-
7. Transformers

Deep Learning =
Summer semester ‘24

»
»

* In the last few years, many attention mechanisms were introduced

* Always same idea: Compute attention weights for the input sequence to focus on more relevant input
steps

K e R™=>dx | Compatibility Distribution / Attention weights
Keys

Galassi, Andrea, Marco Lippi, and Paolo Torroni.
"Attention, please! A Critical Review of Neural Attention Models in Natural Language Processing." arXiv preprint arXiv:1902.02181 (2019).

Attention weights

]
Pt T/ Distribution

softmax l

4
—

function

current Keys

decoder
state

X2 X3

Y
Encoder Decoder

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

Attention, please!

* Sometimes, new key representations are useful = introducing values

same mechanism as on previous slide

convert input data to keys and values service
Query text

x
K e R‘nkxu".
service was excellent ... Keys

Input sequence v

product z e Rrexde
Weighted values Context vector

V €]Rn..xd.k
Values

Not the keys are weighted with the resulting distribution, but the values

Galassi, Andrea, Marco Lippi, and Paolo Torroni.
"Attention, please! A Critical Review of Neural Attention Models in Natural Language Processing." arXiv preprint arXiv:1902.02181 (2019).

* Transformer: A new neural network architecture based
on attention

* Encoder-Decoder structure

* No recurrence!
* Parallelizable = faster to train

* The encoded sentence is as long as the input sentence!
* Capturing more information of input
» ,Transforms” the input into an encoded form

Positional
Encoding

Add & Norm

Multi-Head
Attention

QRS

Input
Embedding

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Output
Probabilities

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention
__t

D)

‘v Encoding

Output
Embedding

Qutputs
(shifted right)

Transformer Key ldea — (Multi-Head Self-)Attention

Scaled Dot-Product Attention:

* Introduced in Vaswani et al., 2017
* Represents attention by matrix multiplication
* Uses a scaling factor d - Empirically improves results

. QK"
Attention(Q, K, V) = softmax 7 14

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Transformer Key Idea — (Multi-Head) Self-Attention

*Self-Attention

*Transform an input sequence to a weighted sum
of its own timesteps

*Helps to capture long-term dependencies
*Use Scaled Dot-Product Attention (prev. slide)

*Query, Keys, and Values are all computed from
the input sequence

*Difference from before:
Query came from ,outside’ (e.g. Decoder hidden state)

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Transformer Key Idea — (Multi-Head) Self-Attention

*Self-Attention

*Input X
*Transform X into three different ,views”:

V=X -W, Trainable weights

*Attention(Q, K, V) as before

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

e Multi-Head Attention:

— Apply self-attention multiple times for the same input sequence (using different weights
1 Wy and Wy)

- Attention with multiple ,views” of the original sequence

— Enables capturing different kinds of importance

The
Law

The The The
Law Law / Law
will will S will
never -
be

perfect

will
never
be
perfect

never R never
be N\ be
perfect " perfect

GJ49Ae induj-3nduy

but - but but but
its its
application application

&
gJaAke ynduj-}nduj

just just just just

Attention

this this
is is

this

. is

" ﬂ what what what

7 are
missing

are y
missing missing
in i in

my my
opinion - opinion opinion — opinion

<EOS> \ <EOS> <E0S>/ <EOS>

B s B e —— <PAC> s <DAd>

in

4
4
/
its its
—4 application application
should should should should
Scaled Dot-Product l be = be -

my

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Transformer — Is Attention All You Need?

We haven‘t talked
about these

Output
Probabilities

Add & Norm

Multi-Head
Attention

Masked
Multi-Head
Attention

Positional
Encoding e & D @ Encoding

Input Output
Embedding Embedding

Outputs
(shifted right)

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

10

Byte Pair Encoding — From Words to Subwords

* A vocabulary of 50,000 words covers ~95% of the text ...
* ... this gets you 95% of the way

* Imagine a translation task:
» “The sewage treatment plant smells particularly special today”
» “Die Abwasser Behandlungs Anlage riecht heute besonders speziell”

GRAMMAR POLICE IN TOWN!

* “Die UNKNOWN riecht heute besonders speziell”

I

Abwasserbehandlungsanlage?

Input
Embedding

11

Byte Pair Encoding — From Words to Subwords

* Traditional NMT has a fixed vocabulary of 30,000 — 50,000 words
* Rare words are problematic
* Qut-of-vocabulary words even more so

* NMT is an open-vocabulary problem
* Especially for languages with productive word formation (compounding)
* E. g. German

—Let’s go a level deeper and use sub-word tokens

* Character-level tokens seem computationally infeasible
* Can we do better than that?

- As so often, information theory comes to rescue

12

Byte Pair Encoding — From Words to Subwords

* Byte Pair Encoding
* Starting Point: Character-level representation
* Repeatedly replace most frequent symbol pair (a, b) with (ab)
* Hyperparameter m: When to stop = Vocabulary Size

* Bottom-up character merging
* Example with 10 merges (m = original vocab. + 10):

1 Word Frequency
Pairs Frequency
| o w </w> 5 [0 7
o W 7
lower</w> 2 o s 9
hewest</w> 6 t </w> 9

widest</w> 3

End-of-word symbol to restore
original tokenization after translation

Input
Embedding

Vocabulary:low </w>ernstid

» Merge e and s

13

Byte Pair Encoding — From Words to Subwords

* Byte Pair Encoding
* Starting Point: Character-level representation
* Repeatedly replace most frequent symbol pair (a, b) with (ab)
* Hyperparameter m: When to stop = Vocabulary Size

* Bottom-up character merging
* Example with 10 merges (m = original vocab. + 10):

2 Word Frequency
Pairs Frequency
| o w </w> 5 [0 7
o W 7
lower</w> 2 os s 9
hewest</w> 6 t </w> 9

widest</w> 3

End-of-word symbol to restore
original tokenization after translation

Input
Embedding

Vocabulary:low </w>ernstides

» Merge es and t

14

Byte Pair Encoding — From Words to Subwords

* Byte Pair Encoding
* Starting Point: Character-level representation
* Repeatedly replace most frequent symbol pair (a, b) with (ab)
* Hyperparameter m: When to stop = Vocabulary Size

* Bottom-up character merging
* Example with 10 merges (m = original vocab. + 10):

Vocabulary:low </w>ernstidesest

Input
Embedding

3 Word Frequency
Pairs Frequency
| o w </w> [0 7
(o} W 7
lower</w> ot o 5
new est </w> 4 est 5 » Merge est and </w>

wid est </w>

End-of-word symbol to restore
original tokenization after translation

15

Byte Pair Encoding — From Words to Subwords

* Byte Pair Encoding

* Starting Point: Character-level representation
* Repeatedly replace most frequent symbol pair (a, b) with (ab)
* Hyperparameter m: When to stop = Vocabulary Size

* Bottom-up character merging
* Example with 10 merges (m = original vocab. + 10):

Vocabulary: low </w>ernstidesest..

il Word Frequency
Pairs Frequency
| o w </w> [o 7
o W 7
lower</w> " et/ w> .
new est</w> 4 es 5 » Merge | and o

wid est</w>

End-of-word symbol to restore
original tokenization after translation

16

Byte Pair Encoding — From Words to Subwords

* Byte Pair Encoding
* Starting Point: Character-level representation

* Repeatedly replace most frequent symbol pair (a, b) with (ab)
* Hyperparameter m: When to stop = Vocabulary Size

* Bottom-up character merging

Input
Embedding

* Example with 10 merges (m = original vocab. + 10):

10 | Word Frequency

low</w>

low e r </w>

newest</w>

wid est</w>

End-of-word symbol to restore
original tokenization after translation

Vocabulary: low </w> ernstidesest
est</w> lo low ne new newest</w> low</w> wi

Size: Equal to initial vocabulary + amount merges

17

Byte Pair Encoding — From Words to Subwords

* How does Tokenization work?
* Let's look at ,Abwasserbehandlungsanlage” again
* Imagine we learned these merges, best at top to worst at bottom

Ab

as

er

ser

W as

Ab was
Abwas ser
Be

an

dl

h an

ng

ung

Be han

dl ung
Behan dlung
An

ag

| ag

Byte Pair Encoding — From Words to Subwords

* How does Tokenization work?
* Let's look at ,Abwasserbehandlungsanlage” again
* Imagine we learned these merges, best at top to worst at bottom

Ab

as

er

ser

ER

Ab was
Abwas ser
Be

an

dl

h an

ng

ung

Be han
dlung
Behan dlung
An

ag

| ag

1. Split word into characters

Abwasserbehandlungsanlage</w>

Byte Pair Encoding — From Words to Subwords

* How does Tokenization work?
* Let's look at ,,Abwasserbehandlungsanlage” again
* Imagine we learned these merges, best at top to worst at bottom

Ab

as

er

ser

w as

Ab was
Q'ZWE‘S sef 2. Repeatedly pick best merge
an

dl

h an

ng

ung

Be han

dl ung
Behan dlung
An

ag

| ag

1. Split word into characters

Abwasserbehandlungsanlage</w>

Abwasserbehandlungsanlage</w>

Byte Pair Encoding — From Words to Subwords

* How does Tokenization work?
* Let's look at ,,Abwasserbehandlungsanlage” again
* Imagine we learned these merges, best at top to worst at bottom

Ab

as

er

ser

w as

Ab was
Q'ZWE‘S sef 2. Repeatedly pick best merge
an

dl

h an

ng

ung

Be han

dl ung
Behan dlung
An

ag

| ag

1. Split word into characters

Abwasserbehandlungsanlage</w>

Abwasserbehandlungsanlage</w>

Byte Pair Encoding — From Words to Subwords

* How does Tokenization work?
* Let's look at ,,Abwasserbehandlungsanlage” again
* Imagine we learned these merges, best at top to worst at bottom

Ab

as

er

ser

w as

Ab was
Q'ZWE‘S sef 2. Repeatedly pick best merge
an

dl

h an

ng

ung

Be han

dl ung
Behan dlung
An

ag

| ag

1. Split word into characters

Abwasserbehandlungsanlage</w>

Abwasserbehandlungsanlage</w>

Byte Pair Encoding — From Words to Subwords

* How does Tokenization work?
* Let's look at ,Abwasserbehandlungsanlage” again
* Imagine we learned these merges, best at top to worst at bottom

Ab

as

er
ser

W as
Ab was
Abwas ser

Be 2.
an

dl

h an

ng

;enﬁan 3. We now represent our unknown

dl ung word with ten subtokens
Behan dlung

An
ag
| ag

1. Split word into characters
Abwasserbehandlungsanlage</w>
Repeatedly pick best merge

Abwasser b e han dlung s an lag e </w>

23

Byte Pair Encoding — From Words to Subwords

* Why Byte Pair Encoding?

* Open Vocabulary
* Operations learned on training set can be applied to unknown words

* Compression of frequent character sequences (efficiency)

—>Trade-off between text length and vocabulary size

Rico Sennrich, Barry Haddow, and Alexandra Birch. (2015). Neural Machine Translation of Rare Words with Subword Units.

24

https://arxiv.org/abs/1508.07909

Positional Encoding — A Notion of Order
— B —

* Position and order of words are essential in any language

* RNNs model these inherently

* Transformers (intentionally) don't have recurrence
* Massive improvements in speed

: : Tip:
* Potentially longer dependencies are covered 7

. * e /.

. . ta/s:
* But: Inputs loses sequence information / Sling

* How can structure be preserved alternatively?
* Unique encoding for each position in a sentence
* Distances between positions must be consistent across different length sentences
* Generalization to longer sentences

25

* Idea: Encode this information into our embeddings
* Add a signal to each embedding that allows meaningful distances between vectors
* The model learns this pattern

POSITIONAL
ENCODING

EMBEDDINGS

https://jalammar.github.io/illustrated-transformer/

Positional
Encoding

0.91 D.ODDZ 1

=+

LT T T

o —

26

Positional Encoding — A Notion of Order
—_— o] —

* Vaswani et al. use sines and cosines of different frequencies
* There are multiple other options, even learned ones, e. g. Shaw et al.

pos
PE , =sin(21 >
(pos,2i) 10000%model

_ pos
PE(pos,2i+1) — COS(2i
10000%modet

* pos = Word Position, d,;,,q4e; = Embedding Dimension, i = i-th Dimension

* Longest sequence with unique position representations: 10000 steps
* For any fixed offset k, PE), sk Can be represented as linear function of PE,,

Ashish Vaswani, et al. (2017). Attention Is All You Need.
Peter Shaw, Jakob Uszkoreit, & Ashish Vaswani. (2018). Self-Attention with Relative Position Representations.

27

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1803.02155

I S E— Qutput

Probabilities

Multi-Head
Attention

Masked
Multi-Head
Attention

Positional Positional
Encoding e D D e Encoding

Input Output
Embedding Embedding

Outputs
(shifted right)

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

30

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

BLEU Training Cost (FLOPs)

Model -
EN-DE EN-FR EN-DE EN-FR

ByteNet [15] 23.75

Deep-Att + PosUnk [32] 39.2 1.0-10%°
GNMT + RL [31] 24.6 39.92 3.10 1.4-102%°
ConvS2S [8] 25.16 40.46 6-10"% 1.5-10%°
MOoE [26] 26.03 40.56 0-10"° 1.2.102%°
Deep-Att + PosUnk Ensemble [32] 40.4 8.0-10%°
GNMT + RL Ensemble [31] 2630 41.16 81020 1.1-102%!
ConvS2S Ensemble [8] 2636 41.29 7-101 1.2.102%t

Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.0 2.3-10Y

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Next Step: The Evolved Transformer

* Transformer architecture is hand-engineered

 Why not let the computer find the best architecture?

* Apply a neural architecture search using an Evolution Strategy
* Randomly create different architectures and test them on the data
e Mutate the best architectures and repeat testing

- The Evolved Transformer

So, David R., Chen Liang, and Quoc V. Le. "The Evolved Transformer." arXiv preprint arXiv:1901.11117 (2019).

32

The Transformer

Transformer Decoder Block
Transformer Encoder Block

Conv 1x1: 512

[Conv 1x1 : 512]

RELU Conv 1x1 : 2048
[Conv 1x1 : 2048 |

Layer Norm (8 Head Attend to Encoder : 512

(8 Head Self Attention : 512 |

[Conv 1x1: 512]

[Conv 1x1 : 2048 |

(8 Head Attend to Encoder : 512 |

(8 Head Self Attention : 512 |

(8 Head Self Attention : 512 |

Layer Norm

So, David R., Chen Liang, and Quoc V. Le. "The Evolved Transformer." arXiv preprint arXiv:1901.11117 (2019).

The Evolved Transformer

Evolved Transformer Encoder Block O Activation Evolved Transformer Decoder Block
O Normalization
O,

0 Wide Convolution

O Attention
Conv 1x1:512 .
O Non-spatial Layer

@

(8 Head Attend to Encoder : 512 |

®
('8 Head Self Attention : 512 |

®

Sep Conv 7x1: 512

-RELU
(Conv 1x1:2048 | (Conv 3x1: 256 |

(Sep Conv 11x1:1024 |

SR AN
(+)

([16 Head Self Attention : 512] (8 Head Attend to Encoder : 512]

Layer Norm

[Gated Linear Unit : 512 |

So, David R., Chen Liang, and Quoc V. Le. "The Evolved Transformer." arXiv preprint arXiv:1901.11117 (2019).

Embedding

Model Size

Parameters Perplexity BLEU

Transformer 128 7.0M 8.62+£0.03 21.3+0.1
ET 128 7.2M 7.62 +0.02 22.04+0.1

Transformer 432 45 8M 465 +001 273+0.1
ET 432 47 9M 436 +- 001 27.7+0.1

Transformer 512 61.1M 446 £ 001 27.7+0.1
ET 512 64.1M 422 +0.01 28.2+0.1

Transformer 768 124.8M 418 £0.01 285 +0.1
ET 768 131.2M 400 +0.01 28.9+0.1

Transformer 1024 210.4M 405+001 28.8+0.2
ET 1024 221.7TM 394 + 0.01 29.0+0.1

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Machine Translation — State of the Art

* Neural Machine Translation beats SMT

* Large differences between language pairs:
Translating between English and French is much easier than between English and German!

* Current research:
* Machine Translation without parallel data
* Machine Translation in low resource languages

36

BERT

BERT — Bidirectional Encoder Representations from Transformers

* Train a Transformer encoder

* Feed whole sentence to network but mask out words Add & Norm

* Get bidirectional information with one model
Feed
Forward

* Train model on multiple tasks for which a big amount of data
exists:

* Predict hidden word (,,masked language model”) up to N=24 Add & Norm
* Randomly replace words (instead of hiding) and let the model Multi-Head
predict the correct word Attention

* Ask model if a sentence follows on another sentence 1

Positional e o

Encoding

Input
Embedding

41

BERT — Masked Language Model

Use the output of the 0.1% | Aardvark
masked word’s position
to predict the masked word

Possible classes: ST
All English words 10% Improvisation

af 7 \ P
0% | Zyzzyva

FFNN + Softmax

Randomly mask

15% of tokens
[MASK]

Input

http://jalammar.github.io/illustrated-bert/

BERT — Next Sentence Prediction

Predict likelihood
that sentence B
belongs after
sentence A

1% | IsNext

99% NotNext

FFNN + Softmax

Tokenized
Input

[MASK]

Input [MASK] [MASK]
e — | e —
Sentence A Sentence B

http://jalammar.github.io/illustrated-bert/

43

BERT — Contextualised Word Embeddings

Generate Contexualized Embeddings

12 ENCODER

[ITTT]] CICTT]
I O I O O

2 ENCODER

[LTT]] CIII]
CLIT I CT LT

1 ENCODER

http://jalammar.github.io/illustrated-bert/

[T T LT T T ILITT]

But which one should we use?

44

BERT — Contextualised Word Embeddings

What is the best contextualized embedding for “Help” in that context?

First Layer

Last Hidden Layer

Sum All 12
Layers

Second-to-Last
Hidden Layer

Sum Last Four
Hidden

Concat Last
Four Hidden

http://jalammar.github.io/illustrated-bert/

Dev F1 Score

91.0

45

BERT — Single Sentence Classification Tasks

E.g. Sentiment Analysis
on Stanford Sentiment Treebank

Single Sentence

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

46

BERT — Sentence Pair Classification Tasks

E.g. SWAG dataset:

, t at the piano. She

a) sits on a bench as her sister plays with the doll.
b) smiles with someone as the music plays.
¢) is in the crowd, watching the dancers.
d) nervously sets her fingers on the keys.

A girl is going across a set of monkey bars. She
a) jumps up across the monkey bars.
b) struggles onto the monkey bars to grab her head.
c) gets to the end and stands on a wooden plank.
d) jumps up and does a back flip.

The woman is now blow drying the dog. The dog
a) is placed in the kennel next to a woman’s feet.
b) washes her face with the shampoo.
c) walks into frame and walks towards the dog.
d) tried to cut her face, so she is trying to do something
very close to her face.

Table 1: Examples from Swaes; the correct an-
swer is bolded. Adversarial Filtering ensures that
stylistic models find all options equally appealing.

Sentence 1 Sentence 2

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
Zellers, Rowan, et al. "Swag: A large-scale adversarial dataset for grounded commonsense inference." arXiv preprint arXiv:1808.05326 (2018).

BERT — Question Answering Tasks

Start/End Span

In meteorology, precipitation is any product
C T T T of the condensation of atmospheric water vapor
1 e N [SEP] T that falls under gravity. The main forms of pre-

cipitation include drizzle, rain, sleet, snow, grau
pel and hail... Precipitation forms as smaller
droplets coalesce via collision with other rain
drops or ice crystals within a cloud. Short, in-

tense periods of rain in scattered locations are
B E R I called “showers” .

What causes precipitation to fall?
gravity

What is another main form of precipitation be-
sides drizzle, rain, snow, sleet and hail?
[SEP] graupel

Where do water droplets collide with ice crystals
to form precipitation?
within a cloud

Figure 1: Question-answer pairs for a sample passage in the
SQuAD dataset. Each of the answers is a segment of text from

the passage.

Question Paragraph

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
Rajpurkar, Pranav, et al. "Squad: 100,000+ questions for machine comprehension of text." arXiv preprint arXiv:1606.05250 (2016).

BERT — Single Sentence Tagging Tasks

E.g. CoNLL-2003 NER:

Named entities are phrases that contain the names
of persons, organizations and locations. Example:

[ORG U.N. | official [PER Ekeus | heads for
[LOC Baghdad | .

Single Sentence

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
Sang, Erik F., and Fien De Meulder. "Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition." arXiv preprint cs/0306050 (2003).

49

BERT — Results

System MNLI-(m/mm)
392k
Pre-OpenAl SOTA 80.6/80.1
BiLSTM+ELMo+Attn 76.4/76.1
OpenAl GPT 82.1/81.4
BERTRAsE 84.6/83 .4
BERTaRrGE 86.7/85.9

QQP
363k

66.1
64.8
70.3
71.2
72.1

QNLI
108k
82.3
79.8
87.4
90.5
92.7

SST-2
67k
93.2
90.4
91.3
93.5
94.9

CoLA
8.5k
35.0
36.0
454
52.1
60.5

STS-B
5.7k
81.0
73.3
80.0
85.8
86.5

MRPC
3.5k
86.0
84.9
82.3
88.9
89.3

RTE
2.5k
61.7
56.8
56.0
66.4
70.1

Average
74.0
71.0
75.1
79.6
82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.® BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

50

BERT — Derivatives

* Since then various derivatives have been developed...

1. BERT (from Google) released with the paper BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by
Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.

2. RoBERTa (from Facebook), released together with the paper a Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott,
Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.

3. DistilBERT (from HuggingFace) released together with the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
lighter by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into DistilGPT2.

4. CamemBERT (from FAIR, Inria, Sorbonne Université) released together with the paper CamemBERT: a Tasty French Language Model by
Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suarez, Yoann Dupont, Laurent Romary, Eric Villemonte de la Clergerie, Djame Seddah,
and Benoit Sagot.

5. ALBERT (from Google Research), released together with the paper a ALBERT: A Lite BERT for Self-supervised Learning of Language
Representations by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.

6. XLM-RoBERTa (from Facebook Al), released together with the paper Unsupervised Cross-lingual Representation Learning at Scale by
Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzman, Edouard Grave, Myle
Ott, Luke Zettlemoyer and Veselin Stoyanov.

7. FlauBERT (from CNRS) released with the paper FlauBERT: Unsupervised Language Model Pre-training for French by Hang Le, Loic Vial,

Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoit Crabbé, Laurent Besacier, Didier

Schwab.

GPT

What about the Decoder?

BERT Decoder
* Encoder-only \
* Qutput:

* Word Embeddings
* Creates representations of Input for:
* Question Answering

Encoder

Masked
multi-head
attention

* Recommendation

* Summarization :
* Named Entity Recognition e |
e Semantic Similarity i

(SentenceBERT) |

Positional
encoding

Embedding
t

Sources Targets

What about the Decoder?

F—— What if we use the Decoder only?
BERT Decoder
* Encoder-only \
* Qutput:

* Word Embeddings
* Creates representations of Input for:
* Question Answering

Encoder

Masked
multi-head
attention

* Recommendation

* Summarization :
* Named Entity Recognition e |
e Semantic Similarity i

(SentenceBERT) |

Positional
encoding

Embedding
t

Sources Targets

54

What about the Decoder?

(Generative Pretrained Transformer)

BERT Decoder * Decoder-only

* Encoder-only \ e Output

* Output: * Probability of next word/token
* Word Embeddings * Predicts continuation of text

 Creates representations of Input for: — « Output is based on Input text

* Question Answering

* Summarization
* Named Entity Recognition

e Semantic Similarity

* Answer question
Add&norm .
* Follow Instructions
Muti-head

attention “Learn” from examples
* Most famous example: ChatGPT

Positionwise
FFN

(SentenceBERT) - Add & norm
o Masked
C Re commen d at on Multi-head multi-head

attention attention

\
I
|
|
|
|
I
I
I
|
|
|
|
|
I
I
I
/

Positional Positional
encoding encoding

Embedding Embedding

Sources Targets

55

What about the Decoder?

BERT

* Encoder-only
* Output:

» Creates representations of Input for:

—

Word Embeddings

Question Answering
Summarization

Named Entity Recognition
Semantic Similarity
(SentenceBERT)
Recommendation

Decoder

Add & norm
Positionwise
FFEN

Add & norm

Muti-head
attention

Encoder

Add & norm

Positionwise
FFN
Add & norm
Multi-head
attention

t

Positional
encoding e encoding

Embedding Embedding

Sources Targets

Masked
multi-head
attention

\
I
|
|
|
|
I
I
I
|
|
|
|
|
I
I
I
/

Positional

GPT
(Generative Pretrained Transformer)
e Decoder-only
* Qutput
* Probability of next word/token
* Predicts continuation of text
e OQutput is based on Input text
* Answer question
* Follow Instructions
 “Learn” from examples
* Most famous example: ChatGPT

Trained autoregressively

e Predict next token... (like RNN)

e ...but based on entire input, not
just hidden state

* Does not get to see the End of the
Sequence (unlike BERT)

56

Vision Transformer

Slides in this section are based on the Lecture “Advanced Deep Learning - Large Language Models” by
Katharina Breininger and Vincent Christlein at Friedrich-Alexander-Universitat Erlangen-Nirnberg

Revisiting CNNs

CNNs incorporate inductive bias

e Hierarchical organization
e Local connectivity
e Translational equivariance

—> Reduces what the network can represent
—> Receptive field strongly linked to network depth

Can we get rid of this Restriciton?
Yes*

*Term and Conditions apply

58

Vision Transformer (ViT) - “An image is worth 16 x 16 words”

Core idea: Images are also just “sequences”

* Separate images into patches
° Tra nsform patche sto to kens Vision Transformer (ViT) Transformer Encoder

* Encode patch-tokens
using Transformer

Transformer Encoder

Patch + Position
Embedding

* Extra learnable
[class] embedding

Embedded
Patches

Source: Dosovitskiy, Beyer, Kolesnikov, et al. ,,An image is worth 16 x 16 words”, 2021

59

Vision Transformer (ViT) - “An image is worth 16 x 16 words”

Main parameters:
Size of input patches:
16x16 input patches - ViT-X/16

Transformer parameters:
Layers, hidden size, MLP size,
heads ...

*\/iT-Base (86 M)

*ViT-Large (307M)
*ViT-Huge (632M)

Vision Transformer (ViT) Transformer Encoder

Transformer Encoder

Patch + Position , Multi-Head
Embedding Attention

* Extra learnable
[class] embedding

Embedded
Patches

Source: Dosovitskiy, Beyer, Kolesnikov, et al. ,,An image is worth 16 x 16 words”, 2021

60

Vision Transformer (ViT) - “An image is worth 16 x 16 words”

Core insight: It works!

e SOTA for various image recognition
benchmarks ...

e ... when pre-training on large-scale
(!) datasets (JFT-300M)

e More efficient pre-training
compared to (large) CNNs

ImageNet
ImageNet RealL
CIFAR-10

CIFAR-100
Oxford-1lIT Pets
Oxford Flowers-102
VTAB (19 tasks)

TPUv3-core-days

Ours-JFT
(ViT-H/14)

88.55 +0.04
90.72 +0.05
99.50 +0.06
94.55 +0.04
97.56 +0.03
99.68 +0.02
77.63 +0.23

2.5k

ImageNet

BiT-L Noisy Student
(ResNet152x4) (EfficientNet-L2)

87.54 +0.02
90.54
99.37 +0.06
93.51 +0.08
96.62 +0.23
99.63 +0.03
76.29 +1.70

9.9k

BiT
e ViT-B/32
ViT-B/16

ImageNet-21k

Pre-training dataset

88.4
90.55

» ViT-L/32
ViT-1/16
@) ViT-H/14

JFT-300M

Vision Transformer (ViT) - “An image is worth 16 x 16 words”

Additional insights:

*Hybrid models are possible
* boost performance for smaller data regimes

* Position-embeddings can be successfully
learned

e Efficient implementations (LLMs) can be
re-used

ImageN et

&

8

>
>
Q
o
-
&)
Q
4]
Tt
Q
Uy
wn
S
o
—

Transformer (ViT)
ResNet (BiT)
Hybrid

107 10°
Total pre-training compute [exaFL O Ps]

Source: Dosovitskiy, Beyer, Kolesnikov, et al. ,,An image is worth 16 x 16 words”, 2021 (adapted)

62

Beyond Re-using Transformers -

* Vanilla ViTs use uniform “resolution”
— Can give a lot of freedom but data hungry

* Introduce inductive bias again:
Hierarchical representation

* Hierarchy allows tasks at multiple scales
* Classification
* Object detection
* Segmentation

* Similar concepts: SegFormer

Swin-Transformers

segmentation _ .
classification detection ... classification

kel ik i

LT =
(a) Swin Transformer (ours)

Source: Ze Liu, Yutong Lin, Yue Cao, et al. “Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows”, 2021 (adapted)

63

Beyond Transformers? CNNs or Transformers

* ConvNeXt: A Convnet for the 2020s

* Transfers ideas from from Transformer Architectures to
Convolutional Architectures

* Pretrained on large datasets, CNNS scale similarly
* CNNs are not obsolete

* Attention appears to work better in transfer learning and multi-
task learning

ImageNet-1K Acc.
90

ConvNeXt

Swin Transformer
(2021) ConvNeXt
Swin Transformer
(2021)

DeiT
ResNet (2020)
(2015)

256 GFLOPs

ImageNet-1K Trained ImageNet-22K Pre-trained

Source: Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, et al. “A ConvNet for the 2020s”, 2022
(adapted)

64

Finetuning your own Model

Finetuning your own Model

* Problem: Training a model from scratch can u H uggi ng Fa Ce

take a lot of data and time

Models BERT Full-text search % Add filters Tl Sort: Trending

* Solution: use pretrained models

* Already knows how to interpret
Language/Images/...
— Transfer knowledge from pretraining

£ google-bert/bert-bhase-uncased

£ google-bert/bert-base-chinese

£ dslim/bert-base-NER

* Fine-tune with your own data for your own task
% google-bert/bert-base-multilingual-cased
@ nlpaueb/legal-bert-base-uncased

1 facebook/w2v-bert-2.0

£ google-bert/bert-base-cased

@ CAMelL-Lab/bert-base-arabic-camelbert-da

Finetuning your own Model

Time (GPU hours) Power Consumption (W) Carbon Emitted(tCO2eq)

_ Llama 3 8B 1.3M 700 390
But what if we cannot even run

?
the model: Llama 3[70B 64N 700 1900

Total 7.7 2290

https://huggingface.co/meta-llama/Meta-Llama-3-8B

At 16 bit per parameter that’s 140 GB
VRAM just to load the model and We'd really like to make use of all
perform inference this pretraining

At least twice to train the model one
sample at a time.

67

Finetuning your own Model - Adapters

* Add adapter-layers between (some) pretrained
layers / Adapter

Layer
Transformer

Layer

* Freeze the original model’s weights

* Resulting model has comparable performance
to full finetuning

Feedforward
down-project

* Need to train fewer weights, but still need to
load the original model + added layers Multi-headed

attention

Houlsby, Neil, et al. "Parameter-efficient transfer learning for NLP." International
conference on machine learning. PMLR, 2019. (adapted)

68

Finetuning your own Model — LoRa (Low Rank Adaptation)

* Instead of inserting new layers, train an “offset” to
the existing layers
h=Wx+Vx

* Updates in finetuning tend to focus on some specific
aspects of the internal representation

« few weightsin V' € RA*4 contain most of the
information

«V € R¥4 can be approximated via a low-rank matrix

rank (M) is the number of linearly independent columns in M

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv
preprint arXiv:2106.09685 (2021). (adapted)

69

Pretrained Adapter
Weights Weights

W € Raxd V € Rexd

If ¥ <K m,n this takes a lot fewer parameters
M has mxn parameters
AB has r(m+n) parameters

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv
preprint arXiv:2106.09685 (2021).

70

Finetuning your own Model — LoRa (Low Rank Adaptation)

rank (M) is the number of linearly independent columns in M

Pretrained
Weights

If r <K m,n this takes a lot fewer parameters

W e RdXd

M has m x n parameters
AB has r(m + n) parameters

We can learn two small matrices rather than a full adapter Matrix

h=Wx+Vx =~ Wx + BAx

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv
preprint arXiv:2106.09685 (2021).

71

Finetuning your own Model — QLoRa

We saved parameters here

But we still need to perform
the forward pass through the
entire model

Solution: Model Quantization

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv
preprint arXiv:2106.09685 (2021).

72

Finetuning your own Model — QLoRa

Model Quantization

Model weights are typically stored in 16 or 32 Bits as floating point numbers A GOTEENT, dE e &

: : the largest input
Idea: Map weights to a smaller number of approximate values 8 P

' 127
xInt8 — v ound XIntS) _ round(cFP32 X XFPSZ)

absmax (XMt8)
/

Normalize weights with regard to largest input value
Map values to integers
Store integer weights

Dequantize these values only during computation:
Int8
FP32 yFP32) _ ~ yFP32
X) — cFP32 ” X

= 2 2

dequant(c

Outliers can cause issues = Split Matrix up into smaller chunks with their own ¢

73

Finetuning your own Model — QLoRa

We saved parameters here

--
N

And significantly reduced :
the memory requirements { Pretrained

thi t : .
on this par Weights

— We can finetune many large models W e Réxd
(like LLMs) on consumer Hardware :

Note: We cannot train the
guantized model, but we can
merge in the trained

Hu, Edward J., et al. "Lora: Low-rank adaptation of large
ada pters afterwards language models." arXiv preprint arXiv:2106.09685 (2021).

74

	Slide 1
	Slide 2: Attention, please!
	Slide 3: Recall: Loung-Attention
	Slide 4: Attention, please!
	Slide 5: Transformer — Is Attention All You Need?
	Slide 6: Transformer Key Idea — (Multi-Head Self-)Attention
	Slide 7: Transformer Key Idea — (Multi-Head) Self-Attention
	Slide 8: Transformer Key Idea — (Multi-Head) Self-Attention
	Slide 9: Transformer Key Idea — Multi-Head Self-Attention
	Slide 10: Transformer — Is Attention All You Need?
	Slide 11: Byte Pair Encoding — From Words to Subwords
	Slide 12: Byte Pair Encoding — From Words to Subwords
	Slide 13: Byte Pair Encoding — From Words to Subwords
	Slide 14: Byte Pair Encoding — From Words to Subwords
	Slide 15: Byte Pair Encoding — From Words to Subwords
	Slide 16: Byte Pair Encoding — From Words to Subwords
	Slide 17: Byte Pair Encoding — From Words to Subwords
	Slide 18: Byte Pair Encoding — From Words to Subwords
	Slide 19: Byte Pair Encoding — From Words to Subwords
	Slide 20: Byte Pair Encoding — From Words to Subwords
	Slide 21: Byte Pair Encoding — From Words to Subwords
	Slide 22: Byte Pair Encoding — From Words to Subwords
	Slide 23: Byte Pair Encoding — From Words to Subwords
	Slide 24: Byte Pair Encoding — From Words to Subwords
	Slide 25: Positional Encoding — A Notion of Order
	Slide 26: Positional Encoding — A Notion of Order
	Slide 27: Positional Encoding — A Notion of Order
	Slide 28: Positional Encoding — A Notion of Order
	Slide 30: Transformer — Is Attention All You Need?
	Slide 31: Transformer — Results
	Slide 32: Next Step: The Evolved Transformer
	Slide 33: The Transformer
	Slide 34: The Evolved Transformer
	Slide 35: Evolved Transformer vs. Transformer — Results
	Slide 36: Machine Translation — State of the Art
	Slide 40: BERT
	Slide 41: BERT — Bidirectional Encoder Representations from Transformers
	Slide 42: BERT — Masked Language Model
	Slide 43: BERT — Next Sentence Prediction
	Slide 44: BERT — Contextualised Word Embeddings
	Slide 45: BERT — Contextualised Word Embeddings
	Slide 46: BERT — Single Sentence Classification Tasks
	Slide 47: BERT — Sentence Pair Classification Tasks
	Slide 48: BERT — Question Answering Tasks
	Slide 49: BERT — Single Sentence Tagging Tasks
	Slide 50: BERT — Results
	Slide 51: BERT — Derivatives
	Slide 52: GPT
	Slide 53: What about the Decoder?
	Slide 54: What about the Decoder?
	Slide 55: What about the Decoder?
	Slide 56: What about the Decoder?
	Slide 57: Vision Transformer
	Slide 58: Revisiting CNNs
	Slide 59: Vision Transformer (ViT) - “An image is worth 16 × 16 words”
	Slide 60: Vision Transformer (ViT) - “An image is worth 16 × 16 words”
	Slide 61: Vision Transformer (ViT) - “An image is worth 16 × 16 words”
	Slide 62: Vision Transformer (ViT) - “An image is worth 16 × 16 words”
	Slide 63: Beyond Re-using Transformers - Swin-Transformers
	Slide 64: Beyond Transformers? CNNs or Transformers
	Slide 65: Finetuning your own Model
	Slide 66: Finetuning your own Model
	Slide 67: Finetuning your own Model
	Slide 68: Finetuning your own Model - Adapters
	Slide 69: Finetuning your own Model – LoRa (Low Rank Adaptation)
	Slide 70: Finetuning your own Model – LoRa (Low Rank Adaptation)
	Slide 71: Finetuning your own Model – LoRa (Low Rank Adaptation)
	Slide 72: Finetuning your own Model – QLoRa
	Slide 73: Finetuning your own Model – QLoRa
	Slide 74: Finetuning your own Model – QLoRa

