
9. Deep Reinforcement Learning

Deep Learning
Summer semester ‘24

1Slide credit: Slides in parts adapted from the lecture at the PRL @ FAU Erlangen-Nürnberg (K. Breininger, T. Würfl, A. Maier, V. Christlein).

Recap

Basics of Reinforcement Learning;
Only discrete MDPs;

Today:

Continuous and high-dimensional MDPs!

Deep Learning · Summer semester 2024 2 / 44

1. Continuous MDPs

Outline

1. Continuous MDPs

2. Approximated on-policy methods

3. Feature construction for linear methods

4. Approximated off-policy methods

5. Value-based deep RL - DQN algorithm

Deep Learning · Summer semester 2024 3 / 44

1. Continuous MDPs

Continuous MDPs - 1

Discrete MDPs:
M = ⟨S,A,R,P, ι, γ⟩;
discrete state space S = {1, . . . ,Ns} ⊆ N;
discrete action space A = {1, . . . ,Na} ⊆ N.

Continuous MDPs:
M = ⟨S,A,R,P, ι, γ⟩
continuous state space S ⊆ Rd;
discrete action space A = {1, . . . ,Na} ⊆ N;
or continuous action space A ⊆ Rm.

Not every problem can be formalized as a discrete MDP!

Deep Learning · Summer semester 2024 4 / 44

1. Continuous MDPs

Continuous MDPs - 2

In this lecture: MDPs with continuous states, discrete actions;

In future lectures: MDPs with continuous states and actions.

Deep Learning · Summer semester 2024 5 / 44

2. Approximated on-policy methods

Outline

1. Continuous MDPs

2. Approximated on-policy methods

3. Feature construction for linear methods

4. Approximated off-policy methods

5. Value-based deep RL - DQN algorithm

Deep Learning · Summer semester 2024 6 / 44

2. Approximated on-policy methods

Value-function approximation - 1

Value-function cannot be computed as a table;
too many states/actions to store in memory;
too slow to update each state.

Commonly used function approximators:
Linear function;
Neural network;
Regression tree;
Gaussian process;
...

Deep Learning · Summer semester 2024 7 / 44

2. Approximated on-policy methods

Value-function approximation - 2

Use parametric value function estimators where the parameters
are expressed as the weight vector w ∈ Rd

V̂w(s) ≈ Vπ(s) Q̂w(s, a) ≈ Qπ(s, a);

Parameters w are much fewer than the states (that are
potentially infinite!);
Changing weights affects the accuracy of the estimate of
multiple states;
Improving the accuracy of the value-function estimate of one
state, may decrease the accuracy of the estimate of others.

Deep Learning · Summer semester 2024 8 / 44

2. Approximated on-policy methods

Mean squared value error

Accuracy is measured as the mean squared value error:

VE(w) ≜
∑
s∈S

µ(s)
[
Vπ(s)− V̂w(s)

]2
,

with the state distribution µ(s) ≥ 0;∑
s µ(s) = 1 weighs the importance of the estimate error for

each state s;
For on-policy algorithms, µ(s) is the fraction of time spent in
state s while following policy π.

Deep Learning · Summer semester 2024 9 / 44

2. Approximated on-policy methods

Value estimation with stochastic gradient
descent

Assume the exact value-function Vπ(s) is known ∀s ∈ S;
Goal: find approximation with a differentiable estimator V̂w(s);
Value-function is updated each discrete time step t = 0, 1, 2, . . . ;
Define weights vector w t ≜ (w1t ,w2t , . . . ,wdt)

T

A basic step-based update of V :

w t+1 ≜ w t −
1
2
α∇

[
Vπ(st)− V̂wt(st)

]2
= w t + α

[
Vπ(st)− V̂wt(st)

]
∇V̂wt(st) (1)

where α > 0 is the learning rate and

∇V̂wt(st) ≜

(
∂V̂wt(st)
∂w1

,
∂V̂wt(st)
∂w2

, . . . ,
∂V̂wt(st)
∂wd

)
; (2)

Convergence to local optimum if properly decaying α.
Deep Learning · Summer semester 2024 10 / 44

2. Approximated on-policy methods

Semi-gradient SARSA - 1

On-policy control algorithm: approximate Q instead of V ;
Gradient descent update:

w t+1 = w t + α
[
Ut − Q̂wt(st, at)

]
∇Q̂wt(st, at); (3)

One-step SARSA update:

w t+1 = w t+α
[
rt+1 + γQ̂wt(st+1, at+1)− Q̂wt(st, at)

]
∇Q̂wt(st, at).

(4)

Deep Learning · Summer semester 2024 11 / 44

2. Approximated on-policy methods

Semi-gradient SARSA - 2

Algorithm Semi-gradient SARSA
1: Input: the policy π to evaluate;
2: Input: a differentiable function Q̂ : S ×A → R;
3: Initialize action-value-function weights w ∈ Rd arbitrarily, e.g., w = 0;
4: while true do
5: Initialize first state s = s0 and action a = a0 (e.g., ε-greedy);
6: while true do
7: if s′ is terminal then
8: w ← w + α[r − Q̂w(s, a)]∇Q̂w(s, a);
9: Terminate the episode;
10: end if
11: Choose action a′ as a function of Q̂w(s′, ·) (e.g., ε-greedy);
12: w ← w + α[r + γQ̂w(s′, a′)− Q̂w(s, a)]∇Q̂w(s, a);
13: s← s′;
14: a← a′;
15: end while
16: end while

Deep Learning · Summer semester 2024 12 / 44

3. Feature construction for linear methods

Outline

1. Continuous MDPs

2. Approximated on-policy methods

3. Feature construction for linear methods

4. Approximated off-policy methods

5. Value-based deep RL - DQN algorithm

Deep Learning · Summer semester 2024 13 / 44

3. Feature construction for linear methods

Feature construction for linear methods

State vector contains representative features of the problem;
For example:

position and angular velocity for balancing a pendulum;
pixels for playing a videogame;
stock price for finance applications.

Deep Learning · Summer semester 2024 14 / 44

3. Feature construction for linear methods

Feature construction for linear methods

Basic features may not be representative enough to capture
complex behavior;
Consider the pendulum example:

state s = (s1, s2), with s1 ∈ R the angular position and s2 ∈ R the
angular velocity;
a feature vector φ(s) = (s1, s2)T is a poor representation of the
problem;
interaction between the state dimensions are not considered!

Representative feature vectors consider all dimensions of the
state and their (potentially complex) interaction;
How to obtain good features?

Deep Learning · Summer semester 2024 15 / 44

3. Feature construction for linear methods

Polynomial features

Polynomial features capture interaction among state dimensions
by multiplication:

1st-order: φ(s) = (1, s1, s2, s1s2)T ;
2nd-order: φ(s) = (1, s1, s2, s1s2, s21, s

2
2, s1s

2
2, s

2
1s2, s

2
1s
2
2)
T ;

...

The number of features grows exponentially with the number of
dimensions of the state;
Note that the approximation is still linear in the weights.

Deep Learning · Summer semester 2024 16 / 44

3. Feature construction for linear methods

Coarse coding

Divide the state space in M different regions;
The feature vector has M binary values;
Given a state s, for each region, assign feature value 1 if the
state is inside the region, 0 otherwise;
0-1 features are also called sparse.

Deep Learning · Summer semester 2024 17 / 44

3. Feature construction for linear methods

Tile coding - 1

Flexible and computationally efficient form of coarse coding;
Use N tilings, each one composed of M tiles;
The feature vector is a N ×M matrix;
The feature value is 1 if the state is inside a tile, 0 otherwise;

Every state has the same number of active features.

Deep Learning · Summer semester 2024 18 / 44

3. Feature construction for linear methods

Tile coding - 2

Deep Learning · Summer semester 2024 19 / 44

3. Feature construction for linear methods

Radial basis functions

Generalization of coarse coding;
Feature values are real numbers in [0, 1];
The Gaussian distribution is a typical RBF with mean ci and
standard deviation σi

φi(s) = exp

(
−∥s− ci∥2

2σ2i

)
; (5)

.

Deep Learning · Summer semester 2024 20 / 44

3. Feature construction for linear methods

Neural networks

What if constructing features by hand is difficult or impractical?
Use neural networks!

Automatically extract features in hidden layers;
Enable processing high-dimensional data.

Deep Learning · Summer semester 2024 21 / 44

3. Feature construction for linear methods

Deep neural networks

Deep Learning · Summer semester 2024 22 / 44

4. Approximated off-policy methods

Outline

1. Continuous MDPs

2. Approximated on-policy methods

3. Feature construction for linear methods

4. Approximated off-policy methods

5. Value-based deep RL - DQN algorithm

Deep Learning · Summer semester 2024 23 / 44

4. Approximated off-policy methods

Semi-gradient off-policy TD(0)

Recall: perform importance sampling to change the expectation
from a target policy π to the behavioral distribution b;
Define the importance sampling ratio

ρt =
π(at|st)
b(at|st)

; (6)

The one-step semi-gradient off-policy TD(0) update is

w t+1 = w t + αρtδt∇V̂wt(st); (7)

where, e.g., δt = rt+1 + γV̂wt(s′t)− V̂wt(st).

Deep Learning · Summer semester 2024 24 / 44

4. Approximated off-policy methods

Off-policy divergence

Updating value functions following the on-policy distribution is
important for convergence;
The distribution of updates does not match the on-policy
distribution;
Off-policy algorithms with approximation can diverge!

Deep Learning · Summer semester 2024 25 / 44

4. Approximated off-policy methods

Example of off-policy divergence - 1

Consider this transition as part of a
bigger MDP;
Consider w0 = [w0] = [10];
Suppose γ ≈ 1 and α = 0.1;
Step 1:

Take the transition, update wt :

δ0 = r1 + γV̂w0(s2)− V̂w0(s1)
= 0+ γ2w0 − w0
= (2γ − 1)w0 ≈ 10

w1 = w0 + αρ0δ0∇V̂w0(s1)
= w0 + α · 1 · (2γ − 1)w0 · 1
= (1+ α(2γ − 1))w0 ≈ 11

Deep Learning · Summer semester 2024 26 / 44

4. Approximated off-policy methods

Example of off-policy divergence - 2

Step 2:
Take the transition, update wt :

δ1 = r2 + γV̂w1(s2)− V̂w1(s1)
= 0+ γ2w1 − w1
= (2γ − 1)w1 ≈ 11

w2 = w1 + αρ1δ1∇V̂w1(s1)
= w1 + α · 1 · (2γ − 1)w1 · 1
= (1+ α(2γ − 1))w1 ≈ 12.1

The value of the updated
parameter diverges if
1+ α(2γ − 1) > 1.

Deep Learning · Summer semester 2024 27 / 44

4. Approximated off-policy methods

Example of off-policy divergence - 3

Divergence happens because
the distribution of update is
different from the on-policy
distribution;
w is updated only during the
given transition, not after;

Deep Learning · Summer semester 2024 28 / 44

4. Approximated off-policy methods

The deadly triad

Instability and divergence arise for methods based on the
following elements:

function approximation;
bootstrapping;
off-policy training.

Can we get rid of one of them without disadvantages?
function approximation is necessary to scale to large problems;
bootstrapping is important for data efficiency;
off-policy training is essential for learning from heterogeneous
experience.

Deep Learning · Summer semester 2024 29 / 44

4. Approximated off-policy methods

Batch reinforcement learning

Up to now, we have seen mostly online RL algorithm;
Batch (a.k.a., Offline) RL methods use a previously collected
dataset of transitions:

D = ⟨si, ai, ri, s′i⟩Ti=1. (8)

Deep Learning · Summer semester 2024 30 / 44

4. Approximated off-policy methods

Fitted Q-Iteration

Given a dataset D = ⟨si, ai, ri, s′i⟩Ti=1, solve a sequence of
regression problems;
Stability guarantees hold for particular regression methods:

regression trees;
kernel averaging.

Algorithm FQI
1: Input: dataset of transitions D = ⟨si, ai, ri, s′i ⟩

T
i=1;

2: Input: N = 0, an initial Q̂N(s, a) = 0;

3: while true do
4: N ← N + 1;
5: Build training set T = {⟨si, ai, ri + γmaxa∈A Q̂N−1(s′i , a)⟩}

T
i=1;

6: Use regression algorithm to build Q̂N(s, a);
7: end while

Deep Learning · Summer semester 2024 31 / 44

5. Value-based deep RL - DQN algorithm

Outline

1. Continuous MDPs

2. Approximated on-policy methods

3. Feature construction for linear methods

4. Approximated off-policy methods

5. Value-based deep RL - DQN algorithm

Deep Learning · Summer semester 2024 32 / 44

5. Value-based deep RL - DQN algorithm

High-dimensional RL problems - 1

Dimension of state and action space is critical in RL;
Curse of dimensionality: theoretical and practical issues arising
from high-dimensional problems;
The RL methods we discussed can only handle low-dimensional
problems.

How to enable RL to solve more complex problems?

Deep Learning · Summer semester 2024 33 / 44

5. Value-based deep RL - DQN algorithm

High-dimensional RL problems - 2

High-dimensional problems have a state space S with:
Impractically large number of discrete values (e.g., each pixel of
an image has an integer value ∈ [0, 255]);
More than 8− 10 dimensions (e.g., position and velocity of joints
for a robot).

The action space A could be either discrete or continuous:
commands to a videogame;
torque to joints of a robot.

Deep Learning · Summer semester 2024 34 / 44

5. Value-based deep RL - DQN algorithm

Deep neural networks for RL

High-dimensional state/action spaces can be handled with deep
neural networks and the use of deep learning techniques.

Deep Learning · Summer semester 2024 35 / 44

5. Value-based deep RL - DQN algorithm

Deep Q-Learning - 1

Recall the definition of action-value function:

Qπ(s, a) = Eπ

[∑
t

γtrt+1
∣∣∣s0 = s, a0 = a

]
; (9)

Suppose the state space S is high-dimensional;
Goal: approximate the action-value function using a deep neural
network with parameters θ:

Q̂(s, a; θ) ≈ Qπ(s, a). (10)

Deep Learning · Summer semester 2024 36 / 44

5. Value-based deep RL - DQN algorithm

Deep Q-Learning - 2

Minimize the loss

Li(θi) = E(s,a,r,s′)∼D

[(
r + γmax

a′
Q̂(s′, a′; θi)− Q̂(s, a; θi)

)2]
;

(11)

Problems:
this loss contains bootstrapping, off-policy, and of course function
approximation→ deadly triad!
an offline dataset of transitions is assumed unavailable due to the
complexity of the problems→ we cannot use offline algorithms
(e.g., FQI);
data have to be collected online→ training neural networks in
online RL can lead to catastrophic forgetting.

Deep Learning · Summer semester 2024 37 / 44

5. Value-based deep RL - DQN algorithm

Deep Q-Learning - Replay buffer

Collect and store past transitions to reuse them for update;
Store transitions in queue, a.k.a. replay buffer, of finite capacity;
Off-policy updates allow to reuse transitions out of the sampling
distribution;
Reduces the negative impact of distribution shift.

Deep Learning · Summer semester 2024 38 / 44

5. Value-based deep RL - DQN algorithm

Deep Q-Learning - Target network

Keep a copy of the neural network updating it periodically;
Every C steps, the weights θ of the online network are copied in
the target network as θ′ and kept fixed for the next C steps;
The copy of the neural network, the target network, is used to
compute the target of the mean squared TD-error

Li(θi) = E(s,a,r,s′)∼D

[(
r + γmax

a′
Q̂(s′, a′; θ′)− Q̂(s, a; θi)

)2]
;

(12)

Avoids instability due to function approximation.

Deep Learning · Summer semester 2024 39 / 44

5. Value-based deep RL - DQN algorithm

Deep Q-Learning - Minibatch updates

At each step, uniformly sample a minibatch of N transitions from
the replay buffer

Li(θi) =
N∑
i=1

[(
ri + γmax

a′
Q̂(s′i, a

′; θ′)− Q̂(si, ai; θi)
)2]

; (13)

Improves efficiency w.r.t. training on all transitions.

Deep Learning · Summer semester 2024 40 / 44

5. Value-based deep RL - DQN algorithm

Deep Q-Learning - Reward and
target clipping

Clip reward between −1 and 1;
Clip the error term of the update
r + γmaxa′ Q̂(s′, a′; θ′)− Q̂(s, a; θ) between −1 and 1;
It is sufficient to use Huber loss!

Improve stability of the optimization.
Deep Learning · Summer semester 2024 41 / 44

5. Value-based deep RL - DQN algorithm

Deep Q-Learning - Pseudocode

Algorithm Deep Q-Learning
1: Initialize replay buffer D to capacity N;
2: Initialize action-value function Q̂ with random weights θ;
3: Initialize target action-value function weights θ′ = θ;
4: while true do
5: Initialize state s0;
6: for t = 1, . . . , T do
7: Sample action at with ε-greedy using Q̂;
8: Execute at and observe reward rt and s′t ;
9: Store transition ⟨s, a, r, s′⟩ in D;
10: Uniformly sample minibatch of M transitions ⟨si, ai, ri, s′i ⟩

M
i=1 from D;

11: yi =

ri if episode terminates at step i + 1

ri + γmax
a′
Q̂(s′i , a

′; θ′) otherwise

12: Perform gradient descent step on
(
yi − Q̂(si, ai; θ)

)2
w.r.t. weights θ;

13: Every C steps do θ′ = θ;
14: end for
15: end while

Deep Learning · Summer semester 2024 42 / 44

5. Value-based deep RL - DQN algorithm

Deep Q-Learning - Applications

DQN is a powerful algorithm
https://www.youtube.com/watch?v=W2CAghUiofY
https://www.youtube.com/watch?v=XMo0899Nz7o
https://www.youtube.com/watch?v=V1eYniJ0Rnk

But this comes at a cost!
Requires many samples;
Highly sensitive to hyperparameter tuning;
High computation time.

Deep Learning · Summer semester 2024 43 / 44

https://www.youtube.com/watch?v=W2CAghUiofY
https://www.youtube.com/watch?v=XMo0899Nz7o
https://www.youtube.com/watch?v=V1eYniJ0Rnk

5. Value-based deep RL - DQN algorithm

Wrap-up

How to handle continuous Markov Decision Processes;
How to build features for linear value function approximation;
How to handle high-dimensional Markov Decision Processes;
Deep Q-Network algorithm.

Deep Learning · Summer semester 2024 44 / 44

