

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

Multilingual NLP

8. Word Alignment & Label Projection

Prof. Dr. Goran Glavaš Center for Al and Data Science (CAIDAS), Uni Würzburg

After this lecture, you'll...

- Learn about machine-translation-based cross-lingual transfer
- Understand why MT-based CL transfer is difficult for token-level tasks
- Learn about word alignment (WA) algorithms, symbolic and semantic
- Be aware of "mark-then-translate" as an alternative to WA

Content

- Translation-Based CL Transfer
- Word Alignment
 - Symbolic word alignment
 - Semantic word alignment
- Mark-then-Translate

Why Multilingual NLP?

- **Cross-Lingual transfer**: transfer supervised models for concrete NLP tasks
 - Models trained on labeled data in high-resource <u>source</u> language...
 - ...make predictions on texts in low-resource <u>target</u> languages with little or no labeled data

Cross-Lingual Transfer: Practical Necessity

- Only a <u>handful</u> of NLP tasks have annotated data in many languages
 - Part-of-speech tagging (Universal Dependencies, UD)
 - Syntactic parsing (UD)
 - Named Entity Recognition (e.g., <u>WikiANN</u>)
 - Higher-level semantic tasks often have <u>only English training data</u>
 - Generally more difficult tasks, e.g.:
 - Natural Language Inference (NLI)
 - Semantic Text Similarity (STS)
 - Question Answering (QA)
 - Causal Commonsense Reasoning

Translation-Based Transfer

- How about we use state-of-the-art **machine translation** to get annotated data in the languages we care about?
- Two common strategies:

1. Translate train

- Automatically translate our training dataset in the source language $L_{\rm S}$ to the target language $L_{\rm T}$
- We obtain a (noisy) monolingual training dataset in L_T
- We train a dedicated model $M_{\rm T}$ for $L_{\rm T}$
- For instances $I_{\rm T}$ from $L_{\rm T}$ we make predictions with $M_{\rm T}$

Translation-Based Transfer

- How about we use state-of-the-art **machine translation** to get annotated data in the languages we care about?
- Two common strategies:

2. Translate test

- Train the model M_S using the clean training data in L_S
- At inference time, for input I_T in L_T :
 - First translate I_T to the source language L_S
 - Make the prediction with the model M_S on the translation

Zero-Shot CL Transfer

- Cross-lingual transfer with MMTs is conceptually trivial
 - 1. Place a task-specific head on top of the Transformer body
 - 2. Perform standard fine-tuning using task-specific training data in L_S
 - 3. Use the Transformer and classifier to make predictions for data in L_T

Translate-Train Transfer

1. Automatically translate our training dataset in the source language $L_{\!S}$ to the target language $L_{\!T}$

Translate-Train Transfer

2. Train (i.e., fine-tune an MMT) on the translated train set

3. Make inference with the obtained model on target language input

Translate-Test Transfer

1. Train (i.e., fine-tune an MMT) on the original training set in L_S

Translate-Test Transfer

1. At inference, first translate the input from L_T to L_S 2. Then make prediction with the model trained on L_S data

Translation-Based Transfer: Limitations

- Q: Translation-based vs. zero-shot CL transfer?
- Q: Translate-train vs. translate-test?
- Q: Shortcomings of translation-based transfer?
- The quality of translation-based transfer, obviously, depends on the quality of machine translation
- Translation-based CL transfer typically comparable or better than zero-shot CL transfer for higher-resource languages
 - For languages with <u>strong MT models</u>
- Translate-train typically more robust that translate test
 - Especially for higher-level semantic tasks (QA, NLI, ...)
 - **Q**: Why?

Translation Transfer for Token Classification?

- Token-level classification (or regression), also known as sequence labeling, denotes tasks in which a label (class or score) is to be assigned to <u>each input token</u>
- Examples:
 - Part-of-speech tagging
 - Named entity recognition
 - Any of the other IE tasks where we need to extract
 - the span of tokens hat represent a concept instance
 - Labels are at the token level
 - Translation-based transfer = need to align:
 - Words from the translation I_T
 - to the tokens of the source input I_S as tokens from I_S have labels

Translation Transfer for Token Classification?

• Example: Named Entity Recognition

Fiat/B-ORG and/O Chrysler/B-ORG Group/I-ORG merged/O into /0 FCA/B-ORG on/O 12/B-DAT October/I-DAT 2014/I-DAT

Fiat/? ve/? Chrysler/? Grubu/? 12/? Ekim/? 2014/? tarihinde/? FCA/? olarak/? birleşti/?

Translation Transfer for Token Classification?

- n?
- To be able to transfer labels from l_S to its translation l_T (or vice-versa), we need to establish the **word alignment**
- This method of transfer is called annotation (or label) projection

	Fiat/B-ORG
Fiat/B-ORG <	ve/O
and/O <	Chrycler /P OPC
Chrysler/B-ORG ←	
Groun/I-ORG	Grubu/I-ORG
merged/0	12/B-DAT
into /0	Ekim/I-DAT
FCA/B-ORG	2014/I-DAT
on/0	tarihinde/O
12/B-DAT	FCA/B-ORG
October/I-DAT	olarak/O
2014/I-DAT	birleşti/O

Content

- Translation-Based CL Transfer
- Word Alignment
 - Symbolic word alignment
 - Semantic word alignment
- Mark-then-Translate

- Word alignment is a task of finding mutual word translations between parallel texts (aka bitext), typically sentences that are translations of each other
- Word alignment is a "messy" task because:
 - 1-N, N-1, and N-N relations between words
 - Different word orders (and other morphosyntactic differences) between languages
- Word alignment was crucial in **statistical machine translation**
 - WA and SMT itself \rightarrow two sides of the same coin
 - Shift to <u>NMT</u> reduced the importance of WA
 - Still important for CL transfer for token-level tasks!

- Word alignment is practically (for CL transfer) defined as aligning each token t_i of the target sentence t = {t₁, t₂, ..., t_m} to a token s_j of the source sentence s = {s₁, s₂, ..., s_n}
- In reality, not all target language tokens have a direct translation in the source sentence → we introduce a special "empty" token s₀
 s = {s₀, s₁, s₂, ..., s_n}
- Multiple tokens from **t** can be aligned to the same source token s_i

- IBM Word Alignment Models
 - Originally SMT models
 - Later on primarily used as word alignment models

Translation formulation:

- We're going to <u>swap</u> source and target language for a moment
 - Source in the translation formulation is target for alignment
- We're searching for the most likely translation **s** for a given input **t**

s* = argmax_s P(s|t) (which, given Bayes rule) ∝ argmax_s P(t|s) P(s)

Translation model

Language model (of translation target language, L_S)

IBM Models

- Translation model: estimates the probabilities P(t|s)
- IBM Model 2:
 - Let's assume alignments a₁, a₂, ..., a_m
 - Alignment $a_k = (i, j)$ means that t_i is aligned to s_j

 $\mathsf{P}(\mathbf{t}|\mathbf{s}) = \prod_{i=1}^{m} q_p(j|i,m,n) * q_w(t_i|s_j)$

Position alignment score (for positions i and j given lengths m and n)

Word translation scores (regardless of positions of words)

- If we had estimates $q_p(j|i, m, n)$ for all position pairs *i* and *j*
- And estimates $q_w(t|s)$ for all word pairs
- We could then easily compute the "optimal" word alignment (according to the IBM Model 2) for any two parallel sentences t and s

Algorithm

- For each t_i in t
 - Select s_j in **s** for which $q_p(j|i, m, n) * q_w(t_i|s_j)$ is the largest

- Q: How do we obtain position alignment scores q_p and word translation scores q_w?
- We estimate them from the **parallel corpus** using an <u>expectation</u> <u>maximization (EM) algorithm</u>
- Parallel corpus: $\{\mathbf{s}^{(k)}, \mathbf{t}^{(k)}\}_k$

- Q: How do we obtain position alignment scores q_p and word translation scores q_w ?
- Parallel corpus: $\{\mathbf{s}^{(k)}, \mathbf{t}^{(k)}\}_k$
- Let's for a moment assume that we also have "gold" word alignments in our training corpus (which in reality, we won't have)
 - We can directly do the maximum likelihood estimation (MLE) of q_w and q_p as follows (function "c" indicates the raw count):

$$q_p(j|i,m,n) = \frac{c(j|i,m,n)}{c(i,m,n)}$$

Number of times (in our training parallel corpus with gold alignments) that the *i*-th word in *t* (which is of length *m*) was aligned with the *j*-th word in **s** (which is of length *n*)

- Q: How do we obtain position alignment scores q_p and word translation scores q_w ?
- Parallel corpus: $\{\mathbf{s}^{(k)}, \mathbf{t}^{(k)}\}_k$
- Let's for a moment assume that we also have <u>"gold" word alignments</u> in our training corpus (<u>which in reality, we won't have</u>)
 - We can directly do the maximum likelihood estimation (MLE) of q_w and q_p as follows (function "c" indicates the raw count):

$$q_w(t|s) = \frac{c(t,s)}{c(s)}$$

Number of times some target word (e.g., *Hund*) was aligned to some source word (e.g., *dog*)

Number of times that source word (e.g., *dog*) appeared in the parallel corpus

- Q: How do we obtain position alignment scores q_p and word translation scores q_w ?
- <u>In reality, we won't have</u> word alignments provided on our parallel corpus {s^(k), t^(k)}_k
 - We cannot really count c(t|s) and c(j|i,m,n)
 - But words and positions of alignments will tend to appear more often over the sentences of our parallel corpus
 - "Learning" algorithm: a variant of **expectation maximization**, iteratively:
 - 1. Estimate changes to counts c(t|s) and c(j|i,m,n) (expected counts) from current parameter values (q_p and q_w)
 - 2. Update all parameters (q_p and q_w) based on new expected counts

- Parallel corpus $\{\mathbf{s}^{(k)}, \mathbf{t}^{(k)}\}_k$
- Let's assume some parameter initialization $q_p(j|i,m,n)$, $q_w(t|s)$, e.g., with random values
 - The EM algorithm then iterates over each sentence pair $s^{(k)}$, $t^{(k)}$ and:
 - Computes the probability of alignment δ(k, i, j) for positions i (from t^(k)) and j (from s^(k)) as follows:

$$\delta(k, i, j) = \frac{q_{p}(j|i, m^{k}, n^{k}) * q_{w}(t_{i}^{k}|s_{j}^{k})}{\sum_{j'=0}^{n} q_{p}(j'|i, m^{k}, n^{k}) * q_{w}(t_{i}^{k}|s_{j'}^{k})}$$

$$\delta(k, i, j) = \frac{q_{p}(j|i, m^{k}, n^{k}) * q_{w}(t_{i}^{k}|s_{j}^{k})}{\sum_{j'=0}^{n} q_{p}(j'|i, m^{k}, n^{k}) * q_{w}(t_{i}^{k}|s_{j'}^{k})}$$

<u>Alignment algorithm</u>: (initialize all parameters (q_p, q_w) , e.g., to random values)

- For step in 1 to S (S iterations of the algorithm):
 - Initialize all counts $(c(j|i, m, n) \text{ and } c(i, m, n), c(t_i^k, s_j^k), c(s_j^k))$ to **zero**
 - **for each** training pair of sentences **t**^(k) and **s**^(k):
 - **for** *i* in 1 to m^k (iterating over all tokens of **t**^(k)):
 - **for** *j* in 0 to n^k (iterating over all tokens of **s**^(k)):
 - Compute $\delta(k, i, j)$ according to the above formula
 - Update count expectations:
 - $c(j|i, m^k, n^k) \leftarrow c(j|i, m^k, n^k) + \delta(k, i, j)$
 - $c(i, m^k, n^k) \leftarrow c(i, m^k, n^k) + \delta(k, i, j)$
 - $c(t_i^k, s_j^k) \leftarrow c(t_i^k, s_j^k) + \delta(k, i, j)$
 - $c(s_j^k) \leftarrow c(s_j^k) + \delta(k, i, j)$
 - Update the parameters based on collected (expected) counts

•
$$q_p(j|i,m,n) = \frac{c(j|i,m,n)}{c(i,m,n)}$$
 and $q_w(t|s) = \frac{c(t,s)}{c(s)}$

- Q: Why does this (intuitively) work?
 - Words that are translations of each other will appear in multiple pairs of sentence translations
 - Thus their count accumulation c(t, s) will be larger
- Based on morpho-syntactic similarities/differences between languages a "more informed" initialization of the positional alignments q_p possible
 - E.g., if the languages have same word order → q_p(j|i, m, n) can be set larger for values of i and j that are closer to each other

Dyer, C., Chahuneau, V., & Smith, N. A. (2013, June). <u>A simple, fast, and effective reparameterization of IBM</u> <u>model 2.</u> In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 644-648).

IBM Model 2 is "sparse" and has very many parameters

- $q_p(j|i,m,n) \rightarrow i^*j$ parameters for every different combination of lengths of sentences in the training set (every different m-n combination)
- Likelihood of aligning certain position i and j is probably similar for various sentence lengths m and n
- **FastAlign** is a sparse WA model that reduces the number of parameters
 - Essentially a "reparametrization" of IBM Model 2

Dyer, C., Chahuneau, V., & Smith, N. A. (2013, June). <u>A simple, fast, and effective reparameterization of IBM</u> <u>model 2.</u> In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 644-648).

FastAlign is a sparse WA model that reduces the number of parameters

- Essentially a "reparametrization" of IBM Model 2
- Instead of having an (updatable) parameters $q_p(j|i,m,n)$ for each combination (i, j, m, n) combination, we compute it with a function:

 $q_p(j|i,m,n) = p_0 if j = 0$ (i.e., p_0 is the probability of no alignment)

$$(1 - p_0) * \frac{\exp(\lambda * h(i, j, m, n))}{\sum_{j'=1}^{n} \exp(\lambda * h(i, j, m, n))} \text{ otherwise } (j > 0)$$

Dyer, C., Chahuneau, V., & Smith, N. A. (2013, June). <u>A simple, fast, and effective reparameterization of IBM</u> <u>model 2.</u> In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 644-648).

- FastAlign is a sparse WA model that reduces the number of parameters
 - Essentially a "reparametrization" of IBM Model 2
 - $q_p(j|i,m,n) = p_0 if j = 0$ (i.e., p_0 is the probability of no alignment)

$$(1 - p_0) * \frac{\exp(\lambda * h(i, j, m, n))}{\sum_{j'=1}^{n} \exp(\lambda * h(i, j, m, n))} \text{ otherwise } (j > 0)$$

- Where *h* is a fixed function of relative positional distance:
 - h(i, j, m, n) = -|i/m j/n|
 - Larger $h \rightarrow$ lower probability of alignment between positions *i* (in *t*) and j (in *s*)

Dyer, C., Chahuneau, V., & Smith, N. A. (2013, June). <u>A simple, fast, and effective reparameterization of IBM</u> <u>model 2.</u> In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 644-648).

- **FastAlign** is a sparse WA model that reduces the number of parameters
 - Essentially a "reparametrization" of IBM Model 2
 - $q_p(j|i, m, n) = p_0 if j = 0$ (i.e., p_0 is the probability of no alignment)

$$(1 - p_0) * \frac{\exp(\lambda * h(i, j, m, n))}{\sum_{j'=1}^{n} \exp(\lambda * h(i, j, m, n))} \text{ otherwise } (j > 0)$$

- λ (≥ 0): decides <u>how strongly</u> we prefer alignments of close positions
 - $\lambda < 1$: scales down the effect of relative distance of *i* and *j*
 - Appropriate for syntactically dissimilar languages
 - $\lambda > 1$: emphasizes the effect of relative distance of *i* and *j*
 - Appropriate for syntactically similar languages

- Problems with "symbolic" word alignment methods
 - Same as for any other NLP task/problem
 - Do not capture semantic relations between words
 - Probability/count of alignment q_w(car, Auto) is independent of the probability of alignment q_w(automobile, Auto)
 - Strictly requires parallel data
 - The more the better
 - Hard to find/create large parallel corpora for low-resource langs
 - Not able to align words that are <u>not</u> in the parallel "training" corpus

Content

- Translation-Based CL Transfer
- Word Alignment
 - Symbolic word alignment
 - Semantic word alignment
- Mark-then-Translate

- We assume we have a semantic representation for each t_i from t and each word s_j from s
- The representations of words from the target language $L_{\rm T}$ need to be semantically aligned with the representations of words from the source language $L_{\rm S}$
 - Q: how can we obtain embeddings that satisfy this?
 - 1. Cross-lingual word embedding spaces (CLWEs)
 - 2. Multilingual Transformers (e.g., mBERT)

- Let $\mathbf{t}_i \in \mathbb{R}^d$ be an embedding of the token t_i from \mathbf{t}
- Let $\mathbf{s}_{i} \in \mathbb{R}^{d}$ be an embedding of the token s_{i} from \boldsymbol{s}
- Then we can obtain the similarity matrix $S \in \mathbb{R}^{mxn}$ which contains cosine similarities between all vectors \mathbf{t}_i from \mathbf{t} and \mathbf{s}_i from \mathbf{s}
 - $S_{ij} = cos(\mathbf{t}_{i}, \mathbf{s}_{j})$
- We use the similarity matrix S to obtain the alignments:
 - Greedy alignment
 - Greedy alignment with removal
 - Optimal alignment (with removal)
- Does <u>not require</u> parallel data

Greedy alignment

- For each word t_i we find the s_j that is semantically most similar to t_i according to cosine similarity between their embeddings: cos(t_i, s_j)
- I.e., in each row S[i:], we find the cell S_{ii} (column j) with max. value
- The same column j (i.e., same word s_j) may be chosen for multiple rows (i.e., multiple words t_i may be aligned to the same s_j)

- Greedy alignment with removal
 - Iteratively:
 - Find the most similar pair (t_i, s_j), i.e., the cell S_{ij} with the maximal value (among the remaining <u>eligible</u> cells) and make the alignment (t_i, s_j)
 - 2. Prevent any further alignments that involve s_i
 - I.e., set all values S[:, j] to -1 (minimal cosine)

- Optimal alignment (with removal)
 - We are solving the following optimization problem: we're looking for a set of alignments that maximize the sum of pairwise similarities
 - Let A be a binary matrix (values 0 or 1): A_{ij} = 1 indicates that an alignment has been established between t_i and s_i
 - Constraint: A can have only one "1" in each row and each column

$$A^* = \operatorname{argmax}_{A \in \{0, 1\} \max} \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} S_{ij}$$

• Optimal alignment (with removal)

 $A^* = \operatorname{argmax}_{A \in \{0, 1\} \max} \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} S_{ij}$

- This is a well-known problem called bipartite graph matching
 - Also known as (optimal) alignment problem
- Efficient algorithms exist (solve it in polynomial time)
 - <u>The Hungarian algorithm</u> (Kuhn-Munkres algorithm, from 1955) solved the problem in O(n⁴)
 - Later better algorithms with complexity O(n³)

Content

- Translation-Based CL Transfer
- Word Alignment
 - Symbolic word alignment
 - Semantic word alignment
- Mark-then-Translate

Mark-then-Translate

- **Simple idea:** put special tags around the tokens, indicating their label and translate with some MT system
 - Used a lot in token-level CL transfer, but empirically tested recently

,<ORG>Fiat</ORG> and <ORG>Chrysler Group</ORG> merged into <ORG>FCA</ORG> on <DAT>12 October 2014</DAT>"

"<ORG>Fiat</ORG> ve <ORG>Chrysler Grubu </ORG> <DAT>12 Ekim 2014 </DAT> <u>tarihinde</u> <ORG>FCA</ORG> olarak birleşti"

Mark-then-Translate

Chen, Y., Jiang, C., Ritter, A., & Xu, W. (2023, July). <u>Frustratingly Easy Label Projection for Cross-lingual</u> <u>Transfer</u>. In Findings of the Association for Computational Linguistics: ACL 2023 (pp. 5775-5796).

- More directly dependent on the quality of MT (i.e., abundance of parallel data between languages)
 - Mark-then-Translate gets better as <u>MT models get better</u>
 - Chen et al. (2023) experiment with Google Translate and open-source NLLB ("No Language Left Behind", covered in L9)
 - Report MtT better than WA-based label projection for many languages and tasks
 - Though mostly for high- and moderate-resource languages

The End

ding +

in him to

Image: Alexander Mikhalchyk