Exercise Session 2
Reinforcement Learning
Sebastian Griesbach / Prof. Carlo D’Eramo

Summer semester 2024 / June 25th

In this exercise, you will implement a Deep Q Network and learn to use PyTorch. You will
need to install Gymnasium with box2d as a dependency, e.g. by using the command ‘pip install
gymnasium[box2d]‘ (not sure if this is true anymore but I remember using Python versions
newer than 3.10 sometimes causes dependency issues) Please only upload Your agent.py
and dqn.py files as as a .zip file. Write your answers to exercises 2 and 5 as comments
at the bottom of the agent.py file.

Exercise 1

The exercise consists of the following files:

agent.py This file contains the DQN agent which is learning, it follows the same agent
pattern you already know. But its update function does not take a single transition but a
batch of transitions instead. You need to modify this file.

dqn.py This file contains the architecture of the actual Deep Q Network which we will
use as our function approximation. You need to modify this file.

replay_buffer.py This file contains a simple implementation of a replay buffer. A
Memory that saves transitions and lets you sample batches from them. You don’t need
to modify this file but do take a look, there is not much going on there.

trainer.py This class runs the actual training process and the interaction with the
environment. You don’t need to modify this file but you should understand it.

run_exercise.py This is your program entry point. Here all the classes are instantiated,
the hyperparameters are set and the training process gets called. You might need to
modify this file.

Please take a look at all components and make sure you understand how they work together to
create the algorithm. This is all the code that is needed to create a deep reinforcement learning
algorithm. (If you don’t count the libraries we use).

Exercise 2

Briefly explain the difference between the train and the evaluate function in trainer.py.


https://gymnasium.farama.org/

Exercise 3

Open dqn.py and implement the neural network as described in the comments. Refer to the
PyTorch documentation to find out how to do so.

Exercise 4

Open agent.py and complete the update function of DQNAgent following the comments.
Again refer to the PyTorch documentation on how to perform the specific steps. Also, take a
look at the other parts of the code, especially the _update_target_net function and understand
what it does. If you think you are done execute run_exercise.py. If everything works correctly
you should see clear learning progress after the training. Although 50 training episodes are
probably not enough to converge to a good policy that lands most of the time. Often it just
overs above the ground at that point. When everything looks good increase the number of
training episodes to 200 and see if the lander now lands correctly most of the time.

Exercise 5

To which of the Gymnasium classical control tasks can you apply this algorithm as it is now?
(This doesn’t mean it needs to solve it right away) What are the criteria of an environment
such that DQN is applicable?


https://pytorch.org/docs/stable/index.html
https://gymnasium.farama.org/environments/classic_control/

	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

