
11. Graph Neural Networks



Notes:

• Lecture L11: Graph Neural Networks 07.07.2024

• Educational objective: We motivate the application of neural networks to structured data. We introduce
convolutional neural networks for images, which can be viewed as regular lattice graphs of pixels. Introducing
Graph Neural Networks, we then show how we can use neural message passing to directly apply deep neural
networks to graph-structured data.

– Image Data and Convolutional Neural Networks
– Graph Neural Networks and Message Passing
– Graph Convolutional Networks (GCNs)



Motivation
▶ we used neural networks to learn Euclidean

representations of graphs → L10

▶ DeepWalk and node2vec use neural networks to encode
node neighborhoods in complex networks

▶ graph topology implicitly contained in node-context
pairs used to train SkipGram model

▶ how can we apply neural networks to graphs in an
end-to-end fashion?

▶ how can we leverage both graph topology and node
features?

CORA citation network

image credit: https://stellargraph.readthedocs.io
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Notes:

• In the previous lecture we considered approaches to apply (deep) neural networks to graph data. Adopting the
SkipGram model, in we used neural networks to learn graph representations, which could be used in
downstream learning tasks.

• However, this is not really a direct application of deep learning to graph data. In DeepWalk and node2vec, we
rather used different random walk models to encode node neighborhoods in node-context pairs, which were
then used to train the SkipGram model.

• This raises the question how we can apply neural networks to graph data in a more direct, end-to-end fashion,
i.e. where we directly feed the graph to a (deep) neural network. Moreover, this would also allow us to
incorporate additional node features, which are often available in real data on complex networks. Consider, e.g.,
node classification in the CORA citation graph, where we have access to the network of citations between articles
and node feature vectors that capture term frequencies in scientific articles.

• In today’s lecture, we introduce recent advances in the application of deep neural networks to graph-structured
data.



Neural Networks for Structured Data?
▶ in standard feed-forward network each neuron in hidden

layer receives all inputs, i.e. fully connected topology

example: image data

▶ consider grayscale image with 1000 · 1000 pixels
▶ 1 million input nodes
▶ 1 million learnable weights per hidden neuron

▶ images contain strong spatial correlations, i.e. from a
neuron’s perspective not all pixels are equally important

▶ idea: use structure of data to constrain topology of
neural network

1 2 3

4 5 6

7 8 9

lattice network of pixels in 3 × 3 image
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Notes:
• The starting point for our discussion is the general problem of applying neural networks to data that has an

internal structure. As a simple example, consider the application of a feed-forward neural network to a W × H
image. If we consider a black/white image, each pixel is associated with one (e.g. 8 bit) value, which results in
one million inputs for a 1000 × 1000 pixel image. For such high-dimensional data, the naive approach of
connecting each input to each neuron in the hidden layer is not practical, because it results in one million
learnable weights per hidden neuron. Such an architecture also does not consider that image data are likely to
exhibit strong spatial correlations between pixels that are close to each other.

• We can actually view images as a special type of graph, where pixels are nodes in a two-dimensional lattice
graph that connects neighboring pixels.



Neural Networks for Image Data
▶ we can use lattice structure of pixels to connect neurons

in subsequent layers
→ K Fukushima, 1979

▶ neurons corresponding to each pixel Ixy receives input
from a receptive field defined by neighboring pixels

▶ facilitates exploitation of spatial correlations in images

▶ to model spatial correlations in image data we can
compute cross-correlation or convolution 3-0
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Notes:

• The topology of our neural network should account for this structure of image data. To do so, we can create a
neural network where each neuron only receives input from one pixel and its neighboring pixels, rather than
receiving inputs from all pixels in the image. In the example above, the first layer consists of nine input nodes
that correspond to the nine pixels of the 3 × 3 pixel image shown in the previous slide. The hidden neuron
5 − 1 corresponding to pixel 5 in the first hidden layer only receives inputs from the four neighbor pixels
2, 4, 6, 8 (and itself).

• This approach has several advantages (and interpretations): First, by limiting the number of connections in the
neural network we effectively “regularize” the model, i.e. we use the structure of data to reduce the number of
learnable parameters and thus simplify the model. This counters the curse of dimensionality that we would face
in a fully connected topology. Second, we assign a localized “perceptive field” to each neuron, which has a
(superficial) biological interpretation based on the structure of the visual cortex in animals. And third, we
facilitate the detection of local patterns in image data that are likely to exhibit spatial correlations.

• Each (hidden) neuron in this architecture receives inputs from multiple neighboring pixels (and itself) and
produces a single aggregate “pixel” as output. This approach to compute a function based on the aggregate
function value of neighboring locations has a natural interpretation in terms of a cross-correlation or
convolution. For discrete image data some of those convolutions correspond to specific filters that are applied
to the image, and which we will discuss in the following.



Image Convolutions
▶ discrete convolution f ∗ g of functions f , g given as

(f ∗ g)(x) :=
∞∑

i=−∞

f (i) · g(x − i) =
∞∑

i=−∞

f (x − i) · g(i)

▶ for image I ∈ Rw×h we can use convolution kernel
ω ∈ Rn×n to compute pixels based on neighboring
pixels

I′(x , y) :=
n∑

i=1

n∑
j=1

ωij · I(x − i + c, y − j + c)

with c ∈ {1, . . . , n} index of center element in ω (e.g.
c = 2)

▶ depending on kernel, we can apply blur, sharpening,
edge detection, etc.

image after applying
box blur filter

example: blur filter

ω =
1
9

·

[ 1 2 3

1 1 1 1
2 1 1 1
3 1 1 1

]
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Notes:

• We can consider an image as a function f that returns pixel values for different coordinates (x , y) that are given
as discrete arguments. For two functions f and g we can generally define a discrete convolution between f and
g , a mathematical operation that yields a new function that depends on the function values of f and g in
neighboring locations. For real-valued functions, a convolution is actually identical to the negative
cross-correlation between two functions. For the specific case of images with (x , y) coordinates, a discrete
convolution can be defined based on a convolution kernel ω ∈ Rn×n of size n as given above. This convolution
kernel is a matrix that tells us how to compute new pixel values based on the values of neighboring pixels.

• Certain convolution kernels translate to filters that have a straight-forward interpretation in image data that are
also the basis for image processing applications. As an example, the kernel given on the slide above
corresponds to a box blur operation. Other kernels corresponds to a sharpen operation that you may know from
photo processing software.



Laplacian kernel
▶ consider Laplacian operator describing heat diffusion in

continuous Euclidean space → AKIDS 2, L19

∇f := ∂2f
∂x2 + ∂2f

∂y2

▶ ∇f (x , y) captures how f (x , y) deviates from average of
f in neighborhood of (x , y)

▶ for discrete lattice, Laplacian operator corresponds to
Laplacian matrix → AKIDS, L19

▶ we can use Laplacian kernel to detect edges in images

image after applying
Laplace filter

Laplace filter

ω =

[ 1 2 3

1 0 −1 0
2 −1 4 −1
3 0 −1 0

]
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Notes:
• Let us consider a special convolution kernel (or filter), the Laplacian kernel. One the one hand it gives an idea

how convolutional neural networks are able to extract features from images. On the other hand it has an
interesting relationship with concepts from spectral graph theory that we have discussed in Lecture 02.

• We start with an excursion to physics, where we use the Laplacian operator to describe heat diffusion in a
continuous Euclidean space. In a continuous time and continuous space setting, the Laplacian operator is a
differential operator that consists of the sum of the second-order partial derivatives in the different dimensions
of the space. Above, we give the Laplacian operator for a two-dimensional, continuous Euclidean space. In a
nutshell, if we evaluate the Laplacian operator of a function f at point (x , y) it tells us how much the function
value f (x , y) at this point deviates from the average value of f in the neighborhood of (x , y).

• In our course Statistical Network Analysis, we have shown that a reformulation of the continuous-time
dynamical system in Euclidean space to a graph topology naturally gives rise to the Laplacian matrix, which is a
discrete operator on a graph topology with discrete nodes and links (see SNA script in WueCampus, Lecture 12).

• Applying this idea to a lattice graph of pixel values, we can see that the Laplacian kernel is an discrete operator
that captures how much the value of a pixel at position (x , y) deviates from the average pixel values in its
neighborhood. This interpretation of the Laplacian kernel explains why we can use it for edge detection. Hence,
we can use convolution kernel to extract (hierarchies of) “shapes” in images that can be used, e.g., for object or
face recognition tasks.



Convolutional Neural Networks
▶ we can incorporate one or more convolutional layers

into architecture of deep neural network

▶ each hidden neuron hi in convolutional layer l applies
image convolution with learnable kernel ω(l)

▶ perceptrons within one layer share parameters, i.e. we
restrict model to learn one convolution kernel per layer

▶ we add additional (hidden) layers to learn latent
representation of images and generate output 3-0
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Notes:
• Building on the concept of image convolutions, which can be described as a matrix that is used to compute new

pixel values, we can now address the question how a neuron in the hidden layer of a neural network can
calculate a new pixel value based on the neighboring pixels. Each neuron just applies an image convolution with
a learnable kernel ω, i.e. the entries of the kernel matrix are the learnable parameters of our model. To further
limit the number of parameters, we further assume that each neuron in one (hidden) layer applies the same
convolution, i.e. all neurons share the same learnable kernel parameters.

• We can add multiple subsequent layers that apply the convolution, which - by means of the topology of those
layers- allows the information contained in one pixel of the image to propagate to neurons that correspond to
pixels that are further away. In other words, the depth of the convolutional layers influences the type of patterns
or spatial correlations that our neural network can learn.

• We further add one or more fully connected hidden perceptron layers with non-linear activation function, where
we typically use a number of neurons that is much smaller than the number of pixels. This enables the neural
network to capture arbitrary non-linear patterns and the activations of those neurons in the hidden layers can
be viewed as representation of an image in a latent space.

• We call the first layers that apply the image convolution based on a learnable kernel convolutional layer and the
overall architecture (including the additional hidden layers) is called a convolutional neural network.



CNN Architecture
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Notes:

• The figure above (thanks to Chester Tan) gives an overview of the architecture of a Convolutional Neural Network
with two convolutional layers, one fully connected hidden layer and an output layer for an image classification
task.



Practice session
▶ we define kernels and compute convolutions in image

data

▶ we implement a convolutional neural network for an
object recognition task in pytorch

practice session

see notebooks 11-01 – 11-02 in gitlab repository at
→ https://gitlab.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_sose_ml4nets_notebooks
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Notes:

• In the first practice session we first implement a function that allows us to apply convolution kernels to image
data. We then use pytorch to implement a convolutional neural network and show how we can apply it in a
simple image recognition task.



From Image Data to Graph Neural Networks
▶ how can we apply neural networks to graph-structured data?

similarities between image and graph data?

▶ fully connected layers for large graph ⇒ curse of dimensionality
▶ we want to incorporate information both from (graph) topology and (node)

features
▶ node features are likely to exhibit topological correlations

▶ we can use graph topology to define graph neural network
(GNN) → F Scarselli et al. 2009

▶ message passing layer updates node features based on
features of neighboring nodes

▶ first k layers aggregate information along paths up to length k 1 2 3

4 5 6

7 8 9
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Notes:
• If we want to directly apply neural networks to graph-structured data we face similar challenges as in the

application of neural networks to image data. To better understand this let us consider a supervised node
classification setting, where nodes i have features xi ∈ Rd and belong to discrete classes C . Taking a naive
approach, we could connect the input from each node to all neurons in our hidden layers, which means that
each of the neurons has |V | · d learnable weights. This again introduces the curse of dimensionality. Moreover,
we need to answer the question how we can input both information on the graph topology and the node
features and we want to be able to utilize potential topological correlations between features of different nodes,
e.g. nodes in the same cluster exhibiting similar features.

• To define the topology of a convolutional neural network, we considered images as lattice network of pixel
values, where pixels with adjacent pixel coordinates are connected by a link. Here we can use the same
approach: We encode the graph topology in the connections between neurons in the first layer(s) of a neural
network, i.e. we use the topology of a graph to define the neural network.

• Convolutional neural networks address the curse of dimensionality by applying a convolution filter, which
aggregate information of a pixel with the neighboring pixels of its neighbors and feed the result into additional
hidden layers that learn a latent representation of the image. We can use the same idea in graphs, i.e. we can
apply “convolution filters” to graphs. We can implement them based on message passing, where nodes
repeatedly exchange features with neighbors.



Neural Message Passing 1/2
▶ GNNs build on message passing algorithm that uses

graph to update node states → J Gilmer et al. 2017

▶ consider discrete-time dynamics where h(t)
i ∈ Rd

denotes state of node i at time t
▶ nodes update their state h(t)

i based on states of their
neighbors, i.e.

h(t)
i = Fj∈N(i)h

(t−1)
j

where F is aggregation function and N(i) is set of
neighbors of i

▶ for add aggregation we get update rule

h(t)
i =

∑
j∈N(i)

h(t−1)
j

a b

c

de

add aggregation rule

node t = 0 t = 1 t = 2
a 1 5 16
b 2 4 17
c 3 12 24
d 4 8 19
e 5 7 20
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Notes:

• Let us have a closer look at neural message passing, which is the foundation of graph neural networks. The
basic idea is to define message passing layers that use the topology of a graph to update node states based on
the states of their neighbors in the graph. Each message passing layer of the graph neural network performs one
round of message passing. More formally, this defines a discrete-time dynamical system where we use h(t)

i to
denote the state of a node i after t rounds of message passing. The initial state h(t=0)

i is given by the input
features of our graph neural network, and for t > 0 h(t)

i represents the state of a hidden neuron associated with
node i .

• In each step t of the message passing, a node i calculates a new state h(t)
i based on the previous state h(t−1)

i of
its neighbors j ∈ N(i), which requires us to apply some aggregation function.

• Considering a simple add aggregation, we obtain the simple update rule above, which we apply two times in the
toy example network. The initial states of the nodes for t = 0 are given as inputs of the neural message passing
algorithm and the outputs after two rounds of message passing are given for t = 2.



Neural Message Passing 2/2
▶ for networks without self-loops, nodes do not consider

their own prior state

▶ to avoid this, we explicitly add self-loops

h(t)
i =

∑
j∈N(i)∪{i}

h(t−1)
j

▶ we additionally transform updated node state with
differentiable function g , i.e.

h(t)
i = g

 ∑
j∈N(i)∪{i}

h(t−1)
j


▶ message passing is permutation equivariant, i.e. node

permutation → consistent permutation of outputs h(t)
i

a b

c

de

add aggregation with self-loops and
g(x) = 0.5 + 2 · x

node t = 0 t = 1 t = 2
a 1 12.5 111.5
b 2 12.5 111.5
c 3 30.5 209.5
d 4 24.5 159.5
e 5 24.5 159.5
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Notes:
• If we carefully inspect the output of the message massing, we notice that for networks without self-loops, nodes

do not remember their own prior state when computing the next state based on their neighbors. This is
unfortunate, as it means that at least after one round of message passing (and possible even after multiple
rounds if the network does not contain short loops), the information originating in node i is not available to
node i itself. This may remind you of some issues with the periodicity of Markov chains that we discussed in our
coverage of random walks.

• The solution to this issue is similar than the solution that we took to ensure the aperiodicity of a Markov chain:
we explicitly add self-loops, which means that nodes consider the prior state of their neighbors and their own
prior state.

• A major difference of this aggregation scheme is that - so far - we only add up the states of our neighbors, which
means that different from the convolutional neural network there are no “learnable” parameters for our model.
To address this, we can include an additional transformation of each node state by means of an arbitrary
differentiable function g . We will eventually use a perceptron (with learnable weights and bias parameter) and a
non-linear activation function to compute this transformation. Above, we apply a simple linear transformation
by a function g(x) = 0.5 · 2x .

• Message passing is a permutation equivariant operation, i.e. if we change the ordering of rows/columns in the
adjacency matrix (i.e. we change the ordering of nodes) we get a consistent reordering of the resulting values
after the message passing, i.e. the resutling node states are the same, they are just differently ordered.



Degree-based Normalization
▶ heterogeneity of networks requires application of

degree-based normalization

▶ we can use mean rather than add aggregation, i.e.

h(t)
i = g

 ∑
j∈N(i)

h(t−1)
j
di


▶ we can apply symmetric degree-based normalization, i.e.

h(t)
i = g

 ∑
j∈N(i)

h(t−1)
j√
didj


a b

c

de

symmetric normalization (and self-loops)

node t = 0 t = 1 t = 2
a 1 1.8 2.1
b 2 1.8 2.1
c 3 2.7 3.6
d 4 3.8 3.5
e 5 3.8 3.5
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Notes:

• In the example on the previous slide, we observe another important difference between (many) graphs and
image data. While the number of neighboring pixels for each image position is the same (with the exception of
border pixels that we can exclude from the convolution), nodes in graphs can have highly heterogeneous
degrees. If we simply add up the states of neighbors we will get largely heterogeneous states that are also
strongly correlation with the node degrees. This hinders learning in networks with heterogeneous degrees and
requires degree-based normalization techniques. A simple approach would be to use the mean rather than the
sum as an aggregation function, i.e. each node normalizes the values based on its degree, i.e. the number of
neighbors from which it receives a state or message. This simple normalization scheme has been applied in
some early works on graph neural networks.

• We can alternatively use a symmetric degree-based normalization where we scale the messages received from
each neighbor individually. As normalization factor, we use the geometric mean of the degrees of the node i and
the respective neighbor node j .

• In the example above, we used the symmetric degree-based normalization in two rounds of message passing.
For the sake of simplicity, we did not apply an additional transformation, i.e. we simply used g(x) = x .



Message Passing and Graph Laplacians
▶ for graph with adjacency matrix A consider Laplacian

matrix → AKIDS2, L19

L := D − A

where D is diagonal degree matrix

▶ symmetric degree-based normalization yields symmetric
normalized Laplacian → F Chung, 1997

L∗ = D
1
2 LD

1
2 = I − D− 1

2 AD− 1
2

with entries

L∗
ij =


− 1√

di ·dj
if i ̸= j and Aij = 1

1 if i = j
0 else

a b

c

de

Symmetric Normalized Laplacian

L∗ =


1 − 1

2 − 1
2
√

2
0 0

− 1
2 1 − 1

2
√

2
0 0

− 1
2
√

2
− 1

2
√

2
1 − 1

2
√

2
− 1

2
√

2
0 0 − 1

2
√

2
1 − 1

2
0 0 − 1

2
√

2
− 1

2 1


Ingo Scholtes Deep Learning 11. Graph Neural Networks July 8, 2024 13



Notes:

• Let us comment on some interesting links between neural message passing with symmetric degree-based
normalization and spectral graph theory. In AKIDS2 L19, we have introduced the Laplacian matrix, which can be
seen as a discrete generalization of the continuous Laplacian operator in Euclidean space to arbitrary
topologies. We can also use the Laplacian operator to model continuous time diffusion dynamics (more on this
in our course Statistical Network Analysis).

• In matrix form, the Laplacian matrix is defined as difference between the degree-diagonal and the adjacency
matrix. The normalization term in the symmetric degree-based normalization naturally corresponds to the
so-called symmetric normalized Laplacian. In matrix form, it can be given as the difference between an identity
matrix and the product D− 1

2 AD− 1
2 . Note that the degree diagonal matrix is invertible if we do not have nodes

with zero degrees. We find that, except for the sign, the entries in the symmetric normalized Laplacian
correspond to the factors that are used in the neural message passing with symmetric degree normalization.



Spectral Graph Convolution
▶ similar to PCA, we can use eigenvectors corresponding

to smallest Laplacian eigenvalues to embed graph in
Euclidean space → Machine Learning for Complex Networks

▶ we can use eigenvectors of graph Laplacian to generalize
convolutional neural networks to graph data
→ J Bruna et al., 2013

▶ neural message passing with self-loops and symmetric
degree-based normalization can be viewed as efficient
localized version of spectral graph convolution
→ T Kipf and M Welling, 2017

▶ inclusion of non-local topological patterns requires
multiple message passing layers 1 2 3

4 5 6

7 8 9
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Notes:

• We can thus view multiple rounds of neural message passing with symmetric degree-based normalization as a
model for the diffusion of node features in a graph. In our course Statistical Network Analysis, we will show that
the eigenvalues and eigenvectors of the Laplacian matrix to characterize such a diffusion process, where the
eigenvalues determine the speed of the diffusion and the eigenvectors give the different “modes” of the
diffusion dynamics. Moreover, we can use the Laplacian eigenvectors corresponding to the smallest eigenvalues
to represent graphs in a Euclidean space. Similar to PCA, this can be viewed as a representation of nodes and
edges in a high-dimensional Euclidean space with suitably rotated and ordered dimensions. As shown in → J Bruna

et al. 2013 , we can actually use such a vector space representation to generalize convolutional neural networks to
spectral graph convolutional networks.

• While this is an interesting approach to generalize neural networks to graph data, it comes at the prize that we
need to calculate the eigenvalues and eigenvectors of a potentially very large matrix. The neural message
passing algorithm with self-loops and symmetric degree-based normalization (which links it to a Laplacian
matrix) can actually ve viewed as a localized version of such a spectral graph convolution, which can be
efficiently calculated in linear time.

• Naturally, a single round of message passing only allows information to propagate along a distance of one in the
network. If we want to utilize non-local patterns in the graph, we thus need multiple subsequent message
passing layers. Unfortunately, if we use a number of layers that is too large, we suffer the problem of
over-smoothing, since the underlying diffusion process approaches the stationary state.



Graph Convolutional Networks (GCN)
▶ message passing with self-loops and symmetric

degree-normalization defines Graph Convolutional Networks
(GCN) → T Kipf, M Welling, 2016

▶ update rule in message passing layer of GCN given as

h(k)
i := σ

W(k) ∑
j∈N(i)∪{i}

h(k−1)
j√
didj


where W(k) ∈ Rd(k) × d (k−1) are learnable weights and σ is
non-linear activation function

▶ message passing layer k maps node representations
h(k−1)

i ∈ Rd(k−1)
to h(k)

i ∈ Rd(k)

▶ similar to CNN, we can add hidden layer(s) and output layer

Thomas Kipf

image credit: https://tkipf.github.io/
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Notes:

• The neural message passing algorithm with self-loops and symmetric degree-based normalization is the basis
for Graph Convolutional Networks, an architecture first proposed in 2016 by Thomas Kipf and Max Welling. We
can write the update rule for each message passing layer of a GCN as given above, where we have included a
perceptron-based transformation with learnable weights and a subsequent application of a non-linear
activation function. Like for CNNs, all neurons in a single message passing layer share the same parameters.
Depending on the weight parameters, we can further change the dimensionality of the node states/features as
we pass the information through the message passing layers.

• The number of message passing layers k determines the depth of the GCN, where deeper GCNs aggregate
information from a longer distance in the graph. We further add one or more layers of fully connected
feed-forward networks, where the hidden neuron activations can be interpreted as latent representations of the
nodes in the network. We finally add an output layer.

• We can train the network as before, i.e. we pass the inputs to the network, compute the loss function based on
the output and the ground truth, and use backpropagation and stochastic gradient descent to optimize the
parameters.



GCN Architecture
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Notes:

• The figure above (thanks to Chester Tan) gives an overview of the architecture of a Graph Convolutional Neural
Network with two graph convolutional (i.e. message passing) layers, one fully connected hidden layer and an
output layer for a node classification problem.



Practice session
▶ we introduce the geometric deep learning package

torch-geometric and convert pathpy networks to
torch-geometric data structures

▶ we explore neural message passing with
torch-geometric

▶ we implement graph convolutional networks and use
them for node classification

▶ we show how we can use hidden layer activations to
visualize node feature maps

practice session

see notebooks 11-03 and 11-04 in gitlab repository at
→ https://gitlab.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_sose_ml4nets_notebooks
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Notes:

• In the second practice session, we introduce the deep learning package torch-geometric (pyG) and show
how we can convert pathpy networks to torch data structures.

• We implement and test neural message passing with torch-geometric and develop a simple graph
convolutional network (GCN). We then apply it to a test data set and show that we can use hidden layer
activations to visualize node feature maps.



Example: GCN-based Node Classification
example

Karate club network with n = 34 nodes and m = 77 links, where ground truth node classes
ŷ are given by groups
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Notes:

• The example above demonstrates the application of a GCN in a supervised node classification task. We use the
Karate club network, which provides information on ground truth classes based on two factions in the Karate
club. We use the full graph to define the topology of the GCN and use 70 % of the nodes to train the GCN. We
then use the trained model to predict node classes for the remaining nodes. In this example, with the exception
of the single node 30, the predicted classes match the ground truth labels.



Example: Latent Node Representations
example

Karate club network with n = 34 nodes and m = 77 links, where ground truth node classes
ŷ are given by groups
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Notes:

• We can also use GCNs to extract latent representations of nodes. For this, instead of the output of the model, we
simply use the hidden layer activations that we get if we feed in the one-hot encoding of a node. Above, we have
done this for all one-hot encodings of nodes for a two-layer GCN where the first layer has 16 hidden dimensions.
We applied a subsequent truncated SVD to map those 16-dimensional vectors to R2.



Graph-Structured Data with Node Features
▶ consider training of GCN on graph G = (V , E ) with n nodes and target node labels yi

▶ inputs xi := h(0)
i of neurons in first message passing layer can be given as

xi := (0, . . . , 0︸ ︷︷ ︸
i times

, 1, 0, . . . 0) ∈ Rn

i.e. we use one-hot encoding of nodes to initialize node states h(k)
i for first graph convolution

layer

▶ for graphs with additional node features f : V → Rd we can concatenate features with one-hot
encoding, i.e.

xi := (0, . . . , 0︸ ︷︷ ︸
i times

, 1, 0, . . . 0, f (i)) ∈ Rn+d

▶ allows us to train GCN based on graph topology and node features
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Notes:

• In our applications of the GCN model so far, we used one-hot-encodings xi ∈ Rn of nodes as input to the first
graph convolutional layer. Hence, the state of each node i in the first message passing layer is initialized with an
n-dimensional vector that has a one at position i and zero elsewhere.

• For networks where we have additional node features f (i) ∈ Rd , we can concatenate the feature of node i to
this one-hot encoding, i.e. we get an input with n + d dimensions, where d is the dimensionality of the node
features. We now initialize the state of each node i in the first message passing layer with an n + d dimensional
vector, where the first n entries are the one-hot-encoding of node i and the last d entries contain the associated
feature of node i .

• We can train the GCN in the same way as before.



Semi-supervised Learning in Graphs
▶ use of topological features enables application

of GCN to semi-supervised learning in graphs

semi-supervised learning

machine learning techniques that can simultaneously use large
amounts of unlabeled data as well as small amounts of labeled
data

example

semi-supervised node classification in network with a single
labeled node per class

▶ message passing layers smoothen existing
labels across unlabeled nodes close to labeled
ones
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Notes:

• We finally highlight that, thanks to their ability to utilize information from the topology of the graph, GCNs
naturally support semi-supervised learning, i.e. settings where we have a large amount of unlabeled data as
well as a very small number of labeled data.

• As an example, consider semi-supervised node classification in the Karate club network, where we only have a
single labeled node for each community. A GCN can use the information provided by those labeled nodes as well
as the community structures in the graph to predict the labels of the remaining nodes with high accuracy. This is
due to the fact that the message passing layers effectively “smoothen” existing labels across the unlabeled
nodes in the graph, where nodes with many paths to a node with a given label will be assigned that label with
higher probability.

• Technically, we can handle such data sets by applying the message passing and calculating the loss function only
for those nodes that are labeled.



Practice session
▶ we use a GCN for supervised learning in graph with

additional node features

▶ we demonstrate that GCNs learn patterns both in the
graph topology and in node features

▶ we use a graph convolutional network to address
semi-supervised node classification

practice session

see notebooks 11-05 and 11-06 in gitlab repository at
→ https://gitlab.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_sose_ml4nets_notebooks
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Notes:

• In the last practice session of this week, we use GCNs to address node classification in a network with additional
node features.

• We further use a GCN to address semi-supervised node classification.



Example: Learning with node features 1/2
example

▶ synthetic network with four ground-truth clusters C1, C2, C3, C4 and two topological
communities M1 = C1 ∪ C2 and M2 = C3 ∪ C4

▶ nodes i in C1 and C3 have feature f (i) = 0
▶ nodes j in C2 and C4 have feature f (j) = 1
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Notes:

• For the example above, we have generated a synthetic network with two strong communities (based on two
interconnected Watts-Strogatz networks). We further assign two different features (0 or 1) to nodes, half of the
nodes in each community are assigned label 0, while the other half is assigned label 1. This defines four ground
truth clusters depending on (i) the cluster membership, and (ii) the node feature. Neither the community
structure nor the node features are enough to correctly predict all four cluster labels.

• We find that the GCN is able to handle this example, where we have a mix of information that is due to the
topology of the graph as well as to the node features.



Example: Learning with node features 2/2
example

▶ synthetic network with four ground-truth clusters C1, C2, C3, C4 and two topological
communities M1 = C1 ∪ C2 and M2 = C3 ∪ C4

▶ nodes i in C1 and C3 have feature f (i) = 0
▶ nodes j in C2 and C4 have feature f (j) = 1
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Notes:

• What is even more interesting, we can use the hidden layers of a GCN to recover these two independent
dimensions of information. Above, we show a latent space embedding of nodes generated based on the hidden
neuron activations in the first convolutional layer of a two-layer GCN.

• We further apply a truncated SVD to obtain a two-dimensional Euclidean representation. We find that the two
different dimensions in the resulting representation capture the topological dimension (i.e. communities, from
bottom left to top right) as well as the feature dimension (i.e. feature 0 or 1, top left to bottom right) in the graph.

• The GCN is able to generate a latent representation that incorporates both dimensions and uses them for the
classification.



Example: Semi-Supervised Graph Learning 1/2
example

▶ semi-supervised node classification in Karate club network with n = 34 nodes and
m = 77 links

▶ ground truth node class given for one node in one community
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Notes:

• We finally demonstrate the performance of a GCN in a semi-supervised node classification scenario. We start
with a setting where all except one nodes are unlabeled. We train the GCN based on this single labeled node.
Not surprisingly, the trained GCN predicts the class of this labeled node for all other nodes in the test set.



Example: Semi-Supervised Graph Learning 2/2
example

▶ semi-supervised node classification in Karate club network with n = 34 nodes and
m = 77 links

▶ ground truth node class given for two nodes in two communities
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training network with two labeled nodes
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Notes:

• Adding a single labeled node in the other community of the graph is sufficient to train a model that correct
classifies the majority of remaining nodes in the test. We obtain a model that achieves an accuracy of close to
88%.



Conclusion
▶ we incorporate information on structure of data in

neural network topology

▶ sparse computation graph utilizes spatial and/or
topological correlations in data

▶ relationship between image convolutions and spectral
graph theory

▶ spectral graph convolution can be efficiently
approximated with neural message passing

▶ basis for highly efficient supervised, unsupervised and
semi-supervised graph learning techniques

▶ deep learning in graphs = important machine learning
innovation of past decade
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Notes:

• In summary, we have seen how we can apply deep neural networks to structured data. A key idea behind both
convolutional neural networks for image data and graph neural networks for graph-structured data is to utilize
the spatial/topological correlation between features to generate a sparse neural network topology. For CNNs, we
can use multiple layers of learnable image convolutions that are able to extract hierarchies of shapes in images.
The concept of image convolutions can be generalized to graphs, which is closely related to the modelling of
dynamical processes in networks, and thus, spectral graph theory.

• Spectral graph convolutions can be efficiently approximated via a simple neural message passing algorithm that
is a defining feature of graph neural networks. For the special case of neural message passing with self-loops,
symmetric degree-normalization, and perceptron-based feature transformation, we obtain the popular Graph
Convolutional Neural Network architecture.

• GNNs and GCNs are the basis for highly efficient supervised, unsupervised, and semi-supervised graph learning
techniques. Their development can be considered one of the major innovations in machine learning in the past
decade.



Questions
1. Consider a CNN with two convolutional layers with 3 × 3 kernel. Calculate the number of

parameters with/without parameter sharing for a one megapixel image.
2. What is the difference between a discrete convolution f ∗ g and a discrete cross-correlation

between two functions f and g?
3. What is a Graph Neural Network (GNN) and how is it different from a Graph Convolutional

Network (GCN)?
4. How can we apply a GCN to a graph where nodes have no features? How do we define the initial

node states h(t)
i for t = 0?

5. Investigate the so-called loopy belief propagation algorithm for general graphs and discuss its
relationship with neural message passing.

6. Why and how can we use GCNs to address semi-supervised node classification.
7. For Laplacian matrix L show that D 1

2 LD 1
2 = I − D− 1

2 AD− 1
2 .

8. Discuss similarities and differences between convolutional neural networks (CNNs) and graph
convolutional networks (GCNs).

9. Consider a graph with 1000 nodes and 2000 edges. Calculate the number of parameters for a
GCN with two message passing layers, one hidden layer with d = 16 dimensions, and a single
binary output.
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