Deep Learning
Summer semester ‘24

Recap m

m Basics of Reinforcement Learning;
m Only discrete MDPs;

m Today:

Continuous and high-dimensional MDPs!

Deep Learning - Summer semester 2024 2/44

1. Continuous MDPs

2. Approximated on-policy methods
3. Feature construction for linear methods
4. Approximated off-policy methods

5. Value-based deep RL - DON algorithm

Deep Learning - Summer semester 2024 3/44

1. Continuous MDPs

Continuous MDPs - 1 m

m Discrete MDPs:
BM=(SAR,P,7);
m discrete state space S = {1,...,N;} C N;
m discrete action space A = {1,...,N,} C

m Continuous MDPs:
BEM=(S5AR,P,)
m continuous state space S C R¢;
m discrete action space A = {1,...,N;} CN;
m or continuous action space A C R".

Not every problem can be formalized as a discrete MDP!

Deep Learning « Summer semester 2024 4/44

1. Continuous MDPs

Continuous MDPs - 2 E

In this lecture: MDPs with continuous states, discrete actions;

In future lectures: MDPs with continuous states and actions.

Deep Learning « Summer semester 2024 5 /44

2. Approximated on-policy methods

1. Continuous MDPs
3. Feature construction for linear methods
4. Approximated off-policy methods

5. Value-based deep RL - DON algorithm

Deep Learning - Summer semester 2024 6/44

2. Approximated on-policy methods

Value-function approximation - 1 m

m Value-function cannot be computed as a table;
m too many states/actions to store in memory;
m too slow to update each state.

m Commonly used function approximators:

m Linear function;
Neural network;
Regression tree;

[
[
m Gaussian process;
[

Deep Learning - Summer semester 2024 7/44

2. Approximated on-policy methods

Value-function approximation - 2 m

m Use parametric value function estimators where the parameters
are expressed as the weight vector w € R?

A

Viu(s) = V7(s) Qw(s,a) ~ Q" (s, a);

m Parameters w are much fewer than the states (that are
potentially infinite!);

m Changing weights affects the accuracy of the estimate of
multiple states;

m Improving the accuracy of the value-function estimate of one
state, may decrease the accuracy of the estimate of others.

Deep Learning « Summer semester 2024 8 /44

2. Approximated on-policy methods

Mean squared value error E

m Accuracy is measured as the mean squared value error:

&3 u(s) [vrs) ~ ts)]

SES

with the state distribution p(s) > 0;

m > . u(s) = 1 weighs the importance of the estimate error for
each state s;

m For on-policy algorithms, x(s) is the fraction of time spent in
state s while following policy 7.

Deep Learning « Summer semester 2024 9/44

2. Approximated on-policy methods

Value estimation with stochastic gradient m
descent

m Assume the exact value-function V7(s) is known Vs € S;

m Goal: find approximation with a differentiable estimator Viy(s);
m Value-function is updated each discrete time stept =0,1,2,...;
= Define weights vector w; £ (wy,, wy,, ..., wg,)"

m A basic step-based update of V:

1 . 2
Wi = W — fav [Vﬂ(st) - th(st)}

= weta [V7(st) = The(50)| VVhi(50) (1)
where « > 0 is the learning rate and

8\7%(51“) aVWt(Sl’) 8VWt(Sf)
owy Owy T Owy

V Vi (st) 2 (@

m Convergence to local optimum if properly decaying .

Deep Learning - Summer semester 2024 10/ 44

2. Approximated on-policy methods

Semi-gradient SARSA - 1 m

m On-policy control algorithm: approximate Q instead of V;
m Gradient descent update:

Wil =W+« [Ut - AQWt(St7at):| VQWf(Sta a); (3)

m One-step SARSA update:

W1 = Wit [/’t+1 + ’Yth(St+17 ary1) — @wt(sta at)} Vth(St, a).

4

Deep Learning « Summer semester 2024 11/ 44

2. Approximated on-policy methods

Semi-gradient SARSA - 2 m

Algorithm Semi-gradient SARSA

: Input: the policy 7 to evaluate;
: Input: a differentiable function 0: S x A — R;

1
2
3: Initialize action-value-function weights w € R? arbitrarily, e.g., w = 0;
4: while true do

5: Initialize first state s = sp and action a = qgp (e.g., e-greedy);

6 while true do

7 if s’ is terminal then

8 w — w + afr — Ow(s, a)]VOu(s, a);

CR Terminate the episode;

10: end if

11: Choose action a’ as a function of Qu(s’,-) (e.g., e-greedy);
12: w < w+ afr +v0w(s’,a’) — Ow(s, a)]VOw(s, a);

13: s+ s';

14: a<+d;

15: end while

16: end while

Deep Learning - Summer semester 2024 12/44

3. Feature construction for linear methods

1. Continuous MDPs

2. Approximated on-policy methods

4. Approximated off-policy methods

5. Value-based deep RL - DON algorithm

Deep Learning - Summer semester 2024 13 /44

3. Feature construction for linear methods

Feature construction for linear methods E

m State vector contains representative features of the problem;
m For example:

m position and angular velocity for balancing a pendulum;
m pixels for playing a videogame;
m stock price for finance applications.

‘ Apple stock over the last th

‘Apple’s

from $1trllon to $2 trilon I

st

Deep Learning « Summer semester 2024 14 / 44

3. Feature construction for linear methods

Feature construction for linear methods m

m Basic features may not be representative enough to capture
complex behavior;
m Consider the pendulum example:
B state s = (s1,52), with s; € R the angular position and s; € R the
angular velocity;
m a feature vector ¢(s) = (s1,52) is a poor representation of the
problem;
= interaction between the state dimensions are not considered!
m Representative feature vectors consider all dimensions of the
state and their (potentially complex) interaction;

m How to obtain good features?

Deep Learning - Summer semester 2024 15/ 44

3. Feature construction for linear methods

Polynomial features m

m Polynomial features capture interaction among state dimensions
by multiplication:
m 1st-order: o(s) = (1,51,52,5152)7;
m 2nd-order: (s) = (1,51, 52,5152, 52,53, 5153, 5255, 5252)T;
[coo
m The number of features grows exponentially with the number of
dimensions of the state;

m Note that the approximation is still linear in the weights.

Deep Learning « Summer semester 2024 16 / 44

Coarse coding m

Divide the state space in M different regions;
The feature vector has M binary values;

Given a state s, for each region, assign feature value 1 if the
state is inside the region, O otherwise;

0-1 features are also called sparse.

3. Feature construction for linear methods

Tile coding - 1 E

m Flexible and computationally efficient form of coarse coding;
m Use N tilings, each one composed of M tiles;

m The feature vector is a N x M matrix;

m The feature value is 1 if the state is inside a tile, O otherwise;

Four active
- tiles/features
verlap the point
. — and are used to
. Pointin - represent it
state space -
to be

represented

m Every state has the same number of active features.

Deep Learning - Summer semester 2024 18 /44

3. Feature construction for linear methods

Tile coding - 2

Possible
generalizations
for uniformly
offset tilings

ik

Possible
generalizations
for asymmetrically
offset tilings

Deep Learning - Summer semester 2024 19/ 44

Radial basis functions m

Generalization of coarse coding;
Feature values are real numbers in [0, 1];

The Gaussian distribution is a typical RBF with mean ¢; and
standard deviation o;

.12
oi(5) = exp (—“”) ;)

20,-2

Neural networks m

What if constructing features by hand is difficult or impractical?
Use neural networks!

Automatically extract features in hidden layers;
Enable processing high-dimensional data.

Deep neural networks

Convolution Convolution Fully connected Fully connected
v v v v

/‘J,‘D E]
//
==

L

a
‘a
a
a
8
9 /
o
‘a
g
a
a
g

/
EI//
v
3
)\
\

ap = ¥ > 15
2

=

K|
K|
E
]}
=

déooonh ddooobh
S
n
A K LY £ 4 02 B B4
4 B4 BN BY BN BY BN BS
© (] (©] (¢] (¢] (©] © (©

4. Approximated off-policy methods

1. Continuous MDPs
2. Approximated on-policy methods

3. Feature construction for linear methods

5. Value-based deep RL - DON algorithm

Deep Learning - Summer semester 2024 23 /44

4. Approximated off-policy methods

Semi-gradient off-policy TD(0) m

m Recall: perform importance sampling to change the expectation
from a target policy 7 to the behavioral distribution b;

m Define the importance sampling ratio

m(at|st)
= blarlsy) ©)
m The one-step semi-gradient off-policy TD(0) update is
Wi = W+ CY/)to.tV\A/wr(St); (7)

where, e.g., 6t = i1 + fy\A/wt(sg) = \A/Wt(st).

Deep Learning « Summer semester 2024 24 /44

4. Approximated off-policy methods

Off-policy divergence m

m Updating value functions following the on-policy distribution is
important for convergence;

m The distribution of updates does not match the on-policy
distribution;

m Off-policy algorithms with approximation can diverge!

Deep Learning « Summer semester 2024 25/ 44

4. Approximated off-policy methods

Example of off-policy divergence - 1 E

m Consider this transition as part of a
bigger MDP;
m Consider wg = [wp] = [10];
m Suppose vy~ 1land o = 0.1;
m Step 1:
m Take the transition, update w;:

8o = 11 + Vi (52) — Vo (51)
=0+ 2wy — wo
= (27— 1wy = 10

W1 = Wp + Ozpo(S()V\A/WO(Sl)
=wo+a-1-(2y—1)wy-1
— (14 a2y — 1)) wo ~ 11

Deep Learning « Summer semester 2024 26 /44

4. Approximated off-policy methods

Example of off-policy divergence - 2 E

= Step 2:
m Take the transition, update w;:

81 =12 + YV, (52) — Vi, (51)
=0+v2w; —wy
=(2v-1wm ~ 11

Wy = wq + Ozp1(51V\7W1 (51)
=wi+a-1-2y—1)w -1
=1+a(2y-1)wm =12.1

m The value of the updated
parameter diverges if
1+a(2y-—1)> 1

Deep Learning « Summer semester 2024 27 / 44

4. Approximated off-policy methods

Example of off-policy divergence - 3 E

m Divergence happens because
the distribution of update is Target policy
different from the on-policy
distribution;

Behavioral policy

®m w is updated only during the _ v, = 2w
given transition, not after;

Deep Learning « Summer semester 2024 28 /44

4. Approximated off-policy methods

The deadly triad m

m Instability and divergence arise for methods based on the
following elements:
m function approximation;
m bootstrapping;
m off-policy training.
m Can we get rid of one of them without disadvantages?

m function approximation is necessary to scale to large problems;

m bootstrapping is important for data efficiency;

m off-policy training is essential for learning from heterogeneous
experience.

Deep Learning « Summer semester 2024 29/ 44

4. Approximated off-policy methods

Batch reinforcement learning m

m Up to now, we have seen mostly online RL algorithm;

m Batch (a.k.a., Offline) RL methods use a previously collected
dataset of transitions:

D = (s, a;,ri,sH4. (8)

Deep Learning « Summer semester 2024 30/ 44

4. Approximated off-policy methods

Fitted O-lteration E

m Given a dataset D = (s;, a;, r,-,s§>,T:1, solve a sequence of
regression problems;
m Stability guarantees hold for particular regression methods:

m regression trees;
m kernel averaging.

Algorithm FQI

1: Input: dataset of transitions D = (s;, a;, r,-,s})le;

Input: N = 0, an initial Oy(s,a) = 0;

while true do
N+ N+1;
Build training set T = {(s;,a;, 1; + v maxqe.4 Ov_1(s/, a))}[_;;
Use regression algorithm to build QN(S, a);

end while

N P N

Deep Learning « Summer semester 2024 31/44

5. Value-based deep RL - DON algorithm

1. Continuous MDPs
2. Approximated on-policy methods
3. Feature construction for linear methods

4. Approximated off-policy methods

Deep Learning - Summer semester 2024

32/44

5. Value-based deep RL - DON algorithm

High-dimensional RL problems - 1 m

m Dimension of state and action space is critical in RL;

m Curse of dimensionality: theoretical and practical issues arising
from high-dimensional problems;

m The RL methods we discussed can only handle low-dimensional
problems.

How to enable RL to solve more complex problems?

Deep Learning « Summer semester 2024 33/44

5. Value-based deep RL - DON algorithm

High-dimensional RL problems - 2 m

m High-dimensional problems have a state space S with:
m Impractically large number of discrete values (e.g., each pixel of
an image has an integer value € [0, 255]);
m More than 8 — 10 dimensions (e.g., position and velocity of joints
for a robot).
m The action space A could be either discrete or continuous:
m commands to a videogame;
m torque to joints of a robot.

Deep Learning - Summer semester 2024 34 /44

Deep neural networks for RL m

High-dimensional state/action spaces can be handled with deep
neural networks and the use of deep learning techniques.

Action

5. Value-based deep RL - DON algorithm

Deep Q-Learning - 1 E

m Recall the definition of action-value function:

Qﬂ'(sa a) — Err

ZVtrtJrl‘SO =s,00 = G] ; %)

t

m Suppose the state space S is high-dimensional;

m Goal: approximate the action-value function using a deep neural
network with parameters 6:

0(s,a;0) ~ Qx(s, a). (10)

Deep Learning « Summer semester 2024 36 /44

5. Value-based deep RL - DON algorithm

Deep Q-Learning - 2 m

® Minimize the loss

»Ci(ei) = IE(s,a,r,s’)wD

2
<r + 7 max Q(s’, a; ;) — Q(s, a; 0,-))] :
a/
(11)

m Problems:

m this loss contains bootstrapping, off-policy, and of course function
approximation — deadly triad!

m an offline dataset of transitions is assumed unavailable due to the
complexity of the problems — we cannot use offline algorithms
(e.g., FQI);

m data have to be collected online — training neural networks in
online RL can lead to catastrophic forgetting.

Deep Learning « Summer semester 2024 37 /44

5. Value-based deep RL - DON algorithm

Deep O-Learning - Replay buffer m

m Collect and store past transitions to reuse them for update;
m Store transitions in queue, a.k.a. replay buffer, of finite capacity;

m Off-policy updates allow to reuse transitions out of the sampling
distribution;

m Reduces the negative impact of distribution shift.

Deep Learning « Summer semester 2024 38 /44

5. Value-based deep RL - DON algorithm

Deep Q-Learning - Target network m

m Keep a copy of the neural network updating it periodically;

m Every C steps, the weights 6 of the online network are copied in
the target network as 6’ and kept fixed for the next C steps;

m The copy of the neural network, the target network, is used to
compute the target of the mean squared TD-error

[:,'(9,') = IE(s,a,r,s’)ND

2
(r—l—fymax@(sl,a/;) — Q(% a; 67i)>] '
a/
(12)

m Avoids instability due to function approximation.

Deep Learning « Summer semester 2024 39 /44

5. Value-based deep RL - DON algorithm

Deep Q-Learning - Minibatch updates m

m At each step, uniformly sample a minibatch of N transitions from
the replay buffer

N

Li(0)=>"

i=1

2
<fi +ymaxQ(s, d’; 0") — Q(s;, ai; 9:’))] ;o (13)
a/

m Improves efficiency w.r.t. training on all transitions.

Deep Learning « Summer semester 2024 40 / 44

Deep O-Learning - Reward and m
target clipping

Clip reward between —1 and 1;
Clip the error term of the update

r+~maxqg Q(s',d’;0') — Q(s, a; 0) between —1 and 1;
It is sufficient to use Huber loss!

Improve stability of the optimization.

5. Value-based deep RL - DON algorithm

Deep O-Learning - Pseudocode m

Algorithm Deep Q-Learning

1: Initialize replay buffer D to capacity N;
2: Initialize action-value function Q with random weights 6;
3. Initialize target action-value function weights 6’ = 6;
4: while true do
5: Initialize state sp;
6: fort=1,...,Tdo
7: Sample action ar with e-greedy using 0;
8: Execute a: and observe reward r; and s;;
9: Store transition (s,a,r,s’) in D;
10: Uniformly sample minibatch of M transitions (s;, a;, fi75f>,M:1 from D;
fiy if episode terminates at step i+ 1
Lt Yi=\rn+ 'ymng(s,’-,a’; ') otherwise
a
12: Perform gradient descent step on (y, — Q(s;, a;; (9))2 w.r.t. weights 0;
13: Every C steps do ¢’ = 6;
14: end for
15: end while

Deep Learning - Summer semester 2024 42 /44

5. Value-based deep RL - DON algorithm

Deep Q-Learning - Applications

m DON is a powerful algorithm

m But this comes at a cost!

m Requires many samples;
m Highly sensitive to hyperparameter tuning;
m High computation time.

Deep Learning « Summer semester 2024

43 /44

https://www.youtube.com/watch?v=W2CAghUiofY
https://www.youtube.com/watch?v=XMo0899Nz7o
https://www.youtube.com/watch?v=V1eYniJ0Rnk

5. Value-based deep RL - DON algorithm

Wrap-up E

m How to handle continuous Markov Decision Processes;

m How to build features for linear value function approximation;
m How to handle high-dimensional Markov Decision Processes;
m Deep O-Network algorithm.

Deep Learning - Summer semester 2024 44 /44

