
8. Introduction to Reinforcement Learning

Deep Learning
Summer semester ‘24

1Slide credit: Slides in parts adapted from the lecture at the PRL @ FAU Erlangen-Nürnberg (K. Breininger, T. Würfl, A. Maier, V. Christlein).

1. Basics of Reinforcement Learning

Outline

1. Basics of Reinforcement Learning

2. Policies and value functions

3. Model-free control

Deep Learning · Summer semester 2024 2 / 51

1. Basics of Reinforcement Learning

What is Reinforcement Learning?

The fundamental challenge in artificial intelligence andmachine
learning is learning to make good decisions under uncertainty.

– E. Brunskill

Reinforcement learning is the idea of being able to assign credit
or blame to all the actions you took along the way while you
were getting that reward signal.

– J. Dean

Reinforcement learning is learning what to do–how to map situ-
ations to actions–so as to maximize a numerical reward signal.

– R. Sutton

Repeated interactions with the world;
Do not know in advance how the world works.

Deep Learning · Summer semester 2024 3 / 51

1. Basics of Reinforcement Learning

Agent & world

Deep Learning · Summer semester 2024 4 / 51

1. Basics of Reinforcement Learning

Markov decision process - 1

Sequence of discrete time steps t = 0, 1, 2, . . . ;
At each time step:

Receive representation of state St ;
Execute action At ;
Obtain reward Rt and reach a new state St+1.

Prolonged interaction between agent and environment
generates a trajectory

S0,A0,R1, S1,A1,R2, S2, . . .

Deep Learning · Summer semester 2024 5 / 51

1. Basics of Reinforcement Learning

Markov decision processes - 2

Markov decision process
A Markov decision process (MDP) is a tupleM = ⟨S,A,R,P, ι, γ⟩,
where

S is the set containing all states;
A is the set containing all actions;
R is the reward function;
P is the transition function;
ι is the probability distribution over initial states;
γ ∈ [0, 1) is the discount factor.

Deep Learning · Summer semester 2024 6 / 51

1. Basics of Reinforcement Learning

Full reinforcement learning problem

Agent can only test p(yt+1|y1:t, a1:t) to obtain rewards
rt = r(y1:t, a1:t).

Deep Learning · Summer semester 2024 7 / 51

1. Basics of Reinforcement Learning

Assumption:
Markovian observable state

Markov decision process
Observe the state st = bt directly and remain Markovian
p(st+1|s1:t, a1:t) = p(st+1|st, at).

Deep Learning · Summer semester 2024 8 / 51

1. Basics of Reinforcement Learning

Reinforcement learning problems

There are different dichotomies for RL problems:
Discrete (S and A are finite sets);
Continuous (S and/or A are infinite sets).
Deterministic (R and P are functions);
Stochastic (R and/or P are probability distributions).
Discrete time;
Continuous time.

Fully observable;
Partially observable.

. . .

Deep Learning · Summer semester 2024 9 / 51

1. Basics of Reinforcement Learning

The three approaches of RL

Value-based methods
Obtain an estimate of the (action-)value function and use it to
derive the policy;
Commonly used in problems with discrete actions.

Policy-based methods
Obtain the policy explicitly by maximizing a performance
measure;
Commonly used in continuous problems with low-dimension
state and action spaces.

Actor-critic methods
Obtain both an estimate of the (action-)value function and an
explicit approximation of the policy;
These two functions are optimized jointly;
Commonly used in continuous problems with large state and
action spaces, e.g., deep RL.

Deep Learning · Summer semester 2024 10 / 51

1. Basics of Reinforcement Learning

Value-based methods

Commonly used for problems with discrete actions;

(a) Grid-world (b) Stock trading (c) Videogames

Classic value-based approaches: Q-Learning, SARSA, Fitted
Q-Iteration (FQI), Least Squares Policy Iteration (LSPI), . . . ;
Deep value-based approaches: Deep Q-Network (DQN), Double
DQN, Distributional DQN, Rainbow,

Deep Learning · Summer semester 2024 11 / 51

1. Basics of Reinforcement Learning

Policy-based methods

Commonly used for low-dimensional problems with continuous
actions;

(a) Pendulum (b) Cart-pole (c) Mountain car

Examples: REINFORCE, GPOMDP, Reward Weighted Regression
(RWR), Relative Entropy Policy Search (REPS),

Deep Learning · Summer semester 2024 12 / 51

1. Basics of Reinforcement Learning

Actor-critic methods

Used for high-dimensional problems with continuous actions;

(a) MuJoCo (b) Anymal robot (c) Manipulation

Examples: Deep Deterministic Policy Gradient (DDPG),
Trust-Region Policy Optimization (TRPO), Proximal Policy
Optimization (PPO), Soft Actor-Critic (SAC),

Deep Learning · Summer semester 2024 13 / 51

1. Basics of Reinforcement Learning

Different types of MDPs

Discrete (or finite) MDP:
Discrete state space S
Discrete action space A

Continuous MDP:
Continuous state space S
Discrete or continuous action space A

Deterministic MDP:
Deterministic transition function P : S ×A → S;
Reward function is R : S ×A → R

Stochastic MDP:
Stochastic transition function P : S ×A× S → a probability;
Reward function is R : S ×A× S → R

Deep Learning · Summer semester 2024 14 / 51

1. Basics of Reinforcement Learning

Dynamics of MDPs

The dynamics of an MDP is defined by a probability

P(s′, r|s, a) ≜ P{St = s′,Rt = r|St−1 = s,At−1 = a} (1)

for all s ∈ S , a ∈ A, r ∈ R, and s′ ∈ S .
Being a probability∑

s′∈S

∑
r∈R
P(s′, r|s, a) = 1, ∀s ∈ S, a ∈ A. (2)

Note that for deterministic MDPs, if an action a ∈ A executed in
a state s ∈ S , leads to a reward r ∈ R and next state s′ ∈ S∑

s′′∈S\{s′}

∑
r′∈R\{r}

P(s′′, r′|s, a) = 0,∀s ∈ S, a ∈ A

P(s′, r|s, a) = 1

Deep Learning · Summer semester 2024 15 / 51

1. Basics of Reinforcement Learning

Dynamics of MDPs

P(s′, r|s, a) ≜ P{St = s′,Rt = r|St−1 = s,At−1 = a} (3)

Dynamics only depend on current state s ∈ S and executed
action a ∈ A;
This is known as Markov property;
Equation 3 enables obtaining all information about the
environment

P(s′|s, a) ≜ P{St = s′|St−1 = s,At−1 = a} =
∑
r∈R
P(s′, r|s, a)

R(s, a) ≜ E[Rt|St−1 = s,At−1 = a] =
∑
r∈R

r
∑
s′∈S
P(s′, r|s, a)

R(s, a, s′) ≜ E[Rt|St−1 = s,At−1 = a, St = s′] =
∑
r∈R r · P(s′, r|s, a)
P(s′|s, a)

.

Deep Learning · Summer semester 2024 16 / 51

1. Basics of Reinforcement Learning

Episodes

Interaction between an agent and the environment is modeled
through episodes;
The agent starts an episode in one of the possible initial states
sampled according to the initial state distribution ι;
The episode ends when:

The agent has performed an arbitrary maximum number of steps,
known as horizon;
. . .OR, the agent has reached an absorbing state, i.e., a state
where all actions lead to itself, and the reward is always 0.

Episodes are used to train agents and evaluate their behavior.

Deep Learning · Summer semester 2024 17 / 51

1. Basics of Reinforcement Learning

Returns

Return
The sum of rewards collected after T steps is called return

Jt ≜ Rt+1 + Rt+2 + Rt+3 + · · ·+ Rt+T ; (4)

Usually, the return is computed over a whole episode;
The discounted return is

Jt ≜ Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γT−1Rt+T ; (5)

γ = 0: the agent is myopic, only cares about immediate reward;
γ = 1: the agent cares equally about all rewards, even the ones
collected after infinite steps;
The case of 0 < γ < 1 is the most common one;
If T =∞, 0 < γ < 1, and the reward R is a positive constant
number, the return is a geometric series converging to R

1−γ .
Deep Learning · Summer semester 2024 18 / 51

1. Basics of Reinforcement Learning

Why discounting?

Most MDPs are discounted. Why?

Mathematically convenient to discount rewards;
Avoids infinite returns in cyclic MDPs;
Uncertainty about the future may not be fully represented;
Example: if the reward is financial, immediate rewards may earn
more interest than delayed rewards;
Animal/human behavior shows preference for immediate reward;
It is sometimes possible to use undiscounted MDPs (i.e., γ = 1),
e.g. if all sequences terminate.

Deep Learning · Summer semester 2024 19 / 51

1. Basics of Reinforcement Learning

Rewards

The return has a recursive nature:

Jt ≜ Rt+1 + γRt+2 + γ2Rt+3 + . . .

= Rt+1 + γ(Rt+2 + γRt+3 + . . .)

= Rt+1 + γJt+1.

The goal of Reinforcement Learning is obtaining a behavior that
maximizes the discounted return Jt starting from any time step t;
Thus, the reward function expresses desired (or undesired)
behavior that should be reinforced (or avoided);
The reward function is designed by a human expert according to
what he/she wants to obtain

Reward functions where reward often changes are called dense,
e.g., distance from a goal state;
Reward functions where reward is almost constant are called
sparse, e.g., always 0 except for 1 upon reaching a goal state.

Deep Learning · Summer semester 2024 20 / 51

1. Basics of Reinforcement Learning

Goals and rewards

Is a scalar reward an adequate notion of a purpose?
Sutton hypothesis: All of what we mean by goals and purposes
can be well thought of as the maximization of the cumulative
sum of a received scalar signal (reward);
Still an open problem, but its current solution is so simple and
flexible we have to disprove it before considering anything
different.

A goal should specify what we want to achieve, not how we
want to achieve it;
The same goal can be specified by (infinite!) different reward
functions;
A goal must be outside the agent’s direct control – thus outside
the agent;
The agent must be able to measure success:

explicitly;
frequently during its lifespan.

Deep Learning · Summer semester 2024 21 / 51

2. Policies and value functions

Outline

1. Basics of Reinforcement Learning

2. Policies and value functions

3. Model-free control

Deep Learning · Summer semester 2024 22 / 51

2. Policies and value functions

Policies

What do we mean by behavior of the agent?
Agents interact on the environment by executing actions in each
state;
A policy is a probability distribution that, given a state s ∈ S ,
computes the probability of executing any action a ∈ A;
Policies are commonly denoted π, e.g., π(a|s) is the probability
of executing action a in state s.
Reinforcement Learning aims at obtaining the policy π that
maximize the return Jt obtained from any state s ∈ S;
The policy maximizing the return from every state is called
optimal policy and often denoted π∗.

Deep Learning · Summer semester 2024 23 / 51

2. Policies and value functions

Value functions

Value function
The value function Vπ(s) of a state s under a policy π is the expected
discounted return when starting in s and following π thereafter:

Vπ(s) ≜ Eπ [Jt|St = s] = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s
]

(6)

Action-value function
The action-value function Qπ(s, a) of taking an action a in a state s
under a policy π is the expected discounted return when starting in s,
executing action a, and following π thereafter:

Qπ(s, a) ≜ Eπ [Jt|St = s,At = a] = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s,At = a
]
(7)

Deep Learning · Summer semester 2024 24 / 51

2. Policies and value functions

Optimal value functions

The value functions induced by an optimal policy π∗ are called
optimal value functions;
Optimal value function: V∗(s) ≜ maxπ Vπ(s);
Optimal action-value function: Q∗(s, a) ≜ maxπ Qπ(s, a);
We have the following relation: V∗(s) = maxa∈A Qπ∗

(s, a);
Optimal value functions can be used to compute optimal
policies, by selecting argmaxa∈A Q∗(s, a), ∀s ∈ S .

Deep Learning · Summer semester 2024 25 / 51

2. Policies and value functions

Optimal policy

Properties of optimal policies
Value functions define a partial ordering over policies
π ≥ π′ if Vπ(s) ≥ Vπ′

(s), ∀s ∈ S;

There exists an optimal policy π∗ that is better than or equal than all
other policies π∗ ≥ π, ∀π;

All optimal policies induce the optimal value function, Vπ∗
(s) = V∗(s);

All optimal policies induce the optimal action-value function,
Qπ∗

(s, a) = Q∗(s, a);

There is always a deterministic optimal policy for any MDP.

The deterministic optimal policy can be found by maximizing over Q∗(s, a):

π∗(a|s) =

{
1 if a = argmaxa∈A Q∗(s, a)
0 otherwise

Deep Learning · Summer semester 2024 26 / 51

2. Policies and value functions

Bellman equation - 1

Bellman equation for Vπ

Value functions have the recursive relationship shown for rewards:

Vπ(s) ≜ Eπ [Jt|St = s]
= Eπ [Rt+1 + γJt+1|St = s]

=
∑
a

π(a|s)
∑
s′,r

P(s′, r|s, a)
[
r + γEπ[Jt+1|St+1 = s′]

]
=

∑
a

π(a|s)
∑
s′,r

P(s′, r|s, a)
[
r + γVπ(s′)

]
, ∀s ∈ S; (8)

Equation 8 is known as Bellman equation;
Relation between the value of a state and the values of
successor states.

Deep Learning · Summer semester 2024 27 / 51

2. Policies and value functions

Bellman equation - 2

Bellman equation for Qπ

Qπ(s, a) ≜ Eπ [Jt|St = s,At = a]
= Eπ [Rt+1 + γJt+1|St = s,At = a]

=
∑
s′,r

P(s′, r|s, a)
[
r + γEπ[Jt+1|St+1 = s′]

]
=

∑
s′,r

P(s′, r|s, a)
[
r + γVπ(s′)

]
(9)

=
∑
s′,r

P(s′, r|s, a)

[
r + γ

∑
a′∈A

π(a′|s′)Qπ(s′, a′)

]
(10)

Deep Learning · Summer semester 2024 28 / 51

2. Policies and value functions

Bellman equation - 3

Consider a finite MDP;
Bellman equation can be expressed in matrix form

V = PRR+ γPVV (11)

where V and R are column vectors with one entry per state, PR is
the rewards probability matrix, and PV is the transition matrixV(1)...
V(n)

 =

P
R
11 . . . PR1n
...

. . .
...

PRn1 . . . PRnn


R(1)...
R(n)

+ γ

P
V
11 . . . PV1n
...

. . .
...

PVn1 . . . PVnn


V(1)...
V(n)


(12)

Deep Learning · Summer semester 2024 29 / 51

2. Policies and value functions

Solving the Bellman Equation

The Bellman equation is a linear equation;
It can be solved directly

V = PRR+ γPVV

(I − γPV)V = PRR

V = (I − γPV)−1PRR

The computational complexity is O(n3) for n states;
Direct solution is only possible for small MDPs – e.g., direct
inversion with Gaussian elimination, matrix decomposition (QR,
Cholesky, etc.), iterative solutions (e.g., Krylov-subspaces);
There are many iterative methods for large MDPs:

Dynamic Programming;
Monte-Carlo Evaluation;
Temporal Difference Learning.

Deep Learning · Summer semester 2024 30 / 51

2. Policies and value functions

Bellman optimality equation - 1

Theorem: Bellman’s principle of optimality
“An optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first
decision.” (R.E. Bellman, Dynamic Programming, 1957)

Any policy (i.e., also the optimal one) must satisfy the
self-consistency condition given by the Bellman equation.

Deep Learning · Summer semester 2024 31 / 51

2. Policies and value functions

Bellman optimality equation - 2

Bellman optimality equation for V ∗

V∗(s) ≜ max
a∈A

Q∗(s, a)

= max
a
Eπ∗ [Jt|St = s,At = a]

= max
a
Eπ∗ [Rt+1 + γJt+1|St = s,At = a]

= max
a
Eπ∗

[
Rt+1 + γV∗(s′)|St = s,At = a]

]
= max

a

∑
s′,r

P(s′, r|s, a)
[
r + γV∗(s′)

]
, ∀s ∈ S; (13)

Deep Learning · Summer semester 2024 32 / 51

2. Policies and value functions

Bellman optimality equation - 3

Bellman optimality equation for Q∗

Q∗(s, a) ≜ E
[
Rt+1 + γmax

a′
Q∗(St+1, a′)|St = s,At = a

]
=

∑
s′,r

P(s′, r|s, a)
[
r + γmax

a′
Q∗(s′, a′)

]
,∀s ∈ S, a ∈ A; (14)

Deep Learning · Summer semester 2024 33 / 51

2. Policies and value functions

Bellman operator - 1

Bellman operator for Vπ

The Bellman operator for Vπ is a mapping Tπ : R|S| → R|S|

(TπVπ)(s) =
∑
a∈A

π(a|s)
∑
s′,r

P(s′, r|s, a)
[
r + γVπ(s′)

]
(15)

Using the Bellman operator, the Bellman equation can be
compactly written as

TπVπ = Vπ; (16)

Linear equation in Vπ and Tπ;
If 0 < γ < 1, then Tπ is a contraction w.r.t. the maximum norm;
Vπ is a fixed point of the Bellman operator Tπ .

Deep Learning · Summer semester 2024 34 / 51

2. Policies and value functions

Bellman operator - 2

Bellman operator for Qπ

The Bellman operator for Qπ is a mapping Tπ : R|S|×|A| → R|S|×|A|

(TπQπ)(s, a) =
∑
s′,r

P(s′, r|s, a)

r + γ

Vπ(s′)︷ ︸︸ ︷∑
a′∈A

π(a′|s′)Qπ(s′, a′)

 (17)

Using the Bellman operator, the Bellman equation can be
compactly written as:

TπQπ = Qπ; (18)

Linear equation in Qπ and Tπ;
If 0 < γ < 1, then Tπ is a contraction w.r.t. the maximum norm;
Qπ is a fixed point of the Bellman operator Tπ .

Deep Learning · Summer semester 2024 35 / 51

2. Policies and value functions

Bellman optimality operator - 1

Bellman optimality operator for V ∗

The Bellman optimality operator for V∗ is a mapping T∗ : R|S| → R|S|

(T∗V∗)(s) = max
a∈A

∑
s′,r

P(s′, r|s, a)
[
r + γV∗(s′)

]
(19)

Using the Bellman optimality operator, the Bellman optimality
equation can be compactly written as:

T∗V∗ = V∗; (20)

Linear equation in V∗ and T∗;
If 0 < γ < 1, then T∗ is a contraction w.r.t. the maximum norm;
V∗ is a fixed point of the Bellman operator T∗.

Deep Learning · Summer semester 2024 36 / 51

2. Policies and value functions

Bellman optimality operator - 2

Bellman optimality operator for Q∗

The Bellman optimality operator for Q∗ is a mapping
T∗ : R|S|×|A| → R|S|×|A|

(T∗Q∗)(s, a) =
∑
s′,r

P(s′, r|s, a)
[
r + γmax

a′∈A
Q∗(s′, a′)

]
(21)

Using the Bellman optimality operator, the Bellman optimality
equation can be compactly written as:

T∗Q∗ = Q∗; (22)

Linear equation in Q∗ and T∗;
If 0 < γ < 1, then T∗ is a contraction w.r.t. the maximum norm;
Q∗ is a fixed point of the Bellman operator T∗.

Deep Learning · Summer semester 2024 37 / 51

2. Policies and value functions

Properties of Bellman operators

Monotonicity: if f1 ≤ f2 component-wise

Tπf1 ≤ Tπf2, T∗f1 ≤ T∗f2; (23)

Max-norm contraction: for two vectors f1 and f2

∥Tπf1 − Tπf2∥∞ ≤ γ ∥f1 − f2∥∞ ; (24)
∥T∗f1 − T∗f2∥∞ ≤ γ ∥f1 − f2∥∞ . (25)

Vπ and Qπ are the unique fixed points of Tπ;
V∗ and Q∗ are the unique fixed points of T∗;
For any vector f ∈ R|S| and any policy π, we have

lim
k→∞

(Tπ)kf = Vπ , lim
k→∞

(T∗)kf = V∗. (26)

Deep Learning · Summer semester 2024 38 / 51

3. Model-free control

Outline

1. Basics of Reinforcement Learning

2. Policies and value functions

3. Model-free control

Deep Learning · Summer semester 2024 39 / 51

3. Model-free control

What is model-free control?

Model-free control: optimize the value function of an unknown MDP;
Input: MDPM = ⟨S,A,R,P, ι, γ⟩;
No access or knowledge to P and R;
Need to explore to gather knowledge of the MDP;

Output: optimal value function V∗ and optimal policy π∗.

Deep Learning · Summer semester 2024 40 / 51

3. Model-free control

On- and off-policy learning

On-policy learning:
Learn about policy π from experience sampled from π;
Evaluate and improve the same policy that the agent is already
using for action selection.

Off-policy learning:
Learn about policy π from experience sampled from another
policy b;
Evaluate and improve policy π that is different from the policy b
that is used for action selection when exploring.

Deep Learning · Summer semester 2024 41 / 51

3. Model-free control

Exploration vs exploitation – A brief note

Online decision-making involves a fundamental choice:
Exploitation: make the best decision given current information;
Exploration: gather more information.

The best long–term strategy may involve short–term sacrifices;
Gather enough information to make the best overall decisions.

Deep Learning · Summer semester 2024 42 / 51

3. Model-free control

Common exploration approaches in RL

ε-greedy:

at =

{
a∗t with probability 1− ε

random action with probability ε
(27)

Softmax:
Bias exploration towards promising actions;
Softmax action selection methods grade action probabilities by
estimated values;
The most common softmax uses a Gibbs (or Boltzmann)
distribution:

π(a|s) =
exp Q(s,a)

τ

exp
∑

a′∈A
Q(s,a′)

τ

, (28)

where τ is a temperature:
τ → ∞: random action P = 1

|A| ;
τ → 0: greedy action a∗ = argmaxa Q(s, a).

Deep Learning · Summer semester 2024 43 / 51

3. Model-free control

Sarsa algorithm for on-policy control

1: Initialize Q(s, a) arbitrarily, except that Q(terminal, ·) = 0;
2: for each episode do
3: Initialize s;
4: Choose a from s using policy derived from Q (e.g.,

ε-greedy);
5: for each step of episode do
6: Take action a, observe r, s′;
7: Choose a′ from s′ using policy derived from Q (e.g.,

ε-greedy);
8: Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)− Q(s, a));
9: s← s′; a← a′.
10: end for
11: end for

Deep Learning · Summer semester 2024 44 / 51

3. Model-free control

Convergence of Sarsa

Theorem
Sarsa converges to the optimal action-value function,
Q(s, a)→ Q∗(s, a), under the following conditions:

GLIE sequence of policies πt(s, a);
Robbins-Monro sequence of step-sizes αt :

∞∑
t=1

αt =∞ ;
∞∑
t=1

α2t <∞. (29)

Deep Learning · Summer semester 2024 45 / 51

3. Model-free control

Off-policy learning

Learn about target policy π(a|s);
. . .while following behavior policy b(a|s);
Why is this important?

Learn from observing humans or other agents;
Re-use experience generated from old policies π1, π2, . . . , πt ;
Learn about optimal policy while following an exploratory policy;
Learn about multiple policies while following one policy.

Deep Learning · Summer semester 2024 46 / 51

3. Model-free control

Q-Learning

We now consider off-policy learning of action-values Q(s, a);
Action to be executed at state s is chosen using behavior policy
at ∼ b(·|s);
For the target, we consider a successor action from the greedy
policy a′ = argmaxa∈A Q(s, a);
Update Q(st, at) as

Q(st, at)← Q(st, at)+α(rt+1+γmax
a′
Q(st+1, a′)−Q(st, at)). (30)

Theorem
Q-learning control converges to the optimal action-value function,
Q(s, a) = Q∗(s, a).

Deep Learning · Summer semester 2024 47 / 51

3. Model-free control

Q-Learning algorithm for
off-policy control

1: Initialize Q(s, a) arbitrarily, except that Q(terminal, ·) = 0
2: for each episode do
3: Initialize s
4: for each step of episode do
5: Choose a from s using policy derived from Q (e.g.,

ε-greedy)
6: Take action a, observe r, s′
7: Q(s, a)← Q(s, a) + α(r +maxa′ γQ(s′, a′)− Q(s, a))
8: s← s′
9: end for
10: end for

Deep Learning · Summer semester 2024 48 / 51

3. Model-free control

Cliff-walking example

Deep Learning · Summer semester 2024 49 / 51

3. Model-free control

Q-Learning vs Sarsa

Sarsa:

Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)− Q(s, a)); (31)

Q-learning:

Q(s, a)← Q(s, a) + α(r +max
a′

γQ(s′, a′)− Q(s, a)); (32)

In the cliff–walking task:
Sarsa: learns a safe non–optimal policy away from edge;
Q–learning: learns optimal policy along edge.

ε–greedy algorithm:
For ε ̸= 0, Sarsa performs better online;
For ε→ 0 gradually, both converge to optimal.

Deep Learning · Summer semester 2024 50 / 51

3. Model-free control

Wrap-up

What is Reinforcement Learning and Markov Decision Processes;
Value function and policies;
Bellman equations and operators;
Model-free control algorithms.

Deep Learning · Summer semester 2024 51 / 51

