® % % {g.k@? iy & " g % RAURH!
En@ﬂﬁuam C Ge.qﬂ““w s & By e
3 = &ﬁ o E 2
@ 5 4
e 5 @5 #; ql‘}# 2 & %B’Ws 3 e qrale
pant™ A cf 8 "agg g By b ﬂ
q_e‘l,'.‘ll.' % % \ 5 45-_,‘ E‘}i} ‘;ég’c aq'ﬁuﬂ'l":‘ 8 ea{:"- é@:ﬁp
yahe 2 S 2\F Ty & oF 2 Ter . D
nen= % -3% %‘ *"-“-; \:; § e Julius-Maramilians-Liniversitit g
o ':% % #13 19 o i = =
= & e e

Modellierung des Problems Routenplanung

StraBenkreuzung
StraBenabschnitt
EinbahnstraBenabschnitt
Fahrtzeit fiir Abschnitt e
StraBennetz

Start

Liel

$§ 3§ 3 3 3 3 1}

Start-Ziel-Route

Modellierung des Problems Routenplanung

StraBenkreuzung Knoten
StraBenabschnitt
EinbahnstraBenabschnitt
Fahrtzeit fiir Abschnitt e
StraBennetz

Start
/el

$§ 3§ 3 3 3 3 1}

Start-Ziel-Route

Modellierung des Problems Routenplanung

StraBenkreuzung = Knoten
StraBBenabschnitt = zwei entgegengerichtete Kanten
EinbahnstraBenabschnitt =
Fahrtzeit fiir Abschnitt e
StraBennetz
Start
Liel

i 3 3 1 3

Start-Ziel-Route

Modellierung des Problems Routenplanung

StraBenkreuzung = Knoten
StraBBenabschnitt = zwei entgegengerichtete Kanten
EinbahnstraBenabschnitt = in Fahrtrichtung gerichtete Kante
Fahrtzeit fiir Abschnitt e =
StraBennetz
Start
Liel

i 3 1 3

Start-Ziel-Route

Modellierung des Problems Routenplanung

StraBenkreuzung = Knoten
StraBBenabschnitt = zwei entgegengerichtete Kanten
EinbahnstraBenabschnitt = in Fahrtrichtung gerichtete Kante
Fahrtzeit fiir Abschnitt e = Kantengewicht w(e) >0
StraBennetz =
Start =
Lie| =
Start-Ziel-Route =

Modellierung des Problems Routenplanung

StraBenkreuzung
StraBenabschnitt
EinbahnstraBenabschnitt
Fahrtzeit fiir Abschnitt e
StraBennetz

Start

Liel

Start-Ziel-Route

$§ 3§ 3 3 3 3 1}

Knoten

zwel entgegengerichtete Kanten
in Fahrtrichtung gerichtete Kante
Kantengewicht w(e) >0

gerichteter, gewichteter und zusammenhangender Graph G

Modellierung des Problems Routenplanung

StraBenkreuzung
StraBenabschnitt
EinbahnstraBenabschnitt
Fahrtzeit fiir Abschnitt e
StraBennetz

Start

Liel

Start-Ziel-Route

$§ 3§ 3 3 3 3 1}

Knoten

zwel entgegengerichtete Kanten

in Fahrtrichtung gerichtete Kante

Kantengewicht w(e) >0

gerichteter, gewichteter und zusammenhangender Graph G
Knoten s € V(G)

Knoten t € V(G)

Modellierung des Problems Routenplanung

StraBenkreuzung
StraBenabschnitt
EinbahnstraBenabschnitt
Fahrtzeit fiir Abschnitt e
StraBennetz

Start

Liel

Start-Ziel-Route

$§ 3§ 3 3 3 3 1}

Knoten

zwel entgegengerichtete Kanten

in Fahrtrichtung gerichtete Kante

Kantengewicht w(e) >0

gerichteter, gewichteter und zusammenhangender Graph G
Knoten s € V(G)

Knoten t € V(G)

s-t-Weg: Folge von Kanten (s, v1), (v1, v2), ..., (v, t) in G

Routenplanun

R Qi - R e — ik i TR, = . =
+ i pine® Erin® Schirerstrane ot o [menr.. || Karte | satelit | Gelande
Stiftung wﬁa‘ﬁz’ . Movotel Besthovensiralle '! [™ - .-1,-4:,&? M;.'l:-“': E :
Juliusspital a‘i"‘&a 2 Wilrzharg J m o — e St Nﬂh‘n.l; m
b = @f&“ﬁ b % EE = Gneismau;ﬁﬂe — Erer Sy '
wm —
. R = én £ ’ fefmhar351ra'3'e Cneisanag gy, gume Niimberger sy Marmbperger St
Bilrgerspital Zum 4% §_g!r E / %! e, rafie —— o - -
Heiligem Geist > %& :g_.l g %E} Ea.rb&% = Y = neisanaustrale
TR = Rotkreuzklink %, % 5 @é"f 5 e ced “aig »
) Mainfranken Wrzhbar =i i i f o e
Theater g'«"&l‘l'lkﬁlHEI E,:\éﬁhﬁ \ﬁ’ﬁ' ﬁgm"""“ﬂ"‘a:rmga Klinik gGmbH % e ﬁl@Q
Wilirzbarg = z 3 o
Ren ,,,5&@ E] f Sa'rl’q.- ‘Ef"’e' S
A Mg) ﬁ? o o2 "-?%. ‘@ﬂ? i Q_r
F Fistr Park 3 b B & = Lay,
- i i mn‘s'l:i:“:le u Residenz 5 ‘\‘I’ ‘ﬁng 13 .;_'F % mﬂ"'-'bﬂ_l,. %aﬂ-ﬂarrﬂCHE-
Dom St & & F m. Bl
Kilian = & Wilrzhurger = T d"%'m.ﬂ 5,
g"' Residenz & i il &
sresienknik o &
& = %" Rar = %
A eng ren-Ba {
g, Hl:ufg‘an‘en & k" orfer Sir Leid Macks [} %o,
%%ﬂe o g o " s : Rﬂﬂm% &@:.
Meubaustraie x - 1']:!3 . = O 3
t '5"1‘%.3 T‘--i& 5 E" § ﬁ c}ﬁf} ﬂ"bl‘t.r.-m E &L&&“\ k3 <. , R':‘t"ﬁndur.‘.;r Sir §
' > . E o Wag & s Bigh
N % % e E E' 5 # et -g h'a],.- ﬁ% ﬂ':,% tan. Eal'n’ma
g & ¥ = T1e St Z %&Qﬁ’@ % e sae 5
o T Warzburg Mtran & y
% -:9‘2‘57‘61ﬁs SI.'Il:IL_I--"r ;4# ._ﬁ? &3“’)\9 Grg e £ 5 padams Adanus ';';, Adams Avang
?'::- . g ‘,E = = %'9:-;5. g J‘%% “, b, O-Bray-strah® E‘ Ed g
Jniversitst y i 1 -]
£ e ‘&‘% Wiirzburg ";3@ c?-,i‘n} %‘3} _-_"-“',§I %qﬁ' iy {.f%' o T E =4
alie "5"{?{’ q‘?@_ 0 %ﬂﬂ % o w =1
Reuerer . r e o ﬁ,ﬁ' 5 = = 3 3 g
g, o arteni A & e -~ > @ r @
darming / -‘5'% g ‘ﬁ_ﬁ? "Fban 't"n@ & =]
4 Sﬂph-'én.ga-a f\(aﬁ;a,% & _dfln(? = ﬁ E,r_;. % i
%"&-p . 2 "-?3 f -b-g? F @ qd:'&l
< .&] -W.-E.EE .'I & Hr'rmb{l'hlat a TE = g 4 ‘bé‘b o E st.ﬂﬁ =5
= % = rafia E o &IE' & A ackson Auenus
&
r R- [w3
% L Tz 2 3 = Mﬁ'ﬂ'ﬁﬁﬂ e f Ay
'y % Adulterokirch S, g et & “Spg = G"%
rale X alberokirche A Erthalziral® % hﬁuf;ﬁ %ﬂ% & [ppopheEd
jandot & -
& ‘35@5‘& %ﬁr o™ # 4 Nﬁ_\ﬂ‘fl =
get B3 & it & 2
g5 £ @3 g & % & %9,% -
e Da e BlE % & e b 3 : alhe
(o0 T =1 (=] 3,] e il
L, & ¥ = % 4, o erers® G a I’&- pn B1E v
e HE L N A : L T
m 5§ =ET LR S 5 éf Julius-Manimilians-Universitat < % gy |
E:n % 'E-u'El!- - “‘B\i‘ a..nqib -ﬂ.é:rﬂ. — ® '& e i

EEIDFE Illiﬂgf'raﬂn

Routenplanun

|58 = i . E s T Bl T TN =
x .;J'g'ﬂ"gsua o o) \‘}\,’\l:‘ﬁ' .';|L||l.l =

+ o [menr. |[Karte | satelit | Gelande
2 Jovote OWENSITEREE " ; o
tiftung 5 e Movotel Seeth i Ny e o
Juhu\qm'tal {I"\.ﬂ 'l."'\.'.'ll?l‘l.ll:; .",\‘-.u{h N 18
c_-_,l-f-(n] [=St Lh-ml&r
2 Greisenalzn gy, ger Sy,
Ly rails]
iy Ty
» L}‘-@k £ Barbarasirans T Grejsan Lir Wergar Stk arnberger St
Birgerspital Zum ,5&‘@' 'i'l"-";u}{, Moar Austrage ' .
il i - . - Tey
Heiligem Geist % Gbu..tb ‘Eﬂ'-"&wa Wag GnEIEBI’IEUE”aﬂ'H
Strag
= Rotkreuzklinik g - i
IMainfranken Wilrzburg M}I{E-I_ﬂlﬂhnﬁﬁgfzﬂg,:e %hrstraﬁi ﬁ%
Theater g3mbH Ik glami)
Wilirzbarg G _I:-'ll:'?'-"
FE”'-IWE';I %"
Bom St b - Residenz = A ——
AOITE <3 o
Kilian w7 Wilirzhurger =
S = Residenz i &
sresienkinik f:"f & @ﬁw
F e &
* LeigrtoM-Barmay [:i {a
5
D:"Tﬂ"gﬂh " Hofgarten fg'}?fn_r’,
"_.l e .
Yrana "-:’q,
Meubaustrate . | &
S Ti Rottendarfer sty pi
A 25
& 2 %1
El Leightan-Barracks T ey,
it T €
E':.'l %_ ,_33,';@“ ptgms Sggriile =Taw
‘% B - s
L 'E-l ':ls, LIniversitst
= o Wilrzhurg
alye
Rewerer
Garten
derming
iy
o,
&
< e

[|
Adalberokirche

aqenaue e
(i}
%
n
&
|"|_J

'.':rl-.LE-’.'r‘.'=~"'E'I'-!'F=
<]
_'
e'*'-“'f'i“ s K Minsalg=tsches - L 4
3 e H = e B %)
b Musd B g & N o 0
'-E--."-a'l::' =) — Q.a':l
'."-“E’I" é Ba!f".:' SR D > '.
m S % B .z Julis-Maximilians OTivegsitit N .
=1 @ n Qi:& EPPeiingirem : 1
= 2 W & T

Routenplanun

. 152 LN W T = - g ST By Ty T = . -
LS SRR : v art iy : =
+ = ﬂwﬁ 1 Mehr... | | Karte | Satelit Geldnde
Stiftung 1&\5&& Movotel Beathovencmans ,-1_.%? e -
Juliugapital o Wilrzharg -'.':-Erb =
E:.ll'-'r’:n] b y B B Nul'ﬂber
.:a{\-.a"' G MeiSenaUs g, Jer Sy
Ly rails]
o Ha ; Miirry
u &;‘ﬂb s rbargsiraie = 5”'3'55!13.-_.5,- - Brger St pimrnbaerger i
Fh'."!|+|.=.|||'.i_h Zum -,}'Syk- ‘l‘..v;u}! a mg&'?&ﬁ rafie
Heiligem Geist Gburtb l,.&was — Wy G,-,E|E.E:I'IEJ'-'5”3F"H
L Tam
= Rotkreuzklinik g - oo
Mainfranken - Wiirzburg M}'E'I?'ﬂh”ﬁ‘gzﬂg::ﬁ %hrstraﬁi ﬁ%
Theater g3mbH Ik glami) &
Wilirzbarg G &
R = 4
EﬂﬂWE';I _'::‘
Ofspry Park = y
u e f o iy Lo T
Bom St o - Residenz = ":'""‘;‘-"-'-.f,_, Fon-Barracks
- = i L
Kilian w Wilrzharger i -"E‘._.‘?
] o Residenz == i &
sresienkinik 5] £ -
= = ﬁﬂl WES"
e 0
* Leigrhen-Bamacy, h a
5
D:"T“"ﬁﬂ Hofgarten fﬂ.ﬁ,ﬁ
P ; _ i,
rafa [By,
re 3 = o
eubaustrala 4 £ & 2
e il - Rottendorfer sty 5
. Y ‘gl
& & Q’é " Barracs
=3 Lesighiton- A f
i - g Barracks ':I”E"lﬂ'c-,rre
) % !
% S .;Eﬁ“ﬁ A ams S s
‘% ?} -
e 'E-, ':ls, LIniversitst
= £ Wilrzhurg
alie
Rewerer
Garten
derming
iy
o,
.& -W.-a,a‘?

aqenaue e
(i}
J
|"|_J

Adalberokirche

v.':r".Ll:-’.'r‘.a':-s'.'!-F:
_|
'{-*l““'ﬂi“ e - e _3'-".11| &
i D) AP
calE 1 Q} Zhurg =3 Dy po -5.‘:'@
l;'.f“-‘_'r'-"-s"' ‘;_: Bays - My :—';"
= S R > Julius-Maximilians Uveraitdt RN .
2 B D Q% EPPeiingirem : 1
T -y, A HET

Routenplanung mit Zeitkomponente

16:40 ® Wiirzburg Hbf > Gl. 8

1h 14min (J | RE 10 (58225)

nach Nilrnberg Hbf

(< Beforderer &% Fahrradmitnahme

s Mittlere Auslastung erwartet

‘ Fahrtinformationen ‘

10 Haltestellen ™

17:54 © Niirnberg Hbf > Gl. 18

= Umstieg

11min

Umstiegszeit verlangern

18:05 © Niirnberg Hbf > Gl. 20

55min @ | RE 38 (3445)

nach Bamberg

{2 Beforderer @% Fahrradmitnahme
[Fahrtinformationen J

3 Haltestellen v

19:00 ¢ Bayreuth Hbf > Gl 1

Was ist das Problem?

Eingabe:

B gerichteter, zusammenhangender Graph G
mit nicht-negativen Kantengewichten w: £(G) — Q,

Was ist das Problem?

Eingabe:

B gerichteter, zusammenhangender Graph G
mit nicht-negativen Kantengewichten w: £(G) — Q,

Was ist das Problem?

Eingabe:

B gerichteter, zusammenhangender Graph G
mit nicht-negativen Kantengewichten w: £(G) — Q,

Was ist das Problem?

Eingabe:

B gerichteter, zusammenhangender Graph G
mit nicht-negativen Kantengewichten w: £(G) — Q,

B Knoten s und t

Was ist das Problem?

Eingabe:

B gerichteter, zusammenhangender Graph G
mit nicht-negativen Kantengewichten w: £(G) — Q,

B Knoten s und t

Ausgabe:

m kiirzester s-t-Weg W in G, d.h. ___,,, w(e) minimal.

Was ist das Problem?

Eingabe:

B gerichteter, zusammenhangender Graph G
mit nicht-negativen Kantengewichten w: £(G) — Q,

B Knoten s und t

Ausgabe:

m kiirzester s-t-Weg W in G, d.h. ___,,, w(e) minimal.
Darstellung durch Vorganger-Zeiger

Was ist das Problem?

Eingabe:

B gerichteter, zusammenhangender Graph G
mit nicht-negativen Kantengewichten w: £(G) — Q,

B Knoten s und t

Ausgabe:

m kiirzester s-t-Weg W in G, d.h. ___,,, w(e) minimal.

Darstellung durch Vorganger-Zeiger
fiir jeden Knoten v sei € V(G) U {nil} Vorganger von v
auf kiirzestem s-v-Weg.

Was ist das Problem?

Eingabe:

B gerichteter, zusammenhangender Graph G
mit nicht-negativen Kantengewichten w: £(G) — Q,

B Knoten s und t

Ausgabe:

m kiirzester s-t-Weg W in G, d.h. ___,,, w(e) minimal.

Darstellung durch Vorganger-Zeiger
fiir jeden Knoten v sei € V(G) U {nil} Vorganger von v
auf kiirzestem s-v-Weg.

Was ist das Problem?

Eingabe:

B gerichteter, zusammenhangender Graph G
mit nicht-negativen Kantengewichten w: £(G) — Q,

B Knoten s une~t"

Ausgabe: fir jedes t € V(G)
m kiirzestey s-t-Wege W in G, d.h. 3°__,, w(e) minimal.

Darstellung durch Vorganger-Zeiger
fiir jeden Knoten v sei € V(G) U {nil} Vorganger von v
auf kiirzestem s-v-Weg.

Was ist das Problem?

Eingabe:

B gerichteter, zusammenhangender Graph G
mit nicht-negativen Kantengewichten w: £(G) — Q,

B Knoten s une~t"

Ausgabe: fir jedes t € V(G)
m kiirzestey s-t-Wege W in G, d.h. 3°__,, w(e) minimal.

Darstellung durch Vorganger-Zeiger

fiir jeden Knoten v sei € V(G) U {nil} Vorganger von v
auf kiirzestem s-v-Weg.

Nebenbemerkung: Analoge Berechnungsverfahren?

- 10

Was ist das Problem?

Eingabe:

B gerichteter, zusammenhangender Graph G
mit nicht-negativen Kantengewichten w: £(G) — Q,

B Knoten s une~t"

Ausgabe: fir jedes t € V(G)
m kiirzestey s-t-Wege W in G, d.h. 3°__,, w(e) minimal.

Darstellung durch Vorganger-Zeiger
fiir jeden Knoten v sei € V(G) U {nil} Vorganger vi
auf kiirzestem s-v-Weg.

Nebenbemerkung: Analoge Berechnungsverfahren?

- 11

Wiederholung Breitensuche

__ r S t
‘BFS(Graph G, Vertex s) E
~ INITIALIZE(G, 5) S O 0
@ = new Queue() ‘
Q.ENQUEUE(s) 5
while not Q. EMPTY() do &9 & e
u = Q.DEQUEUE() i v W X
foreach v € Adj[u] do S
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
Q.ENQUEUE(v) L our =il
- 1 s.color = red
| u.color = blue |

Wiederholung Breitensuche

__ r S t
‘BFS(Graph G, Vertex s) E
~ INITIALIZE(G, 5) S O 0
@ = new Queue() ‘
Q.ENQUEUE(s) 5
while not Q. EMPTY() do &9 & e
u = Q.DEQUEUE() i v W X
foreach v € Adj[u] do S
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
Q.ENQUEUE(v) L our =il
- 1 s.color = red
| u.color = blue |

Wiederholung Breitensuche

__ r S t
‘BFS(Graph G, Vertex s) E
~ INITIALIZE(G, 5) S & 0
@ = new Queue() ‘
Q.ENQUEUE(s) 5
while not Q.EmpTY() do § S & e
. v w X
u = Q.DEQUEUE() ;
foreach v € Adj[u] do S
if v.color == white then . INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = U u.d = oo
Q.ENQUEUE(v) 0 L ouwr=mni
- 1 s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then . INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 = u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) 0 L ouwr=mni
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then . INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 = u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) 0 L ouwr=mni
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then . INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 = u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) 0 L ouwr=mni
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then . INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 = u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) 0 L ouwr=mni
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) L our =il
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) L our =il
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) L our =il
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) L our =il
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) L our =il
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) L our =il
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) L our =il
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) L our =il
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) L our =il
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) L our =il
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) L our =il
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) L our =il
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v ¢ AdjjvJd0
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) L our =il
— | s.color = red
| u.color = blue |

Wiederholung Breitensuche

__ r S t
‘BFS(Graph G, Vertex s) E
~ INITIALIZE(G, 5) L O 0
@ = new Queue() ‘
Q.ENQUEUE(s) 5
while not Q. EMPTY() do 2 O e
u = Q.DEQUEUE() i v W X
foreach v € Adj[u] do S
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
Q.ENQUEUE(v) L our =il
- 1 s.color = red
| u.color = blue |

Wiederholung Breitensuche

__ r S t
‘BFS(Graph G, Vertex s) E
~ INITIALIZE(G, 5) L O 0
@ = new Queue() ‘
Q.ENQUEUE(s) 5
while not Q. EmPTY() do § O O e
. % w X
u = Q.DEQUEUE() ;
foreach v € Adj[u] do S
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
Q.ENQUEUE(v) L our =il
- . s.color = red
| u.color = blue |

Wiederholung Breitensuche

___ r S L
?BFS(Graph G, Vertex s) 0 @ @
INITIALIZE(G, 5) 5
Q = new Queue() ‘ ‘
Q.ENQUEUE(s) 5
while not Q. EmPTY() do § O O e
| vV % X
u = Q.DEQUEUE() ;
foreach v € Adj[u] do S
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
Q.ENQUEUE(v) L our =il
- 1 s.color = red
| u.color = blue |

Wiederholung Breitensuche

___ r S L
?BFS(Graph G, Vertex s) 0 @ 9
INITIALIZE(G, 5) 5
Q = new Queue() ‘ ‘
Q.ENQUEUE(s) 5
while not Q. EmPTY() do § O O e
| vV % X
u = Q.DEQUEUE() ;
foreach v € Adj[u] do S
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
Q.ENQUEUE(v) L our =il
- 1 s.color = red
| u.color = blue |

Wiederholung Breitensuche

——

‘BFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

if v.color == white then
v.color = red
v.d=u.d+1

V. T = U

. Q.ENQUEUE(v)

| u.color = blue

- ' INITIALIZE(Graph G, Vertex s) .

foreach v € V do

u.color = white
u.d = oo

L u. = nal
s.color = red

Wiederholung Breitensuche

——

‘BFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

if v.color == white then
v.color = red
v.d=u.d+1

V. T = U

. Q.ENQUEUE(v)

| u.color = blue

- ' INITIALIZE(Graph G, Vertex s) .

foreach v € V do

u.color = white
u.d = oo

L u. = nal
s.color = red

Wiederholung Breitensuche

——

‘BFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

if v.color == white then
v.color = red
v.d=u.d+1

V. T = U

. Q.ENQUEUE(v)

| u.color = blue

- ' INITIALIZE(Graph G, Vertex s) .

foreach v € V do

u.color = white
u.d = oo

L u. = nal
s.color = red

Wiederholung Breitensuche

__ r S t
‘BFS(Graph G, Vertex s) E
~ INITIALIZE(G, 5) L O 2
@ = new Queue() ‘
Q.ENQUEUE(s) 5
while not Q. EmPTY() do § O O 2
| % w X
u = Q.DEQUEUE() ;
foreach v € Adj[u] do S
if v.color == white then . INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 = u.color = white
V.T = u u.d = oo
Q.ENQUEUE(v) 0 L ouwr=mni
- . s.color = red
| u.color = blue |

Wiederholung Breitensuche

BFS(Graph G, Vertex s)
INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

if v.color == whaite then
v.color = red
v.d=u.d+1

V. T = u

. Q.ENQUEUE(v)

| u.color = blue

INITIALIZE(Graph G, Vertex s)
foreach u € V do

u.color = white
u.d = oo

L u. = nail
s.color = red
s.d=0

Wiederholung Breitensuche

__ r S t
‘BFS(Graph G, Vertex s) E
~ INITIALIZE(G, 5) L O 2
@ = new Queue() ‘
Q.ENQUEUE(s) 5
while not Q. EmPTY() do § 2 a, o
u = Q.DEQUEUE() i v W X
foreach v € Adj[u] do S
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
Q.ENQUEUE(v) L our =il
- . s.color = red
| u.color = blue |

Wiederholung Breitensuche

__ r S t
‘BFS(Graph G, Vertex s) E
~ INITIALIZE(G, 5) L O 2
@ = new Queue() ‘
Q.ENQUEUE(s) 5
while not Q. EmPTY() do § 2 a, o
u = Q.DEQUEUE() i v W X
foreach v € Adj[u] do S
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
Q.ENQUEUE(v) L our =il
- . s.color = red
| u.color = blue |

Wiederholung Breitensuche

___ r S L
EBFS(Graph G, Vertex s) @ 9
~ INITIALIZE(G, 5) 5
@ = new Queue() ‘
Q.ENQUEUE(s) 5
while not Q.EmpTY() do § 2 O o
u = Q.DEQUEUE() i v W X
foreach v € Adj[u] do S
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
Q.ENQUEUE(v) L our =il
- 1 s.color = red
| u.color = blue |

Wiederholung Breitensuche

___ r S L
EBFS(Graph G, Vertex s) @ 9
~ INITIALIZE(G, 5) 5
@ = new Queue() ‘
Q.ENQUEUE(s) 5
while not Q.EmpTY() do § 2 O o
u = Q.DEQUEUE() i v W X
foreach v € Adj[u] do S
if v.color == white then = INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = u u.d = oo
Q.ENQUEUE(v) L our =il
- 1 s.color = red
| u.color = blue |

Wiederholung Breitensuche

__ r S t
‘BFS(Graph G, Vertex s) E
~ INITIALIZE(G, 5) L O 2
@ = new Queue() ‘
Q.ENQUEUE(s) 5
while not Q.EmpTY() do § 2 O 2
. % w X
u = Q.DEQUEUE() ;
foreach v € Adj[u] do S
if v.color == white then . INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = U u.d = oo
Q.ENQUEUE(v) 0 L ouwr=mni
- 1 s.color = red
| u.color = blue |

Wiederholung Breitensuche

__ r S t
‘BFS(Graph G, Vertex s) E
~ INITIALIZE(G, 5) L O 2
@ = new Queue() ‘
Q.ENQUEUE(s) 5
while not Q.EmpTY() do § 2 O 2
. % w X
u = Q.DEQUEUE() ;
foreach v € Adj[u] do S
if v.color == white then . INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = U u.d = oo
Q.ENQUEUE(v) 0 L ouwr=mni
- 1 s.color = red
| u.color = blue |

Wiederholung Breitensuche

__ r S t
‘BFS(Graph G, Vertex s) E
~ INITIALIZE(G, 5) L O 2
@ = new Queue() ‘
Q.ENQUEUE(s) 5
while not Q. EMPTY() do 2 O o
u = Q.DEQUEUE() i v W X
foreach v € Adj[u] do S
if v.color == white then . INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V do
v.d =u.d+1 5 u.color = white
V.T = U u.d = oo
Q.ENQUEUE(v) 0 L ouwr=mni
- 1 s.color = red
| u.color = blue |

Wiederholung Breitensuche

r S t
BFS(Graph G, Vertex s)
INITIALIZE(G, 5) L O 2
@ = new Queue() ‘
Q.ENQUEUE(s)
while not Q.EMPTY() do O a, o
1 = Q.DEQUEUE() v W X
foreach v € Adj[u] do
if v.color == white then INITIALIZE(Graph G, Vertex s)
v.color = red foreach v € V do
v.d =u.d+1 u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) _ u.r = nal
u.color = blue CRETHigis et
B s.d=0

INITIALIZE] [EN—/DEQUEUES] [Adjazenzlisten (foreach—SchIeifen)]

Laufzeit? — O(|V]) + O([V]) + O(E)) = O(V|+|E|)

[Beob. tiber Knotengrade!]

Ausbreitung

Breitensuche (breadth-first search, BFS)
Alle Kanten gleich schwer

Ausbreitung

Breitensuche (breadth-first search, BFS)
Alle Kanten gleich schwer

Amit Patel, “Introduction to the A™
Algorithm”, Red Blob Games, 2014,
https: //www.redblobgames.com/

pathfinding/a-star/introduction.html

by
o+
b
R g
R
$ 4+
+++-1

3
o
e
o
e
+or

Ausbreitung

Breitensuche (breadth-first search, BFS)
Alle Kanten gleich schwer

#

X
+
+
T

+
+
X
+
%
.I_'
3

Amit Patel, “Introduction to the A™
Algorithm”, Red Blob Games, 2014,
https: //www.redblobgames.com/

pathfinding/a-star/introduction.html

.+
ot
B
+
jr
.E_
i
-.I—
J i E

G

Dijkstra
Kanten unterschiedlich schwer

Ausbreitung

Breitensuche (breadth-first search, BFS)
Alle Kanten gleich schwer

#

X
+
+
T

+
+
X
+
%
.I_'
3

Amit Patel, “Introduction to the A™
Algorithm”, Red Blob Games, 2014,
https: //www.redblobgames.com/

pathfinding/a-star/introduction.html

.+
ot
B
+
jr
.E_
i
-.I—
J i E

G

Dijkstra
Kanten unterschiedlich schwer

Ausbreitung

Breitensuche (breadth-first search, BFS)
Alle Kanten gleich schwer

+H++++

o e

B o

Amit Patel, “Introduction to the A™
Algorithm”, Red Blob Games, 2014,
https: //www.redblobgames.com/

pathfinding/a-star/introduction.html

NN g

3
-+
+
s
o
e
+or

NN\ R RN e

G

Dijkstra
Kanten unterschiedlich schwer A

1

il r..

.......

...........

.........

—r—

R ; ++“': —— |__I
s S S

DIJKSTRA

DIJKSTRA

DIJKSTRA

(Rotterdam 1930-2002 Nuenen)

DIJKSTRA

A note on two problems in connexion with graphs.
In: Numerische Mathematik, Band 1, 1959

(Rotterdam 1930-2002 Nuenen)

DIJKSTRA

Edsger W. Dijkstra
(Rotterdam 1930-2002 Nuenen)

A note on two problems in connexion with graphs.
In: Numerische Mathematik,

Band 1, 1959

Numerische Mathematik 1, 269—271 (1959)

A Note on Two Problems in Connexion with Graphs
By
E. W.DIJKSTRA

We consider # points [nodes), some or all pairs of which are connected by a
branch; the length of each branch is given, We restrict ourselves to the case
where at least one path exists between any two nodes. We now consider two
problems.

Problem 1. Construct the tree of minimum total length between the m nodes,
(A tree is a graph with one and only one path between every two nodes.)

In the course of the construction that we present here, the branches are
subdivided into three sets:

L. the branches definitely assigned to the tree under construction (they will
form a subtree);

II. the branches from which the next branch to be added to set I, will be
selected ;

ITI. the remaining branches (rejected or not yet considered).

The nedes are subdivided into two sats:

A. the nodes connected by the branches of set I,

B. the remaining nodes (one and only one branch of set 11 will lead to each
of these nodes).

We start the construction by choosing an arbitrary node as the only member
of set A, and by placing all branches that end in this node in set Il. To start
with, set I is empty. From then onwards we perform the following two steps
repeatedly

Step 1. The shortest branch of set 11 is removed from this set and added to
set L. As a result one node is transferred from set B to set A.

Step 2. Consider the branches leading from the node, that has just been trans-
ferred to set A, to the nodes that are still in set B. If the branch under con-
sideration is longer than the corresponding branch in set I, it is rejected; if it
is shorter, it replaces the corresponding branch in set I1, and the latter is rejected.

‘We then return to step 1 and repeat the process until sets [T and B are empty.
‘The branches in set I form the tree required.

The solution given here is to be preferred to the solution given by J. B.
Knuskar [/] and those given by H. Lopersan and A. WEINBERGER [2]. In
their solutions all the — passibly §m(s — 1} — branches are first of all sorted
according to length, Even if the length of the branches is a computable function
of the node coordinates, their methods demand that data for all branches are
stored simultaneously. Our method only requires the simultancous storing of

Dumer, Math. B 1 5

70 E. W. Diyrsrra;

the data for at most » branches, viz. the branches in sets [and IT and the branch
under consideration in step 2.

Problem 2. Find the path of minimum total length between two given nodes
Fand Q.

We use the fact that, if K is a node on the minimal path from P to @, knowledge
of the latter implies the knowledge of the minimal path from P to R. In the
solution presented, the minimal paths from P to the other nodes are constructed
in order of increasing length until @ is reached,

In the course of the solution the nodes are subdivided into three sets:

A. the nodes for which the path of minimum length from P is known; nodes
will be added to this set in order of increasing minimum path length from node P;

B. the nodes from which the next node to be added to set A will be selected ;
this set comprises all those nodes that are connected to at least one node of
set A but do not vet belong to A themselves;

C. the remaining nodes.

The branches are also subdivided imto three sets:

I. the branches occurring in the minimal paths from node P to the nodes
inset A;

IL. the branches from which the next branch to be placed in set I will be
selected; one and only onc branch of this set will lead to each node in set B;

HI. the remaining branches (rejected or not yet considered).

To start with, all nodes are in et C and all branches are in set III. We now
transfer node P to set A and from then onwards repeatedly perform the following
steps.

Step 1. Consider all branches » connecting the node just transferred to set A
with nodes R in sets B or C. If node R belongs to set B, we investigate whather
the use of branch r gives rise to a shorter path from P to & than the known
path that uses the corresponding branch in set I If this is not co, branch r is
rejected ; if, however, use of branch r results in a shorter connexion between P
and R than hitherto obtained, it replaces the corresponding branch in set [I
and the latter is rejected. If the node & belongs to set C, it is added to set B and
branch r is added to set IT.

Step 2. Every node in set B can be connected to node P in only one way
if we restrict ourselves to branches from set T and one from set I1. In this sense
each node in set B has a distance from node P: the node with minimum distance
from P is transferred from set B to set A, and the corresponding branch is trans-
ferred from set II to set I. We then return to step 4 and repeat the process
until node @ is transferred to set A, Then the solution has been found,

Remark 1. The above process can also be applied in the case where the length
of a branch depends on the direction im which it is traversed,

Remark 2. For each branch in sets I and IT it is advisable to record its two
nodes (in arder of increasing distance from P), and the distance between P and
that node of the branch that is furthest from P. For the branches of set I this

Two Problems in Connexion with Graphs e |

is the actual minimum distance, for the branches of set IT it is only the minimum
thus far obtained.

The sclution given above is to be preferred to the solution by L. R. Forp [3]
as described by C. BeRce [4], for, irrespective of the number of branches, we
need not store the data for all branches simultaneously but only those for the
branches in sets I and I, and this number is always less than n. Furthermore,
the amount of work to be done seems to be considerably less.

References

] Keuseat je, J. B.: On the Shortest Spanning Subtres of a Graph and the
i Travelling Salesman Problem. Proc. Amer. Math, Soc. 7, 48— 50 (1956).
[?] Losexsax, H., and A, WiineeroER: Formal Procedures for Connecting Ter-
Emnals with a Minimum Total Wire Lenggh.]. Ass. Comp. Mach, 4, 428—437
1957)-
[4] Fomn, L. R.; Network flow theory, Rand Corp. Paper, P-023, 1956,
[#] Bexgs,C.: Théorie des graphes et ses applications, pp. 68— 69, Paris: Dunod 1058,
Mathematisch Centrum
2e Boerhaavestraat 40
Amsterdam-O
(Received June 11, 1059)

DIJKSTRA

Lot R o

Edsger W. Dijkstra
(Rotterdam 1930-2002 Nuenen)

A note on two problems in connexion with graphs.
In: Numerische Mathematik, Band 1, 1959

E.W. Drisria: |

The solution given above is to be preferred to the solution by L. R. FOrp [3]
as described by C. BERGE [4], for, 1rrespective of the number of branches, we
need not store the data for all branches simultaneously but only those for the
branches in sets I and II, and this number is always less than #. Furthermore,
the amount of work to be done seems to be considerably less.

1. the branches definitely assigned to the tise under construction (they wil
form a subtree};

II. the branches frem which the next branch to be added to set I, will be
selected |

IIL. the remaining branches (rejected or not yet considered).

The noedes are subdivided into two sets:

A. the nodes connected by the branches of set I,

B. the remaining nodes (one and only one branch of set 11 will lead to each
of these nodes).

We start the construction by choosing an arbitrary node as the only member
of set A, and by placing all branches that end in this node in set II. To start
with, set I is empty. From then onwards we perform the following two steps
repeatedly

Step 1. The shortest branch of set 11 is removed from this set and added to
set L. As a result one node is transferred from set B to set A.

Step 2. Consider the branches leading from the node, that has just been trans-
ferred to set A, to the nodes that are still in set B. If the branch under con-
sideration is longer than the corresponding beanch in set TT, it is rejected; if it
is shorter, it replaces the corresponding branch in set IT, and the latter is rejected.

‘We then return to step 1 and repeat the process until sets [T and B are empty.
The branches in set I form the tree required

The solution given here is to be preferred to the solution given by J. B.
Knuskar [/] and those given by H. Lopersan and A. WEINBERGER [2]. In
their solutions all the — passibly §m (s = i} — branches are first of all sorted
according to length, Even if the length of the branches is a computable function
of the node coordinates, their methods demand that data for all branches are

stored simultaneously. Our method only requires the simultancous storing of
19

Dumer, Math. B 1

Selectea; One and only one Drancn of this set Wil lead 10 each node mn et i)

HI. the remaining branches (rejected or not yet considered).

To start with, all nodes are in et C and all branches are in set 1II. We now
transfer node P to set A and from then onwards repeatedly perform the following
steps.

Step 1. Consider all branches » connecting the node just transferred to set A
with nodes R in sets B or C. If node R belongs to set B, we investigate whather
the use of branch r gives rise to a shorter path from P to & than the known
path that uses the corresponding branch in set I1. If this is not so, branch r is
rejected ; if, however, use of branch r results in a shorter connexion between P
and R than hitherto obtained, it replaces the corresponding branch in set [T
and the latter is rejected. If the node & belongs to set C, it is added to set B and
branch r is added to set IT.

Step 2. Every node in set B can be connected to node P in only one way
if we restrict ourselves to branches from set T and one from set I1. In this sense
each node in set B has a distance from node P: the node with minimum distance
from P is transferred from set B to set A, and the corresponding branch is trans-
ferred from set II to set I. We then return to step 4 and repeat the process
until node @ is transferred to set A, Then the solution has been found,

Remark 1. The above process can also be applied in the case where the length
of a branch depends on the direction im which it is traversed,

Remark 2. For each branch in sets I and IT it is advisable to record its two
nodes (in arder of increasing distance from P), and the distance between P and
that node of the branch that is furthest from P. For the branches of set I this

{Received Junme 11, 18058)

R —

_

DIJKSTRA =g i

3;1;;;;1 i1 kil
R 1 sl

REHREH THTHI M B B _
il lﬂ‘frl T 'MEMMLLL JJleLLUJuLﬂﬂUJJJiEL

e 'l—-—ql-a-r---..-—l-.--lq-

AT | U AT
PRI 1k '!LLLLLITT LL"LL' LI il ,HFT‘__L

EPPEEERA T jn'- | 'ﬂﬂ_'dm_u,nu‘rq; Eehr LI
LR m

1}1_'_} i Thikil H

Edsger W. Dijkstra
(Rotterdam 1930—2002 Nuenen)

ARMAC, 1960

DIJKSTRA

BFS(Graph G, Vertex s)

| INITIALIZE(G, 5)
Q = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()

oreiafcv ‘C/OZT zj[:U]wh(Zte then - INITIALIZE(Graph G, Vertex s)
| . foreach u € V do
v.color = red | u.color = white
Vd:Ud_|_1 E i u.d:OO
P | u.m = nil

.ENQUEUE B =
L = Q.ENg (v) - s.color = red
| u.color = blue =

DIJKSTRA

INITIALIZE(G, 5)

@ = new QUEUE()
Q.ENQUEUE(s)

while not Q.EmMPTY() do

u = Q.DEQUEUE()

foreiafct \C/OZ fiJ[_“]wc;:Zte P INITIALIZE(Graph G, Vertex s)
: == -+ foreach u € V do
v.color = red = u.color = white
Vd:Ud_l_]- i i u.d = oo
v.m = u u.m = nil

ENQUEUE u.
| QENQUEUR(v) | s.color = red
| u.color = blue |

DIJKSTRA

INITIALIZE(G, 5)

@ = new QUEUE()
Q.ENQUEUE(s)

while not Q.EmMPTY() do

u = Q.DEQUEUE()

foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d =u.d+1

vV.im = u

. Q.ENQUEUE(Vv)

| u.color = blue

- InrTiALIZE(Graph G, Vertex s)

foreach v € V do

u.color = white
u.d = oo

L u. = nal
s.color = red

- 10

DIJKSTRA

INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

u = Q.DEQUEUE()

foreach v € Adj[u] do

if v.color == white then
v.color = red
v.d =u.d+1
V.T = U

. Q.ENQUEUE(Vv)

| u.color = blue

INITIALIZE(Graph G, Vertex s) .
~ foreach u € V do '
u.color = whate
u.d = oo
| u.m = nal

s.color = red

- 11

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

INTTIALIZE(Graph G, Vertex s) .

if v.color == white then foreach u € V do
v.color = red u.color = white
VdZUd_l_]- u_d:OO
V. m = u u.m = nail
ENQUEUE |
L QR.ENQ (v) . 1 s.color = red

| u.color = blue - s.d=0

__

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

INTTIALIZE(Graph G, Vertex s) .

if v.color == white then foreach u € V do
v.color = red u.color = white
VdZUd_l_]- u_d:OO
V. m = u u.m = nail
ENQUEUE e
L QR.ENQ (v) . 1 s.color = red

| u.color = blue - s.d=0

__

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
U= Q.EXTRACTMIN()
foreach v € Adj[u] do

INTTIALIZE(Graph G, Vertex s) .

if v.color == white then foronch o e U do
e u.color = white
v.d =u.d+1 o
v.m = u - '
QENQUEUE(V) b . = n1
- .+ s.color = red

| u.color = blue - s.d=0

__

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
U= Q.EXTRACTMIN()
foreach v € Adj[u] do

INTTIALIZE(Graph G, Vertex s) .

if v.color == white then foronch o e U do
e u.color = white
v.d =u.d+1 o
v.m = u - '
QENQUEUE(V) b . = n1
- .+ s.color = red

| u.color = blue - s.d=0

__

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
U= Q.EXTRACTMIN()
foreach v € Adj[u] do

INTTIALIZE(Graph G, Vertex s) .

if v.color == white then foronch o e U do
e u.color = white
v.d =u.d+1 o
v.m = u - '
QENQUEUE(V) b . = n1
- .+ s.color = red

| u.color = blue - s.d=0

__

DIJKSTRA

INITIALIZE(G, 5) i
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
U= Q.EXTRACTMIN()
foreach v € Adj[u] do

INTTIALIZE(Graph G, Vertex s) .

if v.color == white then foronch o e U do
e u.color = white
v.d =u.d+1 o
v.m = u - '
QENQUEUE(V) b . = n1
- .+ s.color = red

| u.color = blue - s.d=0

__

DIJKSTRA

INITIALIZE(G, 5) i
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

| QENQUEUE(v) | s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do '
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, 5) i
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

| QENQUEUE(v) | s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do '
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

| QENQUEUE(v) | s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

| QENQUEUE(v) | s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

| QENQUEUE(v) | s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, 5) i
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
U= Q.EXTRACTMIN()
foreach v € Adj[u] do
if v.color == white then
v.color = red
v.d = u.d+ w(u,v)
v.T = u |
| Q.DECREASEKEY(v, v.d)

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do '
u.color = white

u.d = oo
| u. = nal

L . s.color = red
| u.color = blue - s.d=0

__

DIJKSTRA

INITIALIZE(G, 5) i
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
U= Q.EXTRACTMIN()
foreach v € Adj[u] do
if v.color == white then
v.color = red
v.d = u.d+ w(u,v)
v.T = u |
| Q.DECREASEKEY(v, v.d)

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do '
u.color = white

u.d = oo
| u. = nal

L . s.color = red
| u.color = blue - s.d=0

__

DIJKSTRA

INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

V.T = u

Q.DECREASEKEY(v, v.d)i i
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

V.T = u

Q.DECREASEKEY(v, v.d)i i
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

V.T = u

Q.DECREASEKEY(v, v.d)i i
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

V.T = u

Q.DECREASEKEY(v, v.d)i i
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d)

’’’’’
.

while not Q.EmPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d)

’’’’’
.

while not Q.EmPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d)

’’’’’
.

while not Q.EmPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d)

’’’’’
.

while not Q.EmPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d)

’’’’’
.

while not Q.EmPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d) _________
while not Q.EmMPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

vV.im = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

u.d = oo
| u. = nal

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

DIJKSTRA

INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d) ________________
while not Q.EmMPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

vV.im = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

u.d = oo
| u. = nal

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

DIJKSTRA

INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d)

.

while not Q.EmPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
U= Q.EXTRACTMIN()
foreach v € Adj[u] do
if v.d > u.d + w(u, v) then
v.color = red
v.d = u.d+ w(u,v)
V.T = u ,
 Q.DECREASEKEY(v, v.d):

| u.color = blue

INTTIALIZE(Graph G, Vertex s) .

foreach v € V do
u.color = whate
u.d = oo

L u. = nal

s.color = red

- 47

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
U= Q.EXTRACTMIN()
foreach v € Adj[u] do
if v.d > u.d + w(u, v) then
v.color = red
v.d = u.d+ w(u,v)
V.T = u ,
 Q.DECREASEKEY(v, v.d):

| u.color = blue

INTTIALIZE(Graph G, Vertex s) .

foreach v € V do
u.color = whate
u.d = oo

L u. = nal

s.color = red

~ 48

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
U= Q.EXTRACTMIN()
foreach v € Adj[u] do
if v.d > u.d + w(u, v) then
v.color = red
v.d = u.d+ w(u,v)
V.T = u ,
 Q.DECREASEKEY(v, v.d):

| u.color = blue

INTTIALIZE(Graph G, Vertex s) .

foreach v € V do
u.color = whate
u.d = oo

L u. = nal

s.color = red

~ 49

DIJKSTRA

INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d)

.

while not Q.EmPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

__

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
U= Q.EXTRACTMIN()
foreach v € Adj[u] do
if v.d > u.d + w(u, v) then
v.color = red
v.d = u.d+ w(u,v)
V.T = u ,
 Q.DECREASEKEY(v, v.d):

| u.color = blue

INTTIALIZE(Graph G, Vertex s) .

foreach v € V do
u.color = whate
u.d = oo

L u. = nal

s.color = red

- 52

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
U= Q.EXTRACTMIN()
foreach v € Adj[u] do
if v.d > u.d + w(u, v) then
v.color = red
v.d = u.d+ w(u,v)
V.T = u ,
 Q.DECREASEKEY(v, v.d):

| u.color = blue

INTTIALIZE(Graph G, Vertex s) .

foreach v € V do
u.color = whate
u.d = oo

L u. = nal

s.color = red

- 53

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then

v.d = u.d+ w(u,v)
V.T = U ,
 Q.DECREASEKEY(v, v.d):

INTTIALIZE(Graph G, Vertex s) .

foreach v € V do

u.d = oo
| u. = nal

- 54

DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then

INTTIALIZE(Graph G, Vertex s) .
~ foreach u € V do

v.d = u.d+ w(u,v)
V.T = U ,
 Q.DECREASEKEY(v, v.d):

u.d = oo
| u. = nal

__

Demo. https://algo.uni-trier.de/demos/graphtraversal.html

- 55

https://algo.uni-trier.de/demos/graphtraversal.html

DIJKSTRA — die Laufzeit

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5) |
- @ = new PRIORITYQUEUE(V/(G), d)
~ while not Q. EmMPTY() do |
| u= Q.EXTRACTMIN()
foreach v € Adj[u] do
if v.d > u.d+ w(u,v) then
v.color = red
v.d = u.d+ w(u,v)
vV.m = u
Q.DECREASEKEY(v, v.d)

u.color = blue

10 -

DIJKSTRA — die Laufzeit

D1JKSTRA(WeightedGraph G, Vertex s)

. INITIALIZE(G, 5) |
- @ = new PRIORITYQUEUE(V/(G), d)
~ while not Q. EmMPTY() do |
| u= Q.EXTRACTMIN()
foreach v € Adj[u] do
if v.d > u.d+ w(u,v) then
v.color = red
v.d = u.d+ w(u,v)
vV.m = u
Q.DECREASEKEY(v, v.d)

u.color = blue

10 -

DIJKSTRA — die Laufzeit

D1JKSTRA(WeightedGraph G, Vertex 5)

. INITIALIZE(G, 5) |

- Q = new PRIORITYQUEUE(V/(G), d)

~ while not Q.EmMPTY() do

| u= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d+ w(u,v) then
v.color = red
v.d = u.d+ w(u,v)
vV.m = u
Q.DECREASEKEY(v, v.d)

u.color = blue

O() Zeit

10 -

DIJKSTRA — die Laufzeit

D1JKSTRA(WeightedGraph G, Vertex 5)

. INITIALIZE(G, 5) |

- Q = new PRIORITYQUEUE(V/(G), d)

~ while not Q.EmMPTY() do

| u= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d+ w(u,v) then
v.color = red
v.d = u.d+ w(u,v)
vV.m = u
Q.DECREASEKEY(v, v.d)

u.color = blue

O(V) Zeit

10 -

DIJKSTRA — die Laufzeit

D1JKSTRA(WeightedGraph G, Vertex 5)

. INITIALIZE(G, 5)

- Q = new PRIORITYQUEUE(V/(G), d)

~ while not Q.EmMPTY() do

| u= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d+ w(u,v) then
v.color = red
v.d = u.d+ w(u,v)
vV.m = u
Q.DECREASEKEY(v, v.d)

u.color = blue

Lybk fiir O(|V(G)|)]
O(V) Zeit

10 -

DIJKSTRA — die Laufzeit

D1JKSTRA(WeightedGraph G, Vertex 5)

. INITIALIZE(G, 5)

- Q = new PRIORITYQUEUE(V/(G), d)

~ while not Q.EmMPTY() do

| u= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d+ w(u,v) then
v.color = red
v.d = u.d+ w(u,v)
vV.m = u
Q.DECREASEKEY(v, v.d)

u.color = blue

Lybk fiir O(|V(G)|)]
O(V) Zeit

10 -

DIJKSTRA — die Laufzeit

D1JKSTRA(WeightedGraph G, Vertex 5)

INITIALIZE(G, 5)
- Q = new PRIORITYQUEUE(V/(G), d)
- while not Q. EMPTY() do

U= Q.EXTRACTMIN()=
foreach v € Adj[u] do
if v.d > u.d+ w(u,v) then
v.color = red
v.d = u.d+ w(u,v)
V.T = u
Q.DECREASEKEY(v, v.d)

u.color = blue

Lybk fiir O(|V(G)|)]
O(V) Zeit

genau mal

10 -

DIJKSTRA — die Laufzeit

D1JKSTRA(WeightedGraph G, Vertex 5)

INITIALIZE(G, 5)
- Q = new PRIORITYQUEUE(V/(G), d)
- while not Q. EMPTY() do

U= Q.EXTRACTMIN()=
foreach v € Adj[u] do
if v.d > u.d+ w(u,v) then
v.color = red
v.d = u.d+ w(u,v)
V.T = u
Q.DECREASEKEY(v, v.d)

u.color = blue

Lybk fiir O(|V(G)|)]
O(V) Zeit

genau |V/| mal

10 -

DIJKSTRA — die Laufzeit

D1JKSTRA(WeightedGraph G, Vertex 5)

. INITIALIZE(G, 5)
- Q = new PRIORITYQUEUE(V/(G), d)
~ while not Q.EmMPTY() do |
| U= Q.EXTRACTMIN()= —genau |[V/| mal
foreach v € Adj[u] do
if v.d > u.d+w(u v)then _ . \wie oft wird der
v.color = red '
v.d = u.d+ w(u,v)
V.im = u
Q.DECREASEKEY(v, v.d)

Lybk fiir O(|V(G)|)]
O(V) Zeit

Schleifeninhalt aufgerufen?

u.color = blue

10 -

DIJKSTRA — die Laufzeit

EDIJKSTRA(WeIghtedGraph G, Vertex 5)
. INITIALIZE(G, 5)

- Q = new PRIORITYQUEUE(V/(G), d)
- while not Q.EMPTY() do

| U= Q.EXTRACTMIN()=

foreach v € Adj[u] do

if v.d > u.d+ w(u,v) then

v.color = red

v.d = u.d+ w(u,v)

V.T = u
Q.DECREASEKEY(v, v.d)

u.color = blue

Lybk fiir O(|V(G)|)]
O(V) Zeit

genau |V/| mal

<«— \Wie oft wird der

Schleifeninhalt aufgerufen?

Fiir jeden Knoten u von G

genau |Adj[ul| mal,

10 - 10

DIJKSTRA — die Laufzeit

EDIJKSTRA(WeIghtedGraph G, Vertex 5)
. INITIALIZE(G, 5)

- Q = new PRIORITYQUEUE(V/(G), d)
- while not Q.EMPTY() do

| U= Q.EXTRACTMIN()=

foreach v € Adj[u] do

if v.d > u.d+ w(u,v) then

v.color = red

v.d = u.d+ w(u,v)

V.T = u
Q.DECREASEKEY(v, v.d)

u.color = blue

Lybk fiir O(|V(G)|)]
O(V) Zeit

genau |V/| mal

<«— \Wie oft wird der

Schleifeninhalt aufgerufen?

Fiir jeden Knoten u \)/on G
out

genau |Adj[u]| = deg() mal,

10-11

DIJKSTRA — die Laufzeit

EDIJKSTRA(WeIghtedGraph G, Vertex 5)

. INITIALIZE(G, 5) |
- Q = new PRIORITYQUEUE(V/(G), d)

- while not Q. EMPTY() do

U= Q.EXTRACTMIN()=

foreach v € Adj[u] do

if v.d > u.d+ w(u,v) then

v.color = red

v.d = u.d+ w(u,v)

V. = u
Q.DECREASEKEY(v, v.d)

u.color = blue

Lybk fiir O(|V(G)|)]
O(V) Zeit

genau |V/| mal

<«— \Wie oft wird der

Schleifeninhalt aufgerufen?

Fiir jeden Knoten u \)/on G
out

genau |Adj[u]| = deg() mal,

also insg. ©(E) mal.

10 - 12

DIJKSTRA — die Laufzeit

EDIJKSTRA(WeIghtedGraph G, Vertex 5)

. INITIALIZE(G, 5) |
- Q = new PRIORITYQUEUE(V/(G), d)

- while not Q. EMPTY() do

U= Q.EXTRACTMIN()=

foreach v € Adj[u] do

if v.d > u.d+ w(u,v) then

v.color = red

v.d = u.d+ w(u,v)

V. = u
Q.DECREASEKEY(v, v.d)

u.color = blue

Also wird DECREASEKEY
mal aufgerufen.

Lybk fiir O(|V(G)|)]
O(V) Zeit

genau |V/| mal

<«— \Wie oft wird der

Schleifeninhalt aufgerufen?

Fiir jeden Knoten u \)/on G
out

genau |Adj[u]| = deg() mal,

also insg. ©(E) mal.

10 - 13

DIJKSTRA — die Laufzeit

EDIJKSTRA(WeIghtedGraph G, Vertex 5)

. INITIALIZE(G, 5) |
- Q = new PRIORITYQUEUE(V/(G), d)

- while not Q. EMPTY() do

U= Q.EXTRACTMIN()=

foreach v € Adj[u] do

if v.d > u.d+ w(u,v) then

v.color = red

v.d = u.d+ w(u,v)

V. = u
Q.DECREASEKEY(v, v.d)

u.color = blue

Also wird DECREASEKEY
O(E) mal aufgerufen.

Lybk fiir O(|V(G)|)]
O(V) Zeit

genau |V/| mal

<«— \Wie oft wird der

Schleifeninhalt aufgerufen?

Fiir jeden Knoten u \)/on G
out

genau |Adj[u]| = deg() mal,

also insg. ©(E) mal.

10 - 14

DIJKSTRA — die Laufzeit

Satz.

Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(|V| TEXTRACTMIN(|V|) + |E| : TDECREASEKEY(|V|)) Lelt.

11 -

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE

TExTRACTMIN (n)

T DECREASEKEY (n)

TDIJKSTRA(| \/‘, ‘ED

11 -

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE

TExTRACTMIN (n)

T DECREASEKEY (n)

@/: (max.) Anzahl der Elemente in der PriorityQueue]

TDIJKSTRA(| V‘, ‘ED

11 -

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE

TExTRACTMIN (n)

T DECREASEKEY (n)

TDIJKSTRA(| \/‘, ‘ED

11 -

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE

TExTRACTMIN (n)

T DECREASEKEY (n)

TDIJKSTRA(| V‘, ‘ED

als unsortiertes Feld

11 -

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE

TExTRACTMIN (n)

T DECREASEKEY (n)

TDIJKSTRA(| V‘, ‘ED

als unsortiertes Feld

O(n)

11 -

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE

TExTRACTMIN (n)

T DECREASEKEY (n)

TDIJKSTRA(| V‘, ‘ED

als unsortiertes Feld

O(n)

O(1)*

*) Das geht, weil

11 -

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE

TExTRACTMIN (n)

T DECREASEKEY (n)

TDIJKSTRA(| V‘, ‘ED

als unsortiertes Feld

O(n)

o(1)"

*)

Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

11 -

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE

TExTRACTMIN (n)

T DECREASEKEY (n)

TDIJKSTRA(| V‘, ‘ED

als unsortiertes Feld

O(n)

o(1)"

O(V2+ 1)

*)

Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

11 -

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE

TExTRACTMIN (n)

T DECREASEKEY (n)

TDIJKSTRA(| V‘, ‘ED

als unsortiertes Feld

als HEAP

O(n)

o(1)"

O(V2+ 1)

*)

Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

11-10

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer

PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V?+ 1)
als HEAP | O(log n)

*)

Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

11-11

11-12

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TexrracrMin(n) | TDecreaseKey (1) | TDuxstra(| V], | E])
als unsortiertes Feld | O(n) O(1)* O(V?+ 1)
als HEAP | O(log n) O(logn) ™~
*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

**) Das geht, obwohl

11-13

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|' TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TexrracrMin(n) | TDecreaseKey (1) | TDuxstra(| V], | E])
als unsortiertes Feld | O(n) O(1)* O(V?+ 1)
als HEAP | O(log n) O(logn) ™~
*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.

11- 14

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TexrracrMin(n) | TDecreaseKey (1) | TDuxstra(| V], | E])
als unsortiertes Feld | O(n) O(1)* O(V?+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.

11-15

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer

PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V?+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)

als FIBONACCIHEAP

*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.

11-16

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer

PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V?+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)

als FiBoNaccIHEAP | O(log n)

lamortisiert]

*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.

11 - 17

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TexrracrMin(n) | TDecreaseKey (1) | TDuxstra(| V], | E])
als unsortiertes Feld | O(n) O(1)* O(V2+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
als FiBoNaccIHEAP | O(log n) O(1)
lamortisiert] lamortisiert)
*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.

11-18

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V2+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
als FiBoNACCIHEAP | O(log n) O(1) O(E+ Vlog V)
lamortisiert] lamortisiert) lim Worst-Case! |

*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)
**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.

11-19

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|' TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V2+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
als FiBONACCIHEAP | O(log n) O(1) O(E+ Vlog V)
gehe Master-Vorlesung Fortgeschrittene Algorithmenk]

*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.

11-20

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V2+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
als FiBoNACCIHEAP | O(log n) O(1) O(E+ Vlog V)
lamortisiert] lamortisiert) lim Worst-Case! |

*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)
**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.

11-21

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V2+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
als FiBoNACCIHEAP | O(log n) O(1) O(E+ Vlog V)
lamortisiert] lamortisiert) lim Worst-Case! |

*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)
**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.

Korollar. In einem Graphen G = (V, E; w) mit w: E — Q> kann
man in O(E + Vlog V) Zeit die kiirzesten Wege von einem
zu allen Knoten berechnen (SSSP-Problem).

11 - 22

DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V2+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
als FiBoNACCIHEAP | O(log n) O(1) O(E+ Vlog V)
lamortisiert] lamortisiert) lim Worst-Case! |

*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)
**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.

Korollar. In einem Graphen G = (V, E; w) mit w: E — Q>¢ kann
man in O(E + Vlog V) Zeit die kiirzesten Wege von einem
zu allen Knoten berechnen (SSSP-Problem).

12-1

DIJKSTRA — die Korrektheit

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)

~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d + w(u,v) then
v.d = u.d+ w(u, v)
V.m =u
Q.DECREASEKEY(v, v.d)

DIJKSTRA — die Korrektheit

12-2

Definition.

Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei

O(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

D1JKSTRA(WeightedGraph G, Vertex s)

INITIALIZE(G,)
- Q = new PRIORITYQUEUE(V, d)
. while not Q.EmPTY() do

u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d + w(u,v) then
v.d = u.d+ w(u, v)
V.T = u .
Q.DECREASEKEY(v, v.d)

12-3

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q.EMPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d + w(u,v) then

v.d = u.d+ w(u, v)
V.T = U

Q.DECREASEKEY(v, v.d)

12 -4

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
O(s,v1) < d(s,va) < ...<d(s, vp)
Im Allgemeinen gilt nur S]

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q.EMPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d + w(u,v) then

L v.d = u.d+ w(u, v)

V.m = u
Q.DECREASEKEY(v, v.d)

12-5

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)

~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d + w(u,v) then
v.d = u.d+ w(u, v)
V.m =u .
Q.DECREASEKEY(v, v.d)

12-6

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)

~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d + w(u,v) then
v.d = u.d+ w(u, v)
V.m =u .
Q.DECREASEKEY(v, v.d)

12-7

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass

O(s,v1) < d(s,va) < ...<d(s, vp)
0. Schleifeninvariante EDIJKSTRA(WeIghtedGI’aph G, Vertex s)
- INITIALIZE(G, 5)

Zu Beginn des k-ten Durchlaufs der while-Schleife " Q = new PRIORITYQUEUE(V, d)

~ while not Q.EMPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d + w(u,v) then

v.d = u.d+ w(u, v)
V. = U

Q.DECREASEKEY(v, v.d)

12-8

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass

O(s,v1) < d(s,va) < ...<d(s, vp)
0. Schleifeninvariante EDIJKSTRA(WeIghtedGI’aph G, Vertex s)
- INITIALIZE(G, 5)

Zu Beginn des k-ten Durchlaufs der while-Schleife " Q = new PRIORITYQUEUE(V, d)

1) gilt vi.d =94(s,v;) firalle 1 <<k - while not Q. EmPTY() do
| u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d + w(u,v) then
L v.d = u.d+ w(u, v)

V.m =u
Q.DECREASEKEY(v, v.d)

12-9

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass

0(s,v1) < d(s,v) <...<d(s,vp)
0. Schleifeninvariante fDIJKSTRA(WeightedGraph G, Vertex s) |
| - : . 1 G, '
Zu Beginn des k-ten Durchlaufs der while-Schleife gflﬁszéRK;LTYQUEUE(V, d)
1) gilt vi.d =94(s,v;) firalle 1 <<k ~ while not Q EMPTY() do

I1) enthidlt Q genau die Knoten v, ..., v, ;’oza(iff?zgf[%?o()

if v.d > u.d + w(u,v) then
L v.d = u.d+ w(u, v)

V.m = u
Q.DECREASEKEY(v, v.d)

12-10

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

Zu Beginn des k-ten Durchlaufs der while-Schleife ' Q = new PrIORITYQUEUE(V, d)
1) gilt vi.d =94(s,v;) firalle 1 <<k - while not Q.EMPTY() do
. : | u = Q.EXTRACTMIN()
1) epthalt @ genau die Knoten v, ..., Vi, | foreach v € Adi[1] do
1) gilt vy = Q. EXTRACTMIN() ; if v.d > u.d + w(u, v) then

V.m = u
Q.DECREASEKEY(v, v.d)

L v.d = u.d+ w(u, v)

12-11

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

Zu Beginn des k-ten Durchlaufs der while-Schleife ' Q = new PrIORITYQUEUE(V, d)
1) gilt vi.d =94(s,v;) firalle 1 <<k - while not Q.EMPTY() do
. : | u = Q.EXTRACTMIN()
1) epthalt @ genau die Knoten v, ..., Vi, | foreach v € Adi[1] do
1) gilt vy = Q. EXTRACTMIN() 5 if v.d > u.d + w(u, v) then

1. Initialisierung (k = 1) L szi Z-d+ w(u, v)

Q.DECREASEKEY(v, v.d) |

12 - 12

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

Zu Beginn des k-ten Durchlaufs der while-Schleife " Q = new PRIORITYQUEUE(V, d)
1) gilt vi.d =94(s,v;) firalle 1 <<k - while not Q. EmPTY() do
I1) enthilt Q@ genau die Knoten v, ..., Vi, ;’Oza(iflf?ﬁf[g]dm()
1) gilt vy = Q. EXTRACTMIN() if v.d > u.d + w(u,v) then
1. Initialisierung (k = 1) | L vd = ud+wlu,v)
Offensichtlich ist vy = s und §(s, s) = 0. Q.DECREASEKEY(v, v.d) |

12-13

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

Zu Beginn des k-ten Durchlaufs der while-Schleife " Q = new PRIORITYQUEUE(V, d)
1) gilt vi.d =94(s,v;) firalle 1 <<k - while not Q. EmPTY() do
I1) enthilt Q@ genau die Knoten v, ..., Vi, ;’Oza(iflf?ﬁf[g]dm()
1) gilt vy = Q. EXTRACTMIN() if v.d > u.d + w(u,v) then
1. Initialisierung (k = 1) | L vd = ud+wlu,v)
Offensichtlich ist vy = s und §(s, s) = 0. Q.DECREASEKEY(v, v.d) |

In INITIALIZE(G, s) wird s.d = 0 gesetzt = |) AL

12 - 14

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

Zu Beginn des k-ten Durchlaufs der while-Schleife " Q = new PRIORITYQUEUE(V, d)
1) gilt vi.d =94(s,v;) firalle 1 <<k - while not Q. EmPTY() do
I1) enthilt Q@ genau die Knoten v, ..., Vi, ;’Oza(iflf?ﬁf[g]dm()
1) gilt vy = Q. EXTRACTMIN() if v.d > u.d + w(u,v) then
1. Initialisierung (k = 1) | L vd = ud+wlu,v)
Offensichtlich ist vy = s und §(s, s) = 0. Q.DECREASEKEY(v, v.d) |

In INITIALIZE(G, s) wird s.d = 0 gesetzt = |) L e r——————
Alle Knoten sind in Q = Il)

12-15

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

Zu Beginn des k-ten Durchlaufs der while-Schleife " Q = new PRIORITYQUEUE(V, d)
1) gilt vi.d =94(s,v;) firalle 1 <<k - while not Q. EmPTY() do
I1) enthilt Q@ genau die Knoten v, ..., Vi, ;’Oza(iflf?ﬁf[g]dm()
1) gilt vy = Q. EXTRACTMIN() if v.d > u.d + w(u,v) then
1. Initialisierung (k = 1) | L vd = ud+wlu,v)
Offensichtlich ist vy = s und §(s, s) = 0. Q.DECREASEKEY(v, v.d) |

In INITIALIZE(G, s) wird s.d = 0 gesetzt = |) L e r——————
Alle Knoten sind in Q = Il)
Fiir jeden Knoten v # s wird v.d = oo gesetzt

12-16

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

Zu Beginn des k-ten Durchlaufs der while-Schleife " Q = new PRIORITYQUEUE(V, d)
1) gilt vi.d =94(s,v;) firalle 1 <<k - while not Q. EmPTY() do
I1) enthilt Q@ genau die Knoten v, ..., Vi, ;’Oza(iflf?ﬁf[g]dm()
1) gilt vy = Q. EXTRACTMIN() if v.d > u.d + w(u,v) then
1. Initialisierung (k = 1) | L vd = ud+wlu,v)
Offensichtlich ist vy = s und §(s, s) = 0. Q.DECREASEKEY(v, v.d) |

In INITIALIZE(G, s) wird s.d = 0 gesetzt = |) L e r——————
Alle Knoten sind in Q = Il)
Fiir jeden Knoten v #£ s wird v.d = oo gesetzt = Ill)

12 - 17

DIJKSTRA — die Korrektheit

Definition. Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme: Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

Zu Beginn des k-ten Durchlaufs der while-Schleife @ = new PRIORITYQUEUE(V, d)
) giltvi.d=4(s,v;) firalle 1l <<k - while not Q.EMPTY() do

. : | u = Q.EXTRACTMIN()
I1) enthidlt Q genau die Knoten v, ..., Vi, foreach v € Adj[u] do

1) gilt vi = Q. EXTRACTMIN() if v.d > u.d + w(u, v) then

1. Initialisierung (k = 1) / L vd = u.dtwiu)
Offensichtlich ist vy = s und d(s,s) = 0. , Q.DECREASEKEY(v, v.d) |
In INITIALIZE(G, s) wird s.d = 0 gesetzt = 1) L e r——————
Alle Knoten sind in Q = Il)
Fiir jeden Knoten v # s wird v.d = oo gesetzt = Ill)

13-1

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung v

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)

~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
V.m =u .
Q.DECREASEKEY(v, v.d)

13-2

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

2. Aufrechterhaltung

V. m=u
Q.DECREASEKEY(v, v.d) |

13-3

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung o

D1IKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung ; INITIALIZ(E(G N).

Betrachte kiirzesten s-v,-Pfad P. " Q = new PRIORITYQUEUE(V, d)
- while not Q.EMPTY() do

u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
vV.T = u .
Q.DECREASEKEY(v, v.d)

13-4

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
s_ s = S
1. Initialisierung v S P e | I
* 'D1JKSTRA (Weighted , t !
2. Aufrechterhaltung / o (WeightedGrap S S):
- INITIALIZE(G, 5) :
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)

~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
vV.T = u .
Q.DECREASEKEY(v, v.d)

13-5

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung v/ o (WeightedGrap ertex <)
j - INITIALIZE(G, 5) :
Betrachte kiirzesten s-vi-Pfad P. | "o .~ Q = new PRIORITYQUEUE(V, d) '
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von vy auf P. b — Oy

foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
vV.T = u .
Q.DECREASEKEY(v, v.d)

13-6

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DuKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung v/ o (WeightedGrap ertex <)
j - INITIALIZE(G, 5) :
Betrachte kiirzesten s-vi-Pfad P. | "o .~ Q = new PRIORITYQUEUE(V, d) '
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist 1 < k. foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

V. m=u
Q.DECREASEKEY(v, v.d) |

13-7

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DuKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung 6(s, vi){ v/ o (WeightedGrap ertex <)
j - INITIALIZE(G, 5) :
Betrachte kiirzesten s-vi-Pfad P. | "o .~ Q = new PRIORITYQUEUE(V, d) '
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist 1 < k. foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

V. m=u
Q.DECREASEKEY(v, v.d) |

13-8

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
D1JKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o (eég e o S);
3 i (v, vi)| NITIALIZE(G, s5) :
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist 1 < k. foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

V. m=u
Q.DECREASEKEY(v, v.d) |

13-9

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o (eég e o S);
) i (v, v NITIALIZE(G, s5) |
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

V. m=u
Q.DECREASEKEY(v, v.d) |

13-10

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o (eég e o S);
) i (v, v NITIALIZE(G, 5) |
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v = v;, v = vy

V. m=u
Q.DECREASEKEY(v, v.d) |

13-11

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o (eég e o S);
) i (v, v NITIALIZE(G, 5) |
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v = v;, v = vy

V. m=u
Q.DECREASEKEY(v, v.d) |

13-12

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o (eég e o S);
) i (v, v NITIALIZE(G, 5) |
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v = v;, v = vy
= vk.d = vi.d + w(v;, vg)

V. m=u
Q.DECREASEKEY(v, v.d) |

13-13

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o (eég e o S);
) i (v, v NITIALIZE(G, 5) |
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v = v;, v = vy
= Vk.d = vi.d + w(v;, vg)

V. m=u
Q.DECREASEKEY(v, v.d) |

13- 14

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o (eég e o S);
) i (v, v NITIALIZE(G, 5) |
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v = v;, v = vy
= Vi.d = vi.d + w(v;, vii) = 0(s, v;) + w(v;, vg)

V. m=u
Q.DECREASEKEY(v, v.d) |

13-15

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o (eég e o S);
) i (v, v NITIALIZE(G, 5) |
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v = v;, vi= vy
= Vik.d = vi.d + w(v;, vii) = (s, v;) + w(v;, vi) = (s, vk)

V. m=u
Q.DECREASEKEY(v, v.d) |

13-16

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o (eég e o S);
) i (v, v NITIALIZE(G, 5) |
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v =v;,vi= v, |
= Vi.d = vid + w(vi, vii) = (s, vi) + w(vi, vi) = (s, vk) = 1)

V. m=u
Q.DECREASEKEY(v, v.d) |

13- 17

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s) gilt vy = Q. EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
D1JKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o (eég e o S);
3 i (v, vi)| NITIALIZE(G, s5) :
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v =v;,vi= v, |
= Vi.d = vid + w(vi, vii) = (s, vi) + w(vi, vi) = (s, vk) = 1)

V. m=u
Q.DECREASEKEY(v, v.d) |

13-18

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s) gilt vy = Q. EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

2. Aufrechterhaltung

V. m=u
Q.DECREASEKEY(v, v.d) |

13-19

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s) gilt vy = Q. EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

2. Aufrechterhaltung
Betrachte (k — 1)-ten Schleifendurchlauf

V. m=u)
Q.DECREASEKEY(v, v.d) |

13-20

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s) gilt vy = Q. EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,

1. Initialisierung v
2. Aufrechterhaltung

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

Betrachte (k — 1)-ten Schleifendurchlauf

I1) = Q@ enthielt genau die Knoten v,_1,..., Vv,

V. m=u
Q.DECREASEKEY(v, v.d) |

13-21

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s) gilt vy = Q. EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

2. Aufrechterhaltung
Betrachte (k — 1)-ten Schleifendurchlauf
I1) = Q@ enthielt genau die Knoten v,_1,..., Vv,

I11) = es wurde genau vx_1 aus @ entfernt

V.m = u
Q.DECREASEKEY(v, v.d) |

13- 22

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s) gilt vy = Q. EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

2. Aufrechterhaltung
Betrachte (k — 1)-ten Schleifendurchlauf
I1) = Q@ enthielt genau die Knoten v,_1,..., Vv,

I11) = es wurde genau vx_1 aus Q entfernt = Il)

V. m=u
Q.DECREASEKEY(v, v.d) |

13-23

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s) gilt vy = Q. EXTRACTMIN()
I1) enthilt @ genau die Knoten vy, ..., v, v
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

2. Aufrechterhaltung
Betrachte (k — 1)-ten Schleifendurchlauf
I1) = Q@ enthielt genau die Knoten v,_1,..., Vv,

I11) = es wurde genau vx_1 aus Q entfernt = Il)

V. m=u
Q.DECREASEKEY(v, v.d) |

13- 24

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s) gilt vy = Q. EXTRACTMIN()
I1) enthilt @ genau die Knoten vy, ..., v, v
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

2. Aufrechterhaltung

V. m=u
Q.DECREASEKEY(v, v.d) |

13-25

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s) gilt vy = Q. EXTRACTMIN()
I1) enthilt @ genau die Knoten vy, ..., v, v
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

2. Aufrechterhaltung

Betrachte Knoten vy mit ¢ > k.

V. m=u
Q.DECREASEKEY(v, v.d) |

13-26

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s) gilt vy = Q. EXTRACTMIN()
I1) enthilt @ genau die Knoten vy, ..., v, v
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)
. Q = new PRIORITYQUEUE(V, d)
- while not Q. EmPTY() do
: : U= Q.EXTRACTMIN
Dann gilt v,.d > foreach v € Adj[u] do()
: if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

2. Aufrechterhaltung

Betrachte Knoten vy mit ¢ > k.

V. m=u
Q.DECREASEKEY(v, v.d) |

13- 27

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s) gilt vy = Q. EXTRACTMIN()
I1) enthilt @ genau die Knoten vy, ..., v, v
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)
. Q = new PRIORITYQUEUE(V, d)
- while not Q. EmPTY() do
: : U= Q.EXTRACTMIN
Dann gilt vp.d > 5(5' Vg) forea(ih v € Adj[u] do()
: if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

2. Aufrechterhaltung

Betrachte Knoten vy mit ¢ > k.

V. m=u
Q.DECREASEKEY(v, v.d) |

13- 28

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s) gilt vy = Q. EXTRACTMIN()
I1) enthilt @ genau die Knoten vy, ..., v, v
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)
- Q = new PRIORITYQUEUE(V, d)
. while not Q.EmPTY() do

: | u = Q.EXTRACTMIN()
Dann gilt v,.d > 5(5' Vg) foreach v € Adj[v] do

s, Vv s, v s, Vn if v.d > u.d+ w(u, v) then
(305, 1) < 6(5, v2) < ... < 85, va)) E Lv.du.dw(uw) -

2. Aufrechterhaltung

Betrachte Knoten vy mit ¢ > k.

V. m=u
Q.DECREASEKEY(v, v.d) |

13-29

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s) gilt vy = Q. EXTRACTMIN()
I1) enthilt @ genau die Knoten vy, ..., v, v
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)
- Q = new PRIORITYQUEUE(V, d)
. while not Q.EmPTY() do

: | u = Q.EXTRACTMIN()

s, Vv s, v s, Vn if v.d > u.d+ w(u, v) then
(305, 1) < 6(5, v2) < ... < 85, va)) E Lv.du.dw(uw) -

2. Aufrechterhaltung

Betrachte Knoten vy mit ¢ > k.

V. m=u
Q.DECREASEKEY(v, v.d) |

13- 30

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s) gilt vy = Q. EXTRACTMIN()
I1) enthilt @ genau die Knoten vy, ..., v, v
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)
. Q = new PRIORITYQUEUE(V, d)

2. Aufrechterhaltung

Betrachte Knoten vy mit ¢ > k.

@ - while not Q. EmPTY() do

: : = R.EXTRACTMIN

Dann gilt vp.d > 6(s, vp) > (s, vk) = vk.d | £ , € Adj[u] do()
(6(s,v1) < 8(s,v2) < ... < (s, v:ﬂ | if v.d > u.d+w(u, v) then

V. m=u
Q.DECREASEKEY(v, v.d) |

L v.d = u.d+ w(u, v)

13-31

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d =0(s,v;) fiiralle 1 <i <k s) gilt v = Q. EXTRACTMINY
I1) enthilt @ genau die Knoten vy, ..., v, v

1. Initialisierung v
2. Aufrechterhaltung

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

Betrachte Knoten vy mit £ > k. . @ = new PRIORITYQUEUE(V/, d)

@ - while not Q. EmPTY() do

: : = R.EXTRACTMIN

Dann gilt vp.d > 6(s, vp) > (s, vk) = vk.d | £ , € Adj[u] do()
(6(s,v1) < 8(s,v2) < ... < (s, v:ﬂ | if v.d > u.d+w(u, v) then

V. m=u
Q.DECREASEKEY(v, v.d) |

L v.d = u.d+ w(u, v)

13- 32

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d =0(s,v;) fiiralle 1 <i <k s) gilt v = Q. EXTRACTMINY
I1) enthilt @ genau die Knoten vy, ..., v, v

1. Initialisierung v
2. Aufrechterhaltung /

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

Betrachte Knoten vy mit £ > k. . @ = new PRIORITYQUEUE(V/, d)

@ - while not Q. EmPTY() do

: : = R.EXTRACTMIN

Dann gilt vp.d > 6(s, vp) > (s, vk) = vk.d | £ , € Adj[u] do()
(6(s,v1) < 8(s,v2) < ... < (s, v:ﬂ | if v.d > u.d+w(u, v) then

V. m=u
Q.DECREASEKEY(v, v.d) |

L v.d = u.d+ w(u, v)

13- 33

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

v.d = u.d+ w(u, v)
V.T = u

Q.DECREASEKEY(v, v.d) |

2. Aufrechterhaltung /

3. Terminierung

13- 34

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. . . Q = new PRIORITYQUEUE(V, d)
3. Terminierung ~ while not Q.EMpTY() do

R N € - u = Q.EXTRACTMIN()
) = vi.d=4(s,v;) firallel <i<n foreach v € Adj[u] do

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
V.T = u

Q.DECREASEKEY(v, v.d) |

2. Aufrechterhaltung /

13- 35

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vi = Q.EXTRACTMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung o

D1IKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung / ; INITIALIZ(E(Ggs))|

/ - Q = new PRIORITYQUEUE(V, d)
. while not Q.EmPTY() do

' u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

v.d = u.d+ w(u, v)
V.T = u

Q.DECREASEKEY(v, v.d) |

3. Terminierung

) = vi.d=4(s,v;) firallel <i<n

Kurzeste Wege nach DIJKSTRA

Eingabe

Algorithmus

Laufzeit

ungewichteter Graph
nicht-neg. Kantengew.
azyklischer Graph

negative Kantengew.

fir alle Knotenpaare

+ negative Kantengew.

k kiirzeste s-t-Wege

14 -

Kurzeste Wege nach DIJKSTRA

Eingabe

Algorithmus

Laufzeit

ungewichteter Graph
nicht-neg. Kantengew.
azyklischer Graph

negative Kantengew.

BREITENSUCHE

O(E + V)

Vorlesung 18

fir alle Knotenpaare

+ negative Kantengew.

k kiirzeste s-t-Wege

14 -

Kurzeste Wege nach DIJKSTRA

Eingabe Algorithmus Laufzeit
ungewichteter Graph BREITENSUCHE O(E + V)
nicht-neg. Kantengew. DIJKSTRA O(E + Vlog V)

azyklischer Graph

negative Kantengew.

fir alle Knotenpaare

+ negative Kantengew.

k kiirzeste s-t-Wege

[Vorlesung 18]

14 -

Kurzeste Wege nach DIJKSTRA

Eingabe Algorithmus Laufzeit
ungewichteter Graph BREITENSUCHE O(E + V)
nicht-neg. Kantengew. DIJKSTRA O(E + Vlog V)
azyklischer Graph TopPOL. SORTIEREN O(E + V)

negative Kantengew.

rVorIesung 18]

heute\

fir alle Knotenpaare

+ negative Kantengew.

k kiirzeste s-t-Wege

 Vorlesung 20]

14 -

Kurzeste Wege nach DIJKSTRA

Eingabe

ungewichteter Graph
nicht-neg. Kantengew.
azyklischer Graph

negative Kantengew.

Algorithmus Laufzeit
BREITENSUCHE O(E + V)
DIJKSTRA O(E + Vlog V)
TopPOL. SORTIEREN O(E + V)
BELLMAN-FORD O(EV)

rVorIesung 18]

heute\

fir alle Knotenpaare

+ negative Kantengew.

k kiirzeste s-t-Wege

 Vorlesung 20]

14 -

Kurzeste Wege nach DIJKSTRA

Eingabe Algorithmus Laufzeit
ungewichteter Graph BREITENSUCHE O(E + V) :Vorlesung 18]
nicht-neg. Kantengew. DIJKSTRA O(E + Vlog V) heute |
azyklischer Graph TOPOL. SORTIEREN O(E + V) Vorlesung 20|
negative Kantengew. BELLMAN-FORD O(EV)
fiir alle Knotenpaare ~ |V| x DksTRA O(V(E + Vlog V))

+ negative Kantengew.

k kiirzeste s-t-Wege

Kurzeste Wege nach DIJKSTRA

Eingabe Algorithmus Laufzeit
ungewichteter Graph BREITENSUCHE O(E + V) :Vorlesung 18]
nicht-neg. Kantengew. DIJKSTRA O(E + Vlog V) heute |
azyklischer Graph TOPOL. SORTIEREN O(E + V) Vorlesung 20
negative Kantengew. BELLMAN-FORD O(EV)
fiir alle Knotenpaare |V| x DukstRa O(V(E + Vlog V))
+ negative Kantengew. FLOYD-WARSHALL O(V?3)

k kiirzeste s-t-Wege

Kurzeste Wege nach DIJKSTRA

Eingabe Algorithmus Laufzeit

ungewichteter Graph BREITENSUCHE O(E + V) :Vorlesung 18]
nicht-neg. Kantengew. DIJKSTRA O(E + Vlog V) heute |
azyklischer Graph TOPOL. SORTIEREN O(E + V) Vorlesung 20
negative Kantengew. BELLMAN-FORD O(EV)

fiir alle Knotenpaare |V| x DukstRa O(V(E + Vlog V))

+ negative Kantengew. FLOYD-WARSHALL O(V?3)

JOHNSON O(V(E + VlogV))

k kiirzeste s-t-Wege

Kurzeste Wege nach DIJKSTRA

Eingabe Algorithmus Laufzeit
ungewichteter Graph BREITENSUCHE O(E + V) Vorlesung 18 |
nicht-neg. Kantengew. DIJKSTRA O(E + Vlog V) heute |
azyklischer Graph TopPOL. SORTIEREN O(E + V) Vorlesung 20
negative Kantengew. BELLMAN-FORD O(EV)
fiir alle Knotenpaare |V| x DukstRa O(V(E + Vlog V))
+ negative Kantengew. FLOYD-WARSHALL O(V?3)
JOHNSON O(V(E + VlogV))
k kiirzeste s-t-Wege EPPSTEIN O(k + E+ Vlog V)

	Kürzeste Wege
	Routenplanung
	Modellierung

	Routenplanung
	Routenplanung mit Zeitkomponente
	Was ist das Problem?
	Wiederholung Breitensuche
	Ausbreitung
	Dijkstra
	Algorithmus
	Laufzeit
	Korrektheit

	Kürzeste Wege nach Dijkstra

