

After this lecture, you'll...

- Understand what "curse of multilinguality" is
- Know some common strategies for language adaptation of MMTs
- Be familiar with parameter-efficient fine-tuning (PEFT) methods
- Understand how PEFT can be leveraged to improve CL transfer

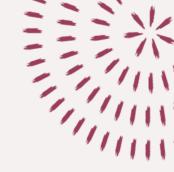
- Curse of Multilinguality
- Modularity & Parameter-Efficient Fine-Tuning (PEFT)
- PEFT-Based CL Transfer

Poor CL Transfer with MMTs

- MMTs (mBERT, XLM-R) exhibit huge performance drops in CL transfer to low-resource languages, especially if they are distant from English
- Even for large and closely-related languages (e.g., DE, ES, IT) we see drop in performance compared to English.
 - Q: Why?
- For English, we get better results by fine-tuning monolingual English BERT/RoBERTa than by fine-tuning mBERT or XLM-R.
 - Q: Why?

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2020, July). <u>Unsupervised Cross-lingual Representation Learning at Scale</u>. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 8440-8451).

- Performance better for "big languages"
 - Vocabulary more tailored to languages with more data
- But also: for any single language (even English)
 - Performance of an MMT pretrained on 10 languages <u>better</u> than performance of an MMT pretrained on 100 languages
 - Performance of monolingual models for large languages (e.g., English BERT/RoBERTa) better than that of MMT (e.g., XLM-R) for that language

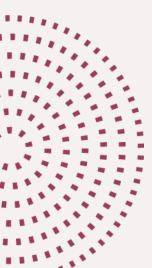


Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2020, July). <u>Unsupervised Cross-lingual Representation Learning at Scale</u>. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 8440-8451).

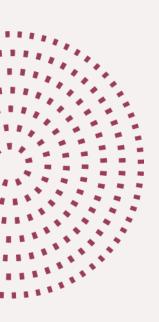
- Curse of multilinguality: problem that occurs due to "cramming" too many languages into a model of insufficient capacity
 - Insufficient capacity to precisely represent all languages
- For any model of fixed capacity (i.e., fixed no. parameters), the performance of the model (monolingual and in CL transfer):
 - Improves with increasing the number of pretraining languages up until some threshold number of languages $N_{\text{\tiny L}}$
 - After N_L , performance <u>decreases</u> with adding more pretraining languages

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2020, July). <u>Unsupervised Cross-lingual Representation Learning at Scale</u>. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 8440-8451).

- At N_L languages the capacity of model becomes "fully used"
 - Adding more languages for the same capacity same number of parameters – means (more) sharing of parameters across
 - This means loss of information for any concrete language
- Tradeoff between generality and per-language performance
 - MMTs, in principle, support 100+ languages (CL transfer between them)
 - But even for the most-resource langs, MMTs will be worse than dedicated monolingual models for those languages



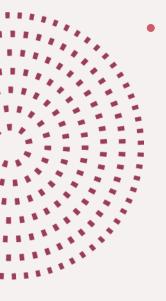
- Q: Why not train monolingual BERT for each language?
 - Independently trained \rightarrow repres. spaces not semantically aligned
 - Q: But can't we post-hoc align the monolingual BERTs (like we did monolingual word embedding spaces for CLWEs)?
 - To some extent, but only for high-resource languages
 - Lots of parallel data needed
 - Word-level supervision not enough for alignment



- Q: Why not simply train monolingual BERT for each language?
 - Independently trained > representation spaces not semantically aligned
 - Q: Good monolingual LMs for low-resource languages (e.g., Quechua-BERT)?
 - Impossible to obtain, too little training data
 - Alignment of monolingual encoders becomes <u>more difficult</u> the more distant and less-resourced the two languages are
 - Monolingual representation spaces very very far from isomorphic
 - Good alignment requires more parallel data
 - "Catch 22": less parallel data available for low-resource languages

- Q: Solutions?
 - Problem: we need to increase the quality of MMTs' representations for individual languages, especially low-resource
- Q: Just take the pretrained MMT and continue LM training only on texts of one (or few) language(s) you want improvements for?
 - Will improve the performance for that language
 - But: MMT parameters shared across languages
 - "Curse" → improving one language means <u>deteriorating others</u>
 - Trading multiling. generality for language-specific performance
 - Updates of all parameters of the MMT → for very large models, computationally infeasible

- Q: What is the source of the problem?
 - <u>All MMT's parameters are shared across all</u> of the languages
- Solution: modularity
 - Make some parameters of the MMT language-specific, that is, not shared between languages
 - Such "private" parameters cannot suffer from the "curse"
 - When to enforce modularity:
 - Post-hoc, <u>after the MMT was pretrained</u>
 - Remedying for the "curse" after it occurred
 - Enforced <u>already in multilingual pretraining</u>
 - Preventing the "curse" from occurring



Content

- Curse of Multilinguality
- Modularity & Parameter-Efficient Fine-Tuning (PEFT)
- PEFT-Based CL Transfer

- What is meant by modularity in the context of neural LMs?
- Module: any subset of model's parameters that are trained/updated together with a particular aim
 - Can be a layer, sublayer, a particular parameter matrix in some layer, ...
- Q: Why modularity (in general)?
 - Because neural LMs are becoming too large for full fine-tuning
 - I.e., updating all LMs parameters in taskspecific fine-tuning

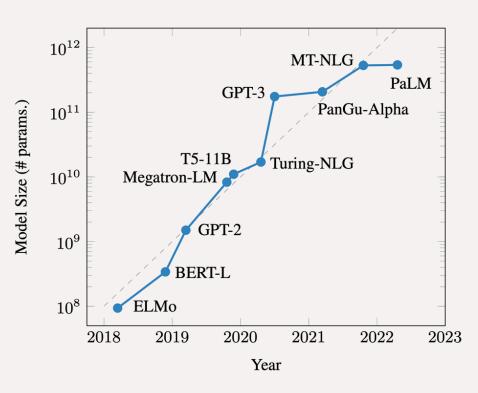


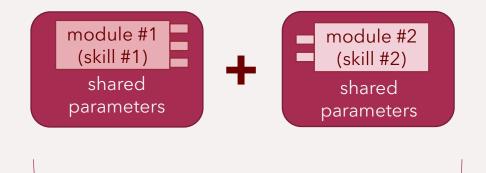
Image from: Treviso, M., Ji, T., Lee, J. U., van Aken, B., Cao, Q., Ciosici, M. R., ... & Schwartz, R. (2022). Efficient methods for natural language processing: a survey. arXiv preprint arXiv:2209.00099.

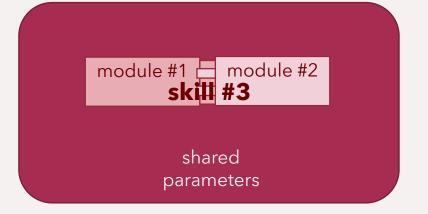
- Q: Why modularity (in general)?
 - Modular representations
 - Can be combined for unseen cases
 - Compositionality

 combining existing modules, we can solve new tasks

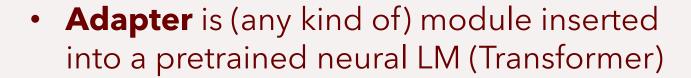
For example:

- module #1: trained for POS-tagging across many languages but not Quechua (no data)
- module #2: trained for Quechua (via LMing or some other task data)
- Combining module #1 and module #2:
 - Can do POS-tagging for Quechua





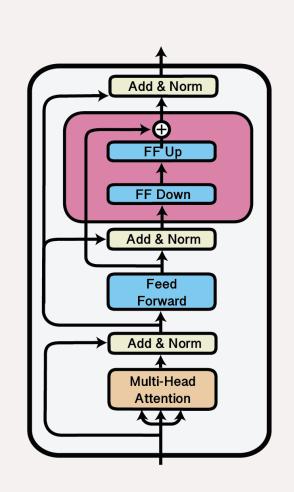
- We're going to examine three popular modular architectures
 - Modularity enables parameter-efficient fine-tuning (PEFT)
 - In literature, you'll fine these methods commonly as "PEFT approaches"
 - 1. Adapters
 - 2. Prefix tuning
 - 3. Low-rank adaptation (LoRA)



Additional parameters, not a subset of the original parameters

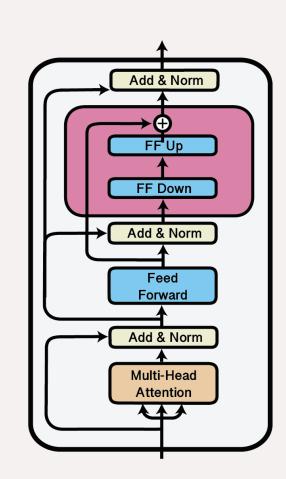
Adapter-based fine-tuning

- "Freeze" original Transformer parameters
- Update only the adapter parameters
- Typically one adapter added to each Transformer layer



Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., ... & Gelly, S. (2019, May). Parameter-efficient transfer learning for NLP. In International Conference on Machine Learning (pp. 2790-2799). PMLR.

- Adapter added as an additional sublayer of the Transformer layer
 - After the feed-forward layer
 - x: the final output (residual+layer normalized) output of the FF sublayer
- r: the raw output of the FF layer (prior to residual summation and layer normalization)

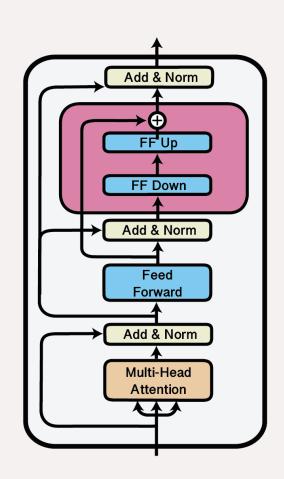


Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., ... & Gelly, S. (2019, May). <u>Parameter-efficient transfer learning for NLP</u>. In *International Conference on Machine Learning* (pp. 2790-2799). PMLR.

- $\mathbf{x} \in \mathbb{R}^{h}$: the final output (residual + LN)
- $\mathbf{r} \in \mathbb{R}^h$: the raw output (prior to residual + LN)
- The most widely used type of the adapter is the socalled bottleneck adapter

$$Adapter(\mathbf{x}, \mathbf{r}) = \mathbf{W_{U}}(g(\mathbf{x}\mathbf{W_{D}})) + \mathbf{r}$$

- $\mathbf{W_U} \in \mathbb{R}^{h \times m}$ (down-projection) and $\mathbf{W_D} \in \mathbb{R}^{m \times h}$ (up-projection): adapter's trainable parameters
- Q: Why "bottleneck"? Because m < h
- g is a non-linearity: tanh or ReLU

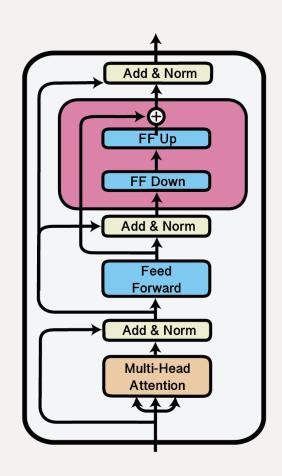


Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., ... & Gelly, S. (2019, May). <u>Parameter-efficient transfer learning for NLP</u>. In *International Conference on Machine Learning* (pp. 2790-2799). PMLR.

 The most widely used type of the adapter is the socalled bottleneck adapter

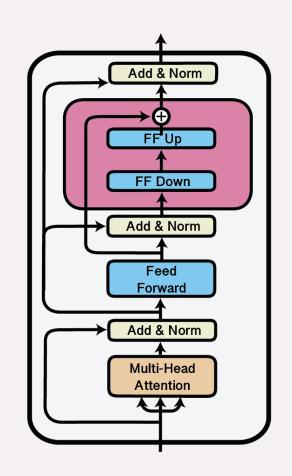
$$Adapter(\mathbf{x}, \mathbf{r}) = \mathbf{W_U}(g(\mathbf{x}\mathbf{W_D})) + \mathbf{r}$$

- Initialization of adapter parameters is <u>critical</u>
 - Inserted inside of a pretrained layer
 - Initially needs to behave as an identity function
 - $W_U(g(xW_D))$ needs to be a near-zero matrix
 - Easy to achieve by initializing $\mathbf{W}_{\mathbf{U}}$ to a near-zero matrix



Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., ... & Gelly, S. (2019, May). <u>Parameter-efficient transfer learning for NLP</u>. In *International Conference on Machine Learning* (pp. 2790-2799). PMLR.

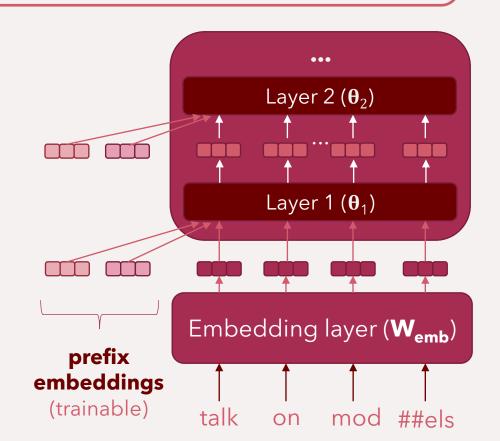
- Q: Why is adapter-based fine-tuning parameter-efficient?
- We're updating only the adapter parameters:
 2*m*h parameters
 - With m << h, fewer than in the Transformer layer
 - Bottleneck size m is a <u>hyperparameter</u> the smaller m is, the more parameter-efficient FT becomes
 - <u>No free lunch</u>: smaller m → lower performance



Prefix Tuning

Li, X. L., & Liang, P. (2021). <u>Prefix-Tuning: Optimizing Continuous Prompts for Generation</u>. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 4582-4597).

- A special type of adapters
 - "modules" that are not inserted into Transformer layers but between them
 - At the input of each Transformer layer, we insert k <u>trainable embeddings</u>
 before the embeddings of real tokens
 - Q: number of prefix parameters?
 - k (pref. tokens) * N (layers) * h

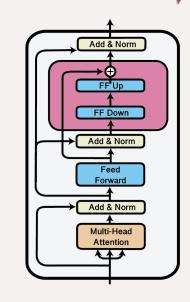


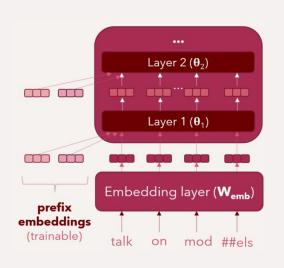
Shortcomings of Adapter-Based Models

- Performance
 - Both bottleneck adapters and prefix tuning typically underperform full fine-tuning
 - Performance good with more adapter parameters
 - Larger bottleneck size (large m)
 - Or many prefix "tokens" (large k)

Inference speed

- Adapters make <u>training</u> more efficient, but not inference (i.e., making predictions with the model)
- Bottleneck adapters: model deeper
- Prefix tuning: model wider (remember self-attention)





Low-Rank Adaptation (LoRA)

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. LoRA: Low-Rank Adaptation of Large Language Models. In International Conference on Learning Representations.

- A parameter-efficient fine-tuning approach that does not increase the total number of parameters of the whole Transformer-based model
- Instead of training new (adapter) parameters, LoRA learns a low-rank approximation of updates $\Delta \mathbf{W}$ to the existing parameters matrices \mathbf{W}
- Parameter update in standard fine-tuning:

$$\mathbf{W}^{(i+1)} = \mathbf{W}^{(i)} + \Delta \mathbf{W}$$

LoRA "aggregates" the updates "on the side"

$$\mathbf{W}\mathbf{x} = \mathbf{W}_{pt}\mathbf{x} + \Delta \mathbf{W}\mathbf{x} = \mathbf{W}_{pt}\mathbf{x} + (\mathbf{B}\mathbf{A})\mathbf{x}$$

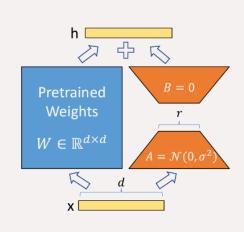


Image from the paper.

Low-Rank Adaptation (LoRA)

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. LoRA: Low-Rank Adaptation of Large Language Models. In International Conference on Learning Representations.

- Instead of training new (adapter) parameters, LoRA learns a low-rank approximation of updates $\Delta \mathbf{W}$ to the existing parameters matrices \mathbf{W}
- LoRA "aggregates" the updates "on the side"

$$\mathbf{W}\mathbf{x} = \mathbf{W}_{pt}\mathbf{x} + \Delta \mathbf{W}\mathbf{x} = \mathbf{W}_{pt}\mathbf{x} + (\mathbf{B}\mathbf{A})\mathbf{x}$$

- $A \in \mathbb{R}^{h \times r}$ and $B \in \mathbb{R}^{r \times h}$ are trainable parameter matrices of LoRA
 - Rank r (w.r.t. h) determines the param. efficiency

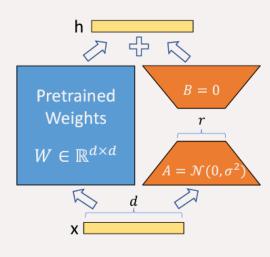


Image from the paper.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. LoRA: Low-Rank Adaptation of Large Language Models. In International Conference on Learning Representations.

LoRA "aggregates" the updates "on the side"

$$\mathbf{W}\mathbf{x} = \mathbf{W}_{pt}\mathbf{x} + \Delta \mathbf{W}\mathbf{x} = \mathbf{W}_{pt}\mathbf{x} + (\mathbf{B}\mathbf{A})\mathbf{x}$$

 $A \in \mathbb{R}^{h \times r}$ and $B \in \mathbb{R}^{r \times h}$ trainable parameters

- Similar to adapters, LoRA parameters <u>initialized</u> to result in an <u>identity function</u>, i.e., $\Delta \mathbf{W} = 0$
 - **B** initialized to a zero matrix
 - A is initialized by sampling from a zero-mean Gaussian

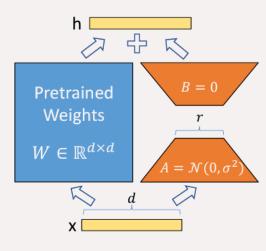


Image from the paper.

Low-Rank Adaptation (LoRA)

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. LoRA: Low-Rank Adaptation of Large Language Models. In International Conference on Learning Representations.

LoRA "aggregates" the updates "on the side"

$$\mathbf{W}\mathbf{x} = \mathbf{W}_{pt}\mathbf{x} + \Delta \mathbf{W}\mathbf{x} = \mathbf{W}_{pt}\mathbf{x} + (\mathbf{B}\mathbf{A})\mathbf{x}$$

At the end of fine-tuning, final parameters:

•
$$\mathbf{W} = \mathbf{W}_{pt} + \mathbf{BA}$$

- The resulting fine-tuned model has exactly the same number of parameters as the starting one
 - No inference latency!

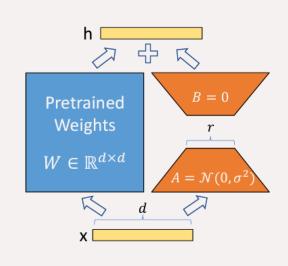


Image from the paper.

Low-Rank Adaptation (LoRA)

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. LoRA: Low-Rank Adaptation of Large Language Models. In International Conference on Learning Representations.

- At the end of training, final parameters:
 - $\mathbf{W} = \mathbf{W}_{pt} + \mathbf{BA}$
 - Theoretically, any parameter matrix of the original model (Transformer) can be LoRA fine-tuned
- The original paper applies LoRA only to the matrices in the multi-head attention (of each layer)
 - Best tradeoff if only $W_{\mathbf{Q}}$ and $W_{\mathbf{V}}$ of each selfattention mechanism are LoRA fine-tuned

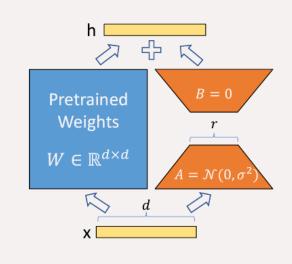


Image from the paper.

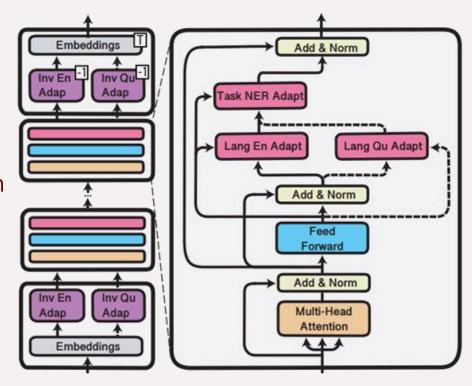
Content

- Curse of Multilinguality
- Modularity & Parameter-Efficient Fine-Tuning (PEFT)
- PEFT-Based CL Transfer

- Q: How to leverage modularity and PEFT to:
 - (1) Improve the representations for under-resourced languages and
 - (2) Consequently, cross-lingual transfer for downstream tasks?
- There are different strategies, but all based on the idea of providing and additional capacity for each language
 - Additional LM-ing training of language-specific modules

Pfeiffer, J., Vulić, I., Gurevych, I. & Ruder, S. MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer. EMNLP 2020 (pp. 7654–7673).

- MAD-X: starts from a pretrained MMT
 - mBERT or XLM-R
- 1. Training a set of monolingual adapters
 - Independently: English adapter, Quechuan adapter, ...
 - Trained via (M)LM-ing on the monolingual corpus of the language



Pfeiffer, J., Vulić, I., Gurevych, I. & Ruder, S. MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer. EMNLP 2020 (pp. 7654–7673).

- MAD-X: starts from a pretrained MMT
 - mBERT or XLM-R
- Training a set of monolingual language adapters (LAs)
 - Each language adapter trained independently on top of the same (pretrained) Transformer backbone
 - Training of an LA: (M)LM-ing on the monolingual corpus

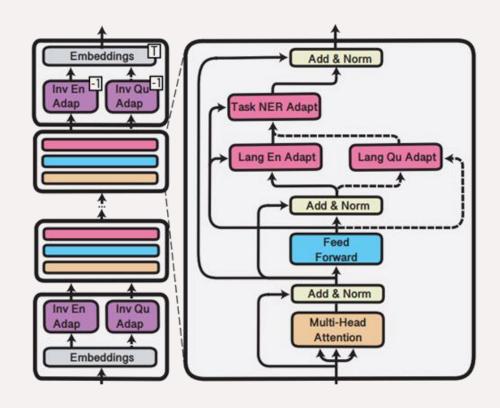


Image from the paper.

Pfeiffer, J., Vulić, I., Gurevych, I. & Ruder, S. MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer. EMNLP 2020 (pp. 7654–7673).

- MAD-X: starts from a pretrained MMT
 - mBERT or XLM-R
- 2. Task-specific training
 - Training data in the source lang. L_S
 - Insert the LA of L_S into the MMT
 - Insert and initialize the new task adapter (TA) on top of the LA of L_S
 - Train the parameters of TA, while keeping the MMT and TA parameters frozen

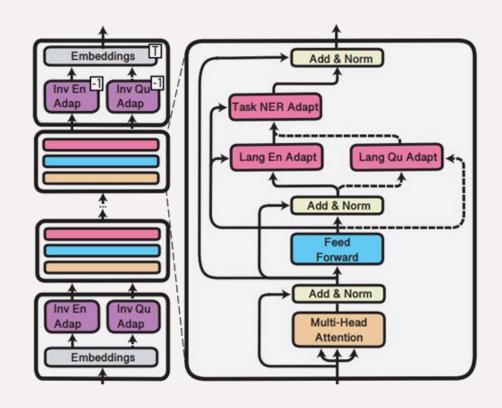
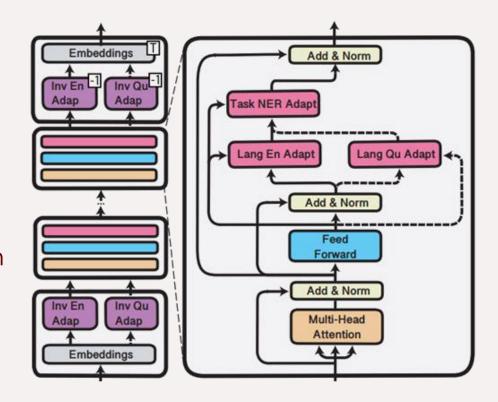


Image from the paper.

Pfeiffer, J., Vulić, I., Gurevych, I. & Ruder, S. MAD-X: <u>An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer</u>. EMNLP 2020 (pp. 7654–7673).

- MAD-X: starts from a pretrained MMT
 - mBERT or XLM-R
- 3. Inference
 - Make predictions for data in the target language L_T
 - Replace the LA of L_S (used in training) with the LA of the target language L_T
 - In other words, place the TA on top of target language LA



Pfeiffer, J., Vulić, I., Gurevych, I. & Ruder, S. MAD-X: <u>An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer</u>. EMNLP 2020 (pp. 7654–7673).

- MAD-X: some limitations
 - Transferring between L_S and L_T, but respective LAs trained <u>independently</u>
 - No positive interaction between the two languages
 - LA is trained on (relatively) large corpus of the language - what about languages with very small monolingual corpora?
 - Not possible to train a reliable LA for those languages

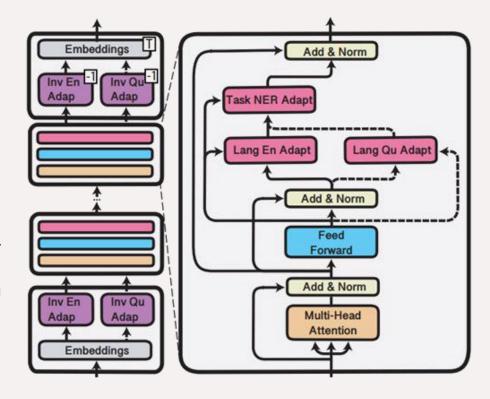


Image from the paper.

Adapter-Based CL Transfer

Parović, M., Glavaš, G., Vulić, I., & Korhonen, A. (2022). <u>BAD-X: Bilingual Adapters Improve Zero-Shot Cross-Lingual Transfer</u>. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics (pp. 1791-1799).

- BAD-X: bilingual adapters
 - Trains bilingual adapters for pairs of languages L_S and L_T : via (M)LM-ing on the bilingual corpus, concatenation of monolingual corpora of L_S and L_T
 - Enables direct interaction between the two languages through shared parameters of the bilingual adapter

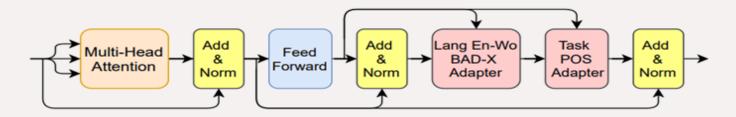


Image from the paper.

Adapter-Based CL Transfer

Parović, M., Glavaš, G., Vulić, I., & Korhonen, A. (2022). <u>BAD-X: Bilingual Adapters Improve Zero-Shot Cross-Lingual Transfer</u>. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics (pp. 1791-1799).

- BAD-X vs. MAD-X = Performance vs. Generality
 - MAD-X trains N monolingual LAs, with which it supports any of the N² possible transfer directions (more general)
 - BAD-X gives better CL transfer performance for any transfer direction ($L_S \rightarrow L_T$), but to support all N² of them, we need to train N² bilingual adapters

