

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

# **Multilingual NLP**

6. Cross-Lingual Transfer

(+ Multilingual Evaluation)

Prof. Dr. Goran Glavaš Center for Al and Data Science (CAIDAS), Uni Würzburg

#### After this lecture, you'll...

- Know what cross-lingual transfer for NLP tasks is
- Learn about Massively Multilingual LMs and CL transfer with them
- Distinguish between zero-shot and few-shot CL transfer
- Know of promiment multilingual evaluation benchmarks



#### Content

- Cross-Lingual Transfer
- CL Transfer with Massively Multilingual Transformers (MMTs)
- Zero- and Few-Shot Transfer with MMTs
- Multilingual Evaluation

## Why Multilingual NLP?



- **Cross-Lingual transfer**: transfer supervised models for concrete NLP tasks
  - Models trained on labeled data in high-resource source language...
  - ...make predictions on texts in low-resource <u>target</u> languages with little or no labeled data





#### **Cross-Lingual Transfer: Practical Necessity**

- Only a <u>handful</u> of NLP tasks have annotated data in many languages
  - Part-of-speech tagging (Universal Dependencies, UD)
  - Syntactic parsing (UD)
  - Named Entity Recognition (e.g., <u>WikiANN</u>)
  - Higher-level semantic tasks often have <u>only English training data</u>
    - Generally more difficult tasks, e.g.:
      - Natural Language Inference (NLI)
      - Semantic Text Similarity (STS)
      - Question Answering (QA)
      - Causal Commonsense Reasoning



#### **Cross-Lingual Transfer: Practical Necessity**

- Natural Language Inference
  - Given a premise and hypothesis, predict whether hypothesis is entailed by the premise, <u>contradicts</u> it, or neither

**Premise**: "A man reads the paper in a bar with green lighting." **Hypothesis**: "The man is inside" **Label**: <u>entailment</u>

- Causal Commonense Reasoning
  - Given a premise find its most plausible <u>cause</u> among several choices Premise: "The politician won the election" Choice 1: "No one voted for him" Choice 2: "He ran negative campaign ads against the opponent" Label: Choice 2
- Such language understanding datasets very expensive to build
  - Thus most often <u>exist only in English</u>
  - Q: Can't we automatically translate them with MT?

## **Cross-Lingual Transfer**

- Multilingual representation spaces necessary for cross-lingual transfer
  - Words/sentences/texts that have the same/similar meaning, get same/similar representations...
    - ...whether from the same language or different languages
- Cross-lingual word embeddings
- Multilingual LMs







#### **CL Transfer via CLWEs**

- **Multilingual representation spaces** necessary for cross-lingual transfer
- Embeddings of words from source and target language semantically "aligned"

#### Training

- Texts in source language L<sub>S</sub>
- Input vectors from shared bilingual space

#### Inference

- Texts in target language  $L_T$
- Input vectors **also** from shared bilingual space, which the trained model <u>"understands</u>"



Task-specific model (e.g., a CNN + classifier)



prediction

#### **CL Transfer via CLWEs**



- CL transfer with CLWEs has some clear limitations
- CLWEs: out-of-context representations of words
  - I.e., static word embeddings
  - Static word embeddings conflate senses for words with multiple meanings
  - Transfer with CLWEs would be <u>perfect</u> if:
    - CLWE space was perfect (ideal alignment)
    - There was a 1-to-1 correspondence between the words of  $L_{S}$  and  $L_{T}$
    - Representations of phrases and sentences aggregated from word embeddings <u>the same way</u> <u>for both languages</u>





Task-specific model (e.g., a CNN + classifier)



prediction

#### Content

- Cross-Lingual Transfer
- CL Transfer with Massively Multilingual Transformers
- Zero- and Few-Shot Transfer with MMTs
- Multilingual Evaluation

## **Massively Multilingual Transformers**



- With pretrained Transformer-based LMs (i.e., BERT & co.)
  - We obtain more than static word embeddings
  - Contextualized representations of tokens meaning in context
  - If we could make <u>the same Transformer (same parameters</u>) learn how to contextualize tokens in multiple languages...
    - We could support CL transfer "out of the box"
    - Fixing for limitations of transfer with CLWEs

#### **Multilingual BERT**

- BERT's Transformer pretrained on multilingual corpora
- Concatenation of monolingual corpora in <u>104 languages</u>
- Without any cross-lingual supervision?!
  - No word alignments, no parallel sentences



## **Massively Multilingual Transformers**



- Cross-lingual transfer with MMTs is conceptually trivial
  - 1. Place a task-specific head on top of the Transformer body
  - 2. Perform standard fine-tuning using task-specific training data in  $L_S$
  - 3. Use the Transformer and classifier to make predictions for data in  $L_T$



## **Massively Multilingual Transformers**



- Cross-lingual transfer with MMTs is conceptually trivial
- But a lot of open questions about what's encoded in such an MMT
  - Q: Size of pretraining corpora for each language?
  - **Q**: How does <u>tokenization</u> work in a massively multilingual setup?
  - Q: How/why are representations of different languages semantically aligned if there is no explicit cross-lingual supervision?
  - Q: Are all pretraining languages "equal" in the representation space of mBERT?
  - Q: Is CL transfer equally good for any  $L_S$  and  $L_T$  from pretraining languages?
  - Q: What about languages not seen in pretraining?



## **MMTs: Corpora and Tokenization**

- mBERT trained on <u>104 largest Wikipedias</u>
  - Obviously, the corpus of each language is not of the same size
  - English Wikipedia: 6.6M articles; Chuvash Wikipedia: 50K articles
    - Articles also <u>much longer</u> for English and other major languages
  - Multilingual tokenization
  - mBERT (like monolingual BERT) uses WordPiece tokenization
    - Vocabulary size: 110K tokens
  - Languages without whitespaces:
    - Characters separated with a special character (CJK Unicode block)
  - Problem: <u>WordPiece merges</u> dominated by large languages
    - Large languagess have <u>many more whole-word tokens</u> than small languages



#### **MMTs: Corpora and Tokenization**

- Problem: <u>WordPiece merges</u> dominated by large languages
  - Large languagess have <u>many more whole-word tokens</u> than small languages

```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
```

```
encoded_input = tokenizer("wonderful", return_tensors='pt')
tokenizer.convert_ids_to_tokens(encoded_input["input_ids"][0])
```

- "wonderful"(EN) → ['[CLS]', 'wonderful', '[SEP]']
- "prekrasno"(HR) → ['[CLS]', 'pre', '##kra', '##sno', '[SEP]']



## **MMTs: Corpora and Tokenization**

- Problem: <u>WordPiece merges</u> dominated by large languages
  - Large languagess have <u>many more whole-word tokens</u> than small languages
  - "wonderful"(EN) → ['[CLS]', 'wonderful', '[SEP]']
  - "prekrasno"(HR) → ['[CLS]', 'pre', '##kra', '##sno', '[SEP]']
  - Several shortcomings:
    - Token sequences longer for smaller languages and Transformer has fixed input size → we can encode <u>shorter texts</u> in smaller languages
  - 2. We need Transformer's body parameters to correctly contextualize subword tokens that belong to the same word-level token
    - Learn that 'pre', '##kra', and '##sno' should attend over one another
    - But <u>smaller</u> languages have less data to learn from!
  - 3. Shorter tokens more likely to appear across multiple languages
    - wonderful will appear predominantly in English text, what about ##kra?
    - Shared tokens will commonly have different "meaning" in different langs



#### **CL Transfer with mBERT**

Pires, T., Schlinger, E., & Garrette, D. (2019, July). <u>How Multilingual is Multilingual</u> <u>BERT?</u> In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 4996-5001).





Wu, S., & Dredze, M. (2019, November). <u>Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of</u> <u>BERT</u>. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 833-844).

→ "Suprising cross-lingual effectiveness of BERT"

#### **CL Transfer with mBERT**



- Q: But where does the cross-lingual transfer ability of mBERT come from?
  - No explicit alignment across languages of any type in pretraining



Dufter, P., & Schütze, H. (2020). <u>Identifying Necessary Elements for BERT's</u> <u>Multilinguality</u>. In Proceedings of EMNLP 2021.

- The capacity of the model (12-layer Transformer; 110M parameters) is too small to precisely and accurately "learns" every of 104 languages
- MLM training on massively multilingual corpora <u>forces</u> the Transformer to use its parameters efficiently -- i.e., share them across languages
  - This exploits commonalities between languages and results in (some) alignment
- Shared embeddings also help
  - <u>Positional embeddings</u>\*: Q: when could shared PEs <u>hurt</u>?
  - Token embeddings, for tokens with <u>same meaning</u> across languages
    - E.g., digits or names ("1", "Joe", …)



• XLM: Cross-Lingual Language Modeling

Conneau, A., & Lample, G. (2019). <u>Cross-lingual language model pretraining</u>. Advances in neural information processing systems, 32.

- BPE tokenizer trained on modified corpora obtained by
  - Oversampling sentences from small languages
  - Undersampling sentences from large languages

$$q_i = \frac{p_i^{\alpha}}{\sum_{j=1}^{N} p_j^{\alpha}}$$
  $p_i = \frac{n_i}{\sum_{k=1}^{N} n_k}$ 

modified distribution

original distribution

- Smoothing factor  $\alpha$  set to 0.5
- More whole-word tokens for small languages, 95K tokens in total



• XLM: Cross-Lingual Language Modeling



Conneau, A., & Lample, G. (2019). <u>Cross-lingual language model pretraining</u>. Advances in neural information processing systems, 32.

- MLM as the main training objective (across all languages)
  - Self-supervised objective
- Additionally leverages parallel data with the new objective named translation language modeling (TLM)
  - Just MLM, but on pairs of parallel sentences
  - Also introduces trainable language embeddings
  - TLM is a supervised objective: requires parallel data



Conneau, A., & Lample, G. (2019). <u>Cross-lingual language model pretraining</u>. Advances in neural information processing systems, 32.



Image from the original paper



• XLM-R: XLM-on-RoBERTa

- Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2020, July). <u>Unsupervised Cross-lingual Representation Learning at Scale</u>. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 8440-8451).
- Just MLM-ing, but...
- On much <u>much larger corpora</u>:
  - <u>CC100</u> filtered CommonCrawl for 100 languages: 2TB of text!
- Larger vocabulary: 250K tokens





#### **CL Transfer with MMTs**

- Initial evaluations
  - Source language: EN
  - Target languages: high-resource, closely related to EN
    - E.g., NL, DE, IT, FR, ES
- What about small target languages distant from English?
  - small: small corpus in pretraining
  - distant from English:
    - genealogically, etymologically, typologically (recall Lecture 1 :))
  - Basically, what about the vast majority of world languages?

#### **CL Transfer with MMTs**



Lauscher, A., Ravishankar, V., Vulić, I., & Glavaš, G. (2020, November). From Zero to Hero: On the Limitations of Zero-Shot Language Transfer with Multilingual Transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 4483-4499).

| Task  | Model  | EN           | $\frac{\mathbf{Z}\mathbf{H}}{\Delta}$ | $\frac{\mathbf{TR}}{\Delta}$ | ${}^{\rm RU}_{\Delta}$ | AR<br>∆               | ${}^{\rm HI}_{\Delta}$ | ${}^{\rm EU}_{\Delta}$ | $\mathbf{FI}$  | $\frac{\mathrm{HE}}{\Delta}$ | $\Delta$       | $\Delta$              | ко<br>Д        | $\frac{sv}{\Delta}$ | $\frac{VI}{\Delta}$ | $\frac{TH}{\Delta}$   | $\Delta^{\text{ES}}$ | $\frac{\mathrm{EL}}{\Delta}$ | $\frac{\mathrm{d}\mathbf{E}}{\Delta}$ | FR<br>∆      | $\frac{BG}{\Delta}$ | $\frac{sw}{\Delta}$ | ur<br>Δ        |
|-------|--------|--------------|---------------------------------------|------------------------------|------------------------|-----------------------|------------------------|------------------------|----------------|------------------------------|----------------|-----------------------|----------------|---------------------|---------------------|-----------------------|----------------------|------------------------------|---------------------------------------|--------------|---------------------|---------------------|----------------|
| DEP   | B<br>X | 91.2<br>92.0 | -43.9<br><b>-85.4</b>                 | -46.0<br>-44.2               | -28.1<br>-29.7         | -56.4<br>-54.6        | -36.1<br>-39           | -50.2<br>-49.5         | -30.7<br>-26.7 | -36.1<br>-39                 | -17.1<br>-23.5 | <b>-60.1</b><br>-80.5 | -56.1<br>-56.0 | -14.3<br>-16.3      | -                   | -                     | -                    | -                            | -                                     | -            | -                   | -                   | -              |
| POS   | B<br>X | 95.8<br>96.3 | -38.0<br>-69.2                        | -35.9<br>-27.7               | -16.0<br>-14.3         | -40.1<br>-37.1        | -33.4<br>-27.3         | -34.6<br>-31.9         | -21.9<br>-17.9 | -33.4<br>-27.3               | -19.8<br>-19.0 | -46.1<br>-77.0        | -42.0<br>-37.3 | -9.6<br>-10.7       | -                   | -                     | -                    | -                            | -                                     | -            | -                   | -                   | -              |
| NER   | B<br>X | 92.4<br>91.6 | -23.3<br><b>-34.8</b>                 | -11.6<br>-6.2                | -10.7<br>-13.7         | <b>-31.7</b><br>-24.6 | -11.1<br>-16.5         | -12.8<br>-8.0          | -3.8<br>-0.9   | -11.1<br>-16.5               | -2.6<br>-2.4   | -25.7<br>-30.1        | -13.8<br>-15.6 | -6.7<br>-2.2        | -                   | -                     | -                    | -                            | -                                     | -            | -                   | -                   | -              |
| XNLI  | B<br>X | 82.8<br>84.3 | -13.6<br>-11.0                        | -20.6<br>-11.3               | -13.5<br>-9.0          | -17.3<br>-13.0        | -21.3<br>-14.2         | -                      | -              | -                            | -              | -                     | -              | -                   | -11.9<br>-9.7       | -28.1<br>-12.3        | -8.1<br>-5.8         | -14.1<br>-8.9                | -10.5<br>-7.8                         | -7.8<br>-6.1 | -13.3<br>-6.6       | -33.0<br>-20.2      | -23.4<br>-17.3 |
| XQuAD | B<br>X | 71.1<br>72.5 | -22.9<br>-26.2                        | -34.2<br>-18.7               | -19.2<br>-15.4         | -24.7<br>-24.1        | -28.6<br>-22.8         | -                      | -              | -                            | -              | -                     | -              | -                   | -22.1<br>-19.7      | <b>-43.2</b><br>-14.8 | -16.6<br>-14.5       | -28.2<br>-15.7               | -14.8<br>-16.2                        | -            | -                   | -                   | -              |

 Huge performance drops (both with mBERT and XLM-R) from transfer to (1) small languages
 (2) languages distant from English

#### **Poor CL Transfer with MMTs**



- MMTs (mBERT, XLM-R) exhibit huge performance drops in CL transfer to low-resource languages, especially if they are distant from English
- Even for large and closely-related languages (e.g., DE, ES, IT) we see drop in performance compared to English.
  - Q: Why?
- For English, we get better results by fine-tuning monolingual English BERT/RoBERTa than by fine-tuning mBERT or XLM-R.
  - **Q**: Why?

#### **Poor CL Transfer with MMTs**



- Part of the problem is the curse of multilinguality (Lecture 7)
  - Loss of representational accuracy for each individual language due to representing too many languages with the model of fixed capacity
- MLM training doesn't really align the representations across languages very well: clusters of language-specific subspaces visible
  - Better alignment achievable post-hoc with parallel data



Image from: Cao, S., Kitaev, N., & Klein, D. <u>Multilingual Alignment of Contextual Word</u> <u>Representations.</u> In International Conference on Learning Representations. 2020.

#### Content

- Cross-Lingual Transfer
- CL Transfer with Massively Multilingual Transformers
- Zero- and Few-Shot Transfer with MMTs
- Multilingual Evaluation



#### Zero- vs. Few-Shot CL Transfer

- So far, we have analyzed the so-called **zero-shot transfer** setup
  - We assume **zero** labeled task instances in the target language
- In practice, it is almost always <u>possible</u> to annotate some small number of instances in the target language
- Few-shot transfer: large task-specific training dataset D<sub>S</sub> in L<sub>S</sub>, plus a <u>few labeled instances</u> (small dataset D<sub>T</sub>) in L<sub>T</sub>
  - Q: how many is "few"?
  - Depends on the task, but  $|D_T| << |D_S|$

#### **Few-Shot CL Transfer**



- Sequential few-shot CL transfer
  - First fine-tune an MMT on the large D<sub>S</sub>
  - Then fine-tune it on the small  $\mathsf{D}_{\mathsf{T}}$



#### **Few-Shot CL Transfer**



Lauscher, A., Ravishankar, V., Vulić, I., & Glavaš, G. (2020, November). <u>From Zero to Hero: On the</u> <u>Limitations of Zero-Shot Language Transfer with Multilingual Transformers</u>. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 4483-4499).

• Sequential few-shot CL transfer can bring massive gains in transfer performance compared to <u>zero-shot CL transfer</u>

|      |                |                | -              |                | •              |                |  |  |
|------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|
|      | :              | k              | k =            | : 10           | k = 50         |                |  |  |
| Task | Model          | k = 0          | score          | Δ              | score          | Δ              |  |  |
| DEP  | мBERT<br>XLM-R | 52.96<br>48.60 | 66.69<br>65.57 | 13.73<br>16.97 | 72.67<br>72.19 | 19.70<br>23.59 |  |  |
| POS  | мBERT<br>XLM-R | 67.2<br>65.5   | 80.17<br>80.68 | 12.96<br>15.18 | 85.34<br>85.7  | 18.14<br>20.2  |  |  |
| NER  | мBERT<br>XLM-R | 79.34<br>85.43 | 83.18<br>88.06 | 3.84<br>2.63   | 84.54<br>91.07 | 5.20<br>5.64   |  |  |
|      |                |                |                |                |                |                |  |  |



Dependency parsing



- Sequential few-shot CL transfer

   (1) First fine-tune an MMT on the large D<sub>S</sub>: computationally expensive
   (2) Then fine-tune it on the small D<sub>T</sub>: computationally cheap
  - Pro: After (1) we have a **general** task-specific model, which can be quickly fine-tuned for various target languages with few instances
    - Con: The two training steps are executed sequentially, there is **no task-specific interaction** between the languages





Schmidt, F. D., Vulić, I., & Glavaš, G. (2022). <u>Don't stop fine-tuning: On training regimes for few-shot cross-</u> <u>lingual transfer with multilingual language models</u>. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (pp. 10725-10742).

• Simultaneous fine-tuning on (many) instances from  $L_S$  and (few) from  $L_T$ 





Schmidt, F. D., Vulić, I., & Glavaš, G. (2022). <u>Don't stop fine-tuning: On training regimes for few-shot cross-</u> <u>lingual transfer with multilingual language models</u>. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (pp. 10725-10742).

• Simultaneous fine-tuning on (many) instances from  $L_S$  and (few) from  $L_T$ 

Important: **batch balancing** between  $L_S$  and  $L_T$ 

- Few target language instances will repeat much more often
- But will be "regularized" with different source language instances in different bathes
   → less overfitting, better generalization in L<sub>T</sub>





- Joint few-shot CL transfer
- Pro: Task-specific interaction between  $L_S$  and  $L_T$ , leads to better performance on  $L_T$ 
  - Con: For each  $L_T$  we have to carry out the <u>large</u> fine-tuning on  $|D_S| + |D_T|$  instances
    - Effectively  $2*|D_S|$  instances in training
      - Because we're repeating D<sub>T</sub> instances to balance batches



#### Content

- Cross-Lingual Transfer
- CL Transfer with Massively Multilingual Transformers
- Zero- and Few-Shot Transfer with MMTs
- Multilingual Evaluation



## **Multilingual Evaluation**

- In the last few years, a lot of new multilingual evaluation datasets and benchmarks in NLP
- <u>Some multilingual datasets (single task)</u>
  - <u>Americas NLI</u>: evaluation dataset for natural language inference (NLI), covering 10 low-resource indigenous <u>languages of the Americas</u>
  - <u>MasakhaNER</u>: evaluation dataset for named entity recognition (NER) covering 10 low-resource <u>African languages</u>
  - <u>TyDiQA</u>: question answering (QA) dataset covering 11 typologically diverse languages
  - <u>XCOPA</u>: causal commonsense reasoning for 11 genealogically, geographically, and typologically diverse languages

### **Multilingual Evaluation**



- Q: How to select languages for a multilingual dataset/benchmark?
  - Based on what criteria?
- Historically, multilingual evaluations included predominantly large languages with substantial digital footprint
  - These tend to be predominantly Indo-European (IE)
  - We've seen that transfer (usually from English, which is IE) works best when transferring to other IE languages
- Datasets/benchmarks that include predominantly IE and/or large langs overestimate the general/global multilingual abilities of models



## **Multilingual Evaluation**

Ponti, E. M., Glavaš, G., Majewska, O., Liu, Q., Vulić, I., & Korhonen, A. (2020). <u>XCOPA: A Multilingual</u> <u>Dataset for Causal Commonsense Reasoning</u>. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 2362-2376).

- Quantifying diversity of language samples in multilingual datasets
- Typological index
  - Based on URIEL typological vectors of languages: 103 binary features
  - Compute entropy for each feature, and then average entropy across features
- Family index
  - Number of distinct language families in the language sample
- Geography index
  - Entropy of the distribution over the 6 global geographic macro-regions



## **Multilingual Benchmarks**

- In the age where NLP tasks has been largely unified, it is common to evaluate models on a <u>collection of tasks</u>
- Multilingual benchmark: a collection of multilingual datasets
  - Not all datasets (need to) cover the same set of languages
- Some multilingual benchmarks (single task)
  - <u>XGLUE</u>: 11 tasks, 19 languages in total
  - <u>XTREME</u>: 9 tasks, 40 languages (from 12 language families)
  - <u>XTREME-R</u>: 10 tasks, 50 languages



## **Creating Multilingual Datasets**

- Q: How do we normally create multilingual datasets?
  - Most commonly by <u>translating</u> dev/test portions of English datasets
- 1. Completely manual translation
  - If the original dataset has a lot of culture-specific concepts that don't have a direct translation or don't exist in the target language
  - E.g., in XCOPA: "bowling", "parking meter" ...
- 2. Machine translation + manual post-editing
  - Human annotator fixes the errors of automatic translation
  - Cheaper than manual trans. if the MT model  $L_S \rightarrow L_T$  is good enough
- In both cases we need bilingual annotators
  - Difficult to find for low-resource languages

## **Model Selection in CL Transfer**

- When we train ML models, we leverage a validation (aka development) dataset D<sub>V</sub> for model selection
  - Selecting optimal hyperparameter values, early stopping, etc.
- When we fine-tune neural LMs for CL transfer, the language of the validation dataset plays a huge role
  - Target language performance much better if  $D_V$  in  $L_T$
  - If  $D_V$  in  $L_S$ , we're selecting the model checkpoint that's optimal for the source language (usually EN) performance
- Q: Think of zero-shot CL transfer. What is the problem with having a validation dataset in the target language (i.e.,  $D_V$  is in  $L_S$ )?

## Model Selection in CL Transfer



- Q: Think of zero-shot CL transfer. What is the problem with having a validation dataset in the target language?
  - Not real zero-shot transfer! Relies on labeled instances in  $L_T$ 
    - Just not directly for model training, but for model selection
  - Most multilingual datasets offer both validation and test (final evaluation) data in  $L_{\!T}$ 
    - Allows for <u>unfair</u> zero-shot transfer evaluation (labeled data in  $L_T$ )
    - Q: What if we did not need  $D_V$  in  $L_T$  for model selection?
      - We could use those  $|D_V|$  in  $L_T$  for **training** instead  $\rightarrow$  few-shot transfer
      - And few-shot is always better than zero-shot!



#### **Model Selection in CL Transfer**

Schmidt, F. D., Vulić, I., & Glavaš, G. (2023). <u>Free Lunch: Robust Cross-Lingual Transfer via Model</u> <u>Checkpoint Averaging</u>. Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (ACL). *To appear*.

- **Checkpointing**: as we train the model on the training data, we periodically (e.g., every N training steps) store the parameter values
  - This is called a checkpoint (or snaphot) of the model
- **Checkpoint averaging**: the final model is the average of all checkpoints during training (rather than just the last checkpoint)
- <u>Checkpoint averaging</u> in CL transfer (zero-shot and few-shot) leads to more robust training behaviour and removes the need for  $D_V$  in  $L_T$

# The End

ding +

in himmen the

Image: Alexander Mikhalchyk