
Multilingual Natural Language Processing

Summer semester 2024/25

Prof. Dr. Goran Glavaš,
M.Sc. Fabian David Schmidt
M.Sc. Benedikt Ebing
Chair XII for Natural Language Processing, Universität Würzburg

1. Exercise for “Multilingual Natural Language Processing”

28.06.2024

1 Paper Readings

The PEFT literature is vast and grows rapidly. The papers listed below serve as an initial
starting point for your reading to complete the homework.

• Towards A Unified View of Parameter-Efficient Transfer Learning

• MAD-X: An Adapter-Based Framework For Multi-Task Cross-Lingual Transfer

• LoRA: Low-Rank Adaption of Large Language Models

• Prefix-Tuning: Optimizing Continuous Prompts for Generation

2 Parameter-Efficient Fine-Tuning: Basics

1. Describe the core idea of parameter-efficient fine-tuning (PEFT) briefly.

PEFT refers to a group of fine-tuning techniques in which typically a small
fraction (≤ 5%, typically ≤ 1%) of existing or newly added parameters are
fine-tuned.

2. Concisely explain the key advantages of PEFT!

Clear advantages of PEFT techniques are:

• VRAM savings: modern optimizers (cf. Adam(W)) store copies of train-
able parameters to be able to perform second order updates which requires

1

https://openreview.net/pdf?id=0RDcd5Axok
https://aclanthology.org/2020.emnlp-main.617/
https://arxiv.org/abs/2106.09685
https://aclanthology.org/2021.acl-long.353.pdf

abundant VRAM if the model is fully fine-tuned – this enables to fine-tune
billion parameter-sized models (paired with 8bit precision training) on
consumer hardware at almost full fine-tuning performance

• memory savings via modularity: if only a fraction of the parameters a
trained, we do not need to store entire models per task

Debatable advantages of PEFT techniques are:

• Faster training: training speed primarily accelerated by fitting larger
batch sizes (due to VRAM savings) and potentially better training stability
at larger learning rates

• Stability: prior work suggests that PEFT can be more robust to varying
hyperparameters

3. Can you think of and explain potential disadvantages oft PEFT?

Practical disadvantages of PEFT are:

• Performance: prior work frequently makes it look like PEFT outperforms
full fine-tuning. In practice, however, follow-up work hardly ever has been
able to exceed full fine-tuning performance (cf. Towards A Unified View
of Parameter-Efficient Transfer Learning)

• Inference: depending on the PEFT approach, inference latency may be c.
10− 30% higher, as input sequence length increases (e.g. prefix-tuning)
or the model becomes deeper (e.g. adapters)

• Technical debt: PEFT frameworks are wrappers around wrappers
(transformers library); these libraries typically end-up playing "catch-
up" to latest research developments

3 Comparison of methods

Analyse and compare (i) LoRA, (ii) Prefix-Tuning, and (iii) Adapters along the following
dimensions:

• Modelling: how are the original language model representations updated during
PEFT between the approaches?

• Implementation, ease of use

2

• Inference

3

Parameter-Efficient Transfer
Learning

Adapters: Added Feed-Forward Layers For
Modular Transfer Learning (1/3)

Adapters At A Glance Comments

• Desc: Adapters are small feed-forward subnetworks
(cf. next slide) typically added after pre-training at
the end of each transformer block

• Idea: modularly isolate whatever information is key
for `transfer’ (broad definition, transfer might be
language, downstream task, etc., cf. Adapt
parameters)

• Performance: expect slightly less than original FT
(fine-tuning) performance

Adapters: Adapter Modules (2/3)

Adapters At A Glance Comments

• Down-Projection: a linear layer that shares parameters across
all token representations to down cast representations from
dimensionality 𝐷 (e.g. 768) to 𝐷𝐴 (e.g. 16)

• ReLU Activation: required as we otherwise only learn lower
rank (16 rank) approximations of original (eg 768 dimensional)
representations – we need to learn to extract features
meaningful for task!

• Up: a linear layer that shares parameters across all token
representations to up cast representations from dimensionality
𝐷𝐴 (e.g. 16) to 𝐷 (e.g. 768)

• Mind the residual connection!
• Parameter-efficiency: 𝟐 × 𝑫 × 𝑫𝑨 ≪ 𝟐 × 𝑫𝟐 to reduce #

parameters to
𝐷𝐴

𝐷
of original parameters

• Inference: depth of transformer increases by number of
adapters inserted; in practice, works just as well to omit
“some” adapters. Expect 10-25% slower inference

Down-Projection

Input representations of shape (𝑁, 𝐿, 𝐷)

Input representations of shape (𝑁, 𝐿, 𝐷𝐴)

ReLU Activation

Up-Projection

Input representations of shape (𝑁, 𝐿, 𝐷)

R
es

id
u

al
 c

o
n

n
e

ct
io

n

Prefix-Tuning

Adapters At A Glance Comments

• Desc: prefix tuning prepends the sequence with additional
embeddings that are learned to gear the token
representations towards the task (cf. attention)

• Idea: the prefix embeddings are learned in a way such that,
within attention modules, the token embeddings attend to
prefix “tokens” to meaningfully update themselves for the
task

• Performance: expect slightly less than original FT (fine-
tuning) performance, some papers claim it might work
better but sensitive to hyperparameters (prolonged
training since initialized from scratch). This means high
initial learning rate required, small final learning rate; not
easy to bridge correctly between the two

• Inference: slowdown due to artificially increasing sequence
length by number of prefixes; costly in attention (cf.
quadratic complexity)

Embedding Layer

𝑁 × Transformer Blocks

Classification Head

The brown fox jumps

Param
eters Fro

zenVariant B:
Newly initialized

trainable
Embeddings prepended

To Sequence

Variant A:
Prepend keys and queries

in attention modules

LoRA

LoRA At A Glance Comments

• Desc: factorizes the parameter update of 𝑊 (i.e. Δ𝑊) into
a low-rank series of down and up-projections

• Idea: parameter-efficient fine-tuning `works’ because what
tasks from downstream tasks is inherently `low-rank’;
consequently, we can bend models to similar solutions as
FT with lower rank

• Performance: less than original FT (fine-tuning)
performance; problem is task-dependent on what
parameters should be updated etc.

• Inference: no slow down because Δ𝑊 be merged into W to
avoid overhead; training though slower comparable to
adapters

Factorization
commonly

applied to keys,
weights, and/or

queries of
attention
matrices

	Paper Readings
	Parameter-Efficient Fine-Tuning: Basics
	Comparison of methods

