
7. Transformers

Deep Learning
Summer semester ‘24

Attention, please!

• In the last few years, many attention mechanisms were introduced

• Always same idea: Compute attention weights for the input sequence to focus on more relevant input
steps

Galassi, Andrea, Marco Lippi, and Paolo Torroni.
"Attention, please! A Critical Review of Neural Attention Models in Natural Language Processing." arXiv preprint arXiv:1902.02181 (2019).

keys: data features
(e.g. word embeddings,
Encoder hidden states,
document representations, …)

query: what to ask for?
(e.g. current Decoder hidden state,
word embeddings, background knowledge, …)

compatibility function: which key is most compatible to query?
attention weights: used to weight the keys

energy scores to distribution:
convert ‚compatibilities‘ of query and keys
to weight distribution (e.g. using softmax,
sigmoid, …)

2

Recall: Loung-Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ1 ℎ2 ℎ3 ℎ4

<begin>

𝑥1 𝑥2 𝑥3 𝑥4

𝑠0

⊗ ⊗ ⊗ ⊗𝑠0

𝑦1

𝑒1 𝑒2 𝑒3 𝑒4

softmax

𝛼1 𝛼2 𝛼3 𝛼4

𝑐0 =

𝑖=1

4

𝛼𝑖ℎ𝑖

current
decoder
state

FFN

Encoder Decoder

Query

Keys

Compat.
function

Energy

Distribution

Attention weights

3

Attention, please!

• Sometimes, new key representations are useful → introducing values

4

Galassi, Andrea, Marco Lippi, and Paolo Torroni.
"Attention, please! A Critical Review of Neural Attention Models in Natural Language Processing." arXiv preprint arXiv:1902.02181 (2019).

convert input data to keys and values

same mechanism as on previous slide

Not the keys are weighted with the resulting distribution, but the values

Transformer — Is Attention All You Need?

• Transformer: A new neural network architecture based
on attention

• Encoder-Decoder structure

• No recurrence!
• Parallelizable → faster to train

• The encoded sentence is as long as the input sentence!
• Capturing more information of input

• „Transforms“ the input into an encoded form

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017. 5

Transformer Key Idea — (Multi-Head Self-)Attention

Scaled Dot-Product Attention:
• Introduced in Vaswani et al., 2017
•Represents attention by matrix multiplication
•Uses a scaling factor 𝑑 → Empirically improves results

Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

√𝑑
𝑉

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017. 6

Transformer Key Idea — (Multi-Head) Self-Attention

•Self-Attention
•Transform an input sequence to a weighted sum
of its own timesteps
•Helps to capture long-term dependencies

•Use Scaled Dot-Product Attention (prev. slide)

•Query, Keys, and Values are all computed from
the input sequence
•Difference from before:
Query came from ‚outside‘ (e.g. Decoder hidden state)

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017. 7

Transformer Key Idea — (Multi-Head) Self-Attention

•Self-Attention
•Input 𝑋
•Transform 𝑋 into three different „views“:
•𝐾 = 𝑋 ⋅ 𝑊𝑘

•V = 𝑋 ⋅ 𝑊𝑣

•𝑄 = 𝑋 ⋅ 𝑊𝑞

•𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) as before

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Trainable weights

8

Transformer Key Idea — Multi-Head Self-Attention

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

• Multi-Head Attention:
– Apply self-attention multiple times for the same input sequence (using different weights

𝑊𝑞
𝑖, 𝑊𝑣

𝑖 and 𝑊𝑘
𝑖)

→ Attention with multiple „views“ of the original sequence

→ Enables capturing different kinds of importance

9

Transformer — Is Attention All You Need?

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

We haven‘t talked
about these

You know this part

10

Byte Pair Encoding — From Words to Subwords

• A vocabulary of 50,000 words covers ~95% of the text …

• … this gets you 95% of the way

• Imagine a translation task:
➢“The sewage treatment plant smells particularly special today”

➢“Die Abwasser Behandlungs Anlage riecht heute besonders speziell”

• “Die UNKNOWN riecht heute besonders speziell”

Abwasserbehandlungsanlage?

11

Byte Pair Encoding — From Words to Subwords

• Traditional NMT has a fixed vocabulary of 30,000 — 50,000 words
• Rare words are problematic

• Out-of-vocabulary words even more so

• NMT is an open-vocabulary problem
• Especially for languages with productive word formation (compounding)

• E. g. German

→Let’s go a level deeper and use sub-word tokens

• Character-level tokens seem computationally infeasible

• Can we do better than that?

→As so often, information theory comes to rescue

12

Byte Pair Encoding — From Words to Subwords

• Byte Pair Encoding
• Starting Point: Character-level representation

• Repeatedly replace most frequent symbol pair (a, b) with (ab)

• Hyperparameter m: When to stop → Vocabulary Size

• Bottom-up character merging

• Example with 10 merges (m = original vocab. + 10):

Word Frequency

l o w </w> 5

l o w e r </w> 2

n e w e s t </w> 6

w i d e s t </w> 3

End-of-word symbol to restore
original tokenization after translation

Vocabulary: l o w </w> e r n s t i d

Pairs Frequency
l o 7
o w 7
… … …
e s 9
… … …
t </w> 9 Merge e and s

1

13

Byte Pair Encoding — From Words to Subwords

• Byte Pair Encoding
• Starting Point: Character-level representation

• Repeatedly replace most frequent symbol pair (a, b) with (ab)

• Hyperparameter m: When to stop → Vocabulary Size

• Bottom-up character merging

• Example with 10 merges (m = original vocab. + 10):

Word Frequency

l o w </w> 5

l o w e r </w> 2

n e w es t </w> 6

w i d es t </w> 3

End-of-word symbol to restore
original tokenization after translation

Vocabulary: l o w </w> e r n s t i d es

Pairs Frequency
l o 7
o w 7
… … …
es t 9
… … …
t </w> 9 Merge es and t

2

14

Byte Pair Encoding — From Words to Subwords

• Byte Pair Encoding
• Starting Point: Character-level representation

• Repeatedly replace most frequent symbol pair (a, b) with (ab)

• Hyperparameter m: When to stop → Vocabulary Size

• Bottom-up character merging

• Example with 10 merges (m = original vocab. + 10):

Word Frequency

l o w </w> 5

l o w e r </w> 2

n e w est </w> 6

w i d est </w> 3

End-of-word symbol to restore
original tokenization after translation

Vocabulary: l o w </w> e r n s t i d es est

Pairs Frequency
l o 7
o w 7
… … …
est </w> 9
… … …
d est 3 Merge est and </w>

3

15

Byte Pair Encoding — From Words to Subwords

• Byte Pair Encoding
• Starting Point: Character-level representation

• Repeatedly replace most frequent symbol pair (a, b) with (ab)

• Hyperparameter m: When to stop → Vocabulary Size

• Bottom-up character merging

• Example with 10 merges (m = original vocab. + 10):

Word Frequency

l o w </w> 5

l o w e r </w> 2

n e w est</w> 6

w i d est</w> 3

End-of-word symbol to restore
original tokenization after translation

Vocabulary: l o w </w> e r n s t i d es est …

Pairs Frequency
l o 7
o w 7
… … …
w est</w> 6
… … …
d es 3 Merge l and o

4

16

Byte Pair Encoding — From Words to Subwords

• Byte Pair Encoding
• Starting Point: Character-level representation

• Repeatedly replace most frequent symbol pair (a, b) with (ab)

• Hyperparameter m: When to stop → Vocabulary Size

• Bottom-up character merging

• Example with 10 merges (m = original vocab. + 10):

Word Frequency

low</w> 5

low e r </w> 2

newest</w> 6

w i d est</w> 3

End-of-word symbol to restore
original tokenization after translation

Vocabulary: l o w </w> e r n s t i d es est
est</w> lo low ne new newest</w> low</w> wi

Size: Equal to initial vocabulary + amount merges

10

17

Byte Pair Encoding — From Words to Subwords

• How does Tokenization work?
• Let‘s look at „Abwasserbehandlungsanlage“ again

• Imagine we learned these merges, best at top to worst at bottom

A b
a s
e r
s er
w as
Ab was
Abwas ser
B e
a n
d l
h an
n g
u ng
Be han
dl ung
Behan dlung
A n
a g
l ag

18

Byte Pair Encoding — From Words to Subwords

• How does Tokenization work?
• Let‘s look at „Abwasserbehandlungsanlage“ again

• Imagine we learned these merges, best at top to worst at bottom

A b
a s
e r
s er
w as
Ab was
Abwas ser
B e
a n
d l
h an
n g
u ng
Be han
dl ung
Behan dlung
A n
a g
l ag

1. Split word into characters

A b w a s s e r b e h a n d l u n g s a n l a g e </w>

19

Byte Pair Encoding — From Words to Subwords

• How does Tokenization work?
• Let‘s look at „Abwasserbehandlungsanlage“ again

• Imagine we learned these merges, best at top to worst at bottom

A b
a s
e r
s er
w as
Ab was
Abwas ser
B e
a n
d l
h an
n g
u ng
Be han
dl ung
Behan dlung
A n
a g
l ag

1. Split word into characters

A b w a s s e r b e h a n d l u n g s a n l a g e </w>

2. Repeatedly pick best merge

Ab w a s s e r b e h a n d l u n g s a n l a g e </w>

20

Byte Pair Encoding — From Words to Subwords

• How does Tokenization work?
• Let‘s look at „Abwasserbehandlungsanlage“ again

• Imagine we learned these merges, best at top to worst at bottom

A b
a s
e r
s er
w as
Ab was
Abwas ser
B e
a n
d l
h an
n g
u ng
Be han
dl ung
Behan dlung
A n
a g
l ag

1. Split word into characters

A b w a s s e r b e h a n d l u n g s a n l a g e </w>

2. Repeatedly pick best merge

Ab w as s e r b e h a n d l u n g s a n l a g e </w>

21

Byte Pair Encoding — From Words to Subwords

• How does Tokenization work?
• Let‘s look at „Abwasserbehandlungsanlage“ again

• Imagine we learned these merges, best at top to worst at bottom

A b
a s
e r
s er
w as
Ab was
Abwas ser
B e
a n
d l
h an
n g
u ng
Be han
dl ung
Behan dlung
A n
a g
l ag

1. Split word into characters

A b w a s s e r b e h a n d l u n g s a n l a g e </w>

2. Repeatedly pick best merge

Ab w as s er b e h a n d l u n g s a n l a g e </w>

22

Byte Pair Encoding — From Words to Subwords

• How does Tokenization work?
• Let‘s look at „Abwasserbehandlungsanlage“ again

• Imagine we learned these merges, best at top to worst at bottom

A b
a s
e r
s er
w as
Ab was
Abwas ser
B e
a n
d l
h an
n g
u ng
Be han
dl ung
Behan dlung
A n
a g
l ag

1. Split word into characters

A b w a s s e r b e h a n d l u n g s a n l a g e </w>

2. Repeatedly pick best merge

3. We now represent our unknown
word with ten subtokens

Abwasser b e han dlung s an lag e </w>

Merges

23

Byte Pair Encoding — From Words to Subwords

• Why Byte Pair Encoding?

• Open Vocabulary
• Operations learned on training set can be applied to unknown words

• Compression of frequent character sequences (efficiency)

→Trade-off between text length and vocabulary size

Rico Sennrich, Barry Haddow, and Alexandra Birch. (2015). Neural Machine Translation of Rare Words with Subword Units. 24

https://arxiv.org/abs/1508.07909

Positional Encoding — A Notion of Order

• Position and order of words are essential in any language

•RNNs model these inherently

• Transformers (intentionally) don't have recurrence
• Massive improvements in speed
• Potentially longer dependencies are covered
• But: Inputs loses sequence information

•How can structure be preserved alternatively?
• Unique encoding for each position in a sentence
• Distances between positions must be consistent across different length sentences
• Generalization to longer sentences

25

Positional Encoding — A Notion of Order

• Idea: Encode this information into our embeddings
• Add a signal to each embedding that allows meaningful distances between vectors

• The model learns this pattern

https://jalammar.github.io/illustrated-transformer/

26

Positional Encoding — A Notion of Order

• Vaswani et al. use sines and cosines of different frequencies
• There are multiple other options, even learned ones, e. g. Shaw et al.

• pos = Word Position, 𝑑𝑚𝑜𝑑𝑒𝑙 = Embedding Dimension, i = i-th Dimension

• Longest sequence with unique position representations: 10000 steps

• For any fixed offset k, 𝑃𝐸𝑝𝑜𝑠+𝑘 can be represented as linear function of 𝑃𝐸𝑝𝑜𝑠

Ashish Vaswani, et al. (2017). Attention Is All You Need.
Peter Shaw, Jakob Uszkoreit, & Ashish Vaswani. (2018). Self-Attention with Relative Position Representations.

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin

𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

27

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1803.02155

Positional Encoding — A Notion of Order

• A visualization helps to understand how this works

28

Transformer — Is Attention All You Need?

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017. 30

Transformer — Results

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017. 31

Next Step: The Evolved Transformer

• Transformer architecture is hand-engineered

• Why not let the computer find the best architecture?

• Apply a neural architecture search using an Evolution Strategy
• Randomly create different architectures and test them on the data
• Mutate the best architectures and repeat testing

→ The Evolved Transformer

So, David R., Chen Liang, and Quoc V. Le. "The Evolved Transformer." arXiv preprint arXiv:1901.11117 (2019). 32

The Transformer

So, David R., Chen Liang, and Quoc V. Le. "The Evolved Transformer." arXiv preprint arXiv:1901.11117 (2019). 33

The Evolved Transformer

So, David R., Chen Liang, and Quoc V. Le. "The Evolved Transformer." arXiv preprint arXiv:1901.11117 (2019). 34

Evolved Transformer vs. Transformer — Results

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017. 35

Machine Translation — State of the Art

• Neural Machine Translation beats SMT

• Large differences between language pairs:
Translating between English and French is much easier than between English and German!

• Current research:
• Machine Translation without parallel data

• Machine Translation in low resource languages

36

BERT

BERT — Bidirectional Encoder Representations from Transformers

• Train a Transformer encoder

• Feed whole sentence to network but mask out words
• Get bidirectional information with one model

• Train model on multiple tasks for which a big amount of data
exists:
• Predict hidden word („masked language model“)

• Randomly replace words (instead of hiding) and let the model
predict the correct word

• Ask model if a sentence follows on another sentence

up to N=24

41

BERT — Masked Language Model

http://jalammar.github.io/illustrated-bert/ 42

BERT — Next Sentence Prediction

http://jalammar.github.io/illustrated-bert/ 43

BERT — Contextualised Word Embeddings

http://jalammar.github.io/illustrated-bert/ 44

BERT — Contextualised Word Embeddings

http://jalammar.github.io/illustrated-bert/ 45

BERT — Single Sentence Classification Tasks

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

E.g. Sentiment Analysis
on Stanford Sentiment Treebank

46

BERT — Sentence Pair Classification Tasks

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

Zellers, Rowan, et al. "Swag: A large-scale adversarial dataset for grounded commonsense inference." arXiv preprint arXiv:1808.05326 (2018).

E.g. SWAG dataset:

47

BERT — Question Answering Tasks

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
Rajpurkar, Pranav, et al. "Squad: 100,000+ questions for machine comprehension of text." arXiv preprint arXiv:1606.05250 (2016).

E.g. SQuAD:

48

BERT — Single Sentence Tagging Tasks

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
Sang, Erik F., and Fien De Meulder. "Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition." arXiv preprint cs/0306050 (2003).

E.g. CoNLL-2003 NER:

49

BERT — Results

50

BERT — Derivatives

• Since then various derivatives have been developed…

…
51

GPT

BERT
• Encoder-only
• Output:

• Word Embeddings
• Creates representations of Input for:

• Question Answering
• Summarization
• Named Entity Recognition
• Semantic Similarity

(SentenceBERT)
• Recommendation
• …

What about the Decoder?

53

BERT
• Encoder-only
• Output:

• Word Embeddings
• Creates representations of Input for:

• Question Answering
• Summarization
• Named Entity Recognition
• Semantic Similarity

(SentenceBERT)
• Recommendation
• …

What about the Decoder?

What if we use the Decoder only?

54

BERT
• Encoder-only
• Output:

• Word Embeddings
• Creates representations of Input for:

• Question Answering
• Summarization
• Named Entity Recognition
• Semantic Similarity

(SentenceBERT)
• Recommendation
• …

What about the Decoder?

GPT
(Generative Pretrained Transformer)
• Decoder-only
• Output

• Probability of next word/token
• Predicts continuation of text

• Output is based on Input text
• Answer question
• Follow Instructions
• “Learn” from examples

• Most famous example: ChatGPT

55

BERT
• Encoder-only
• Output:

• Word Embeddings
• Creates representations of Input for:

• Question Answering
• Summarization
• Named Entity Recognition
• Semantic Similarity

(SentenceBERT)
• Recommendation
• …

What about the Decoder?

GPT
(Generative Pretrained Transformer)
• Decoder-only
• Output

• Probability of next word/token
• Predicts continuation of text

• Output is based on Input text
• Answer question
• Follow Instructions
• “Learn” from examples

• Most famous example: ChatGPT

56

Trained autoregressively
• Predict next token… (like RNN)
• … but based on entire input, not

just hidden state
• Does not get to see the End of the

Sequence (unlike BERT)

Vision Transformer

Slides in this section are based on the Lecture “Advanced Deep Learning - Large Language Models” by
Katharina Breininger and Vincent Christlein at Friedrich-Alexander-Universität Erlangen-Nürnberg

Revisiting CNNs

CNNs incorporate inductive bias

• Hierarchical organization
• Local connectivity
• Translational equivariance

→ Reduces what the network can represent
→ Receptive field strongly linked to network depth

Can we get rid of this Restriciton?
Yes*

*Term and Conditions apply

58

Vision Transformer (ViT) - “An image is worth 16 × 16 words”

Core idea: Images are also just “sequences”

• Separate images into patches

• Transform patches to tokens

• Encode patch-tokens
using Transformer

59

Source: Dosovitskiy, Beyer, Kolesnikov, et al. „An image is worth 16 × 16 words”, 2021

Vision Transformer (ViT) - “An image is worth 16 × 16 words”

Main parameters:

Size of input patches:

16×16 input patches - ViT-X/16

Transformer parameters:

Layers, hidden size, MLP size,

heads ...

•ViT-Base (86M)

•ViT-Large (307M)

•ViT-Huge (632M)

60

Source: Dosovitskiy, Beyer, Kolesnikov, et al. „An image is worth 16 × 16 words”, 2021

Vision Transformer (ViT) - “An image is worth 16 × 16 words”

Core insight: It works!

• SOTA for various image recognition
benchmarks ...

• ... when pre-training on large-scale
(!) datasets (JFT-300M)

• More efficient pre-training
compared to (large) CNNs

61

Source: Dosovitskiy, Beyer, Kolesnikov, et al. „An image is worth 16 × 16 words”, 2021 (adapted)

Vision Transformer (ViT) - “An image is worth 16 × 16 words”

Additional insights:

•Hybrid models are possible
• boost performance for smaller data regimes

•Position-embeddings can be successfully
learned

•Efficient implementations (LLMs) can be
re-used

62

Source: Dosovitskiy, Beyer, Kolesnikov, et al. „An image is worth 16 × 16 words”, 2021 (adapted)

Beyond Re-using Transformers - Swin-Transformers

63

Source: Ze Liu, Yutong Lin, Yue Cao, et al. “Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows”, 2021 (adapted)

• Vanilla ViTs use uniform “resolution”
→ Can give a lot of freedom but data hungry

• Introduce inductive bias again:
Hierarchical representation

• Hierarchy allows tasks at multiple scales
• Classification

• Object detection

• Segmentation

• Similar concepts: SegFormer

Beyond Transformers? CNNs or Transformers

• ConvNeXt: A Convnet for the 2020s
• Transfers ideas from from Transformer Architectures to

Convolutional Architectures

• Pretrained on large datasets, CNNS scale similarly

• CNNs are not obsolete

• Attention appears to work better in transfer learning and multi-
task learning

64

Source: Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, et al. “A ConvNet for the 2020s”, 2022
(adapted)

Finetuning your own Model

Finetuning your own Model

• Problem: Training a model from scratch can
take a lot of data and time

• Solution: use pretrained models
• Already knows how to interpret

Language/Images/…
→ Transfer knowledge from pretraining

• Fine-tune with your own data for your own task

66

But what if we cannot even run
the model?

67

Finetuning your own Model

At 16 bit per parameter that’s 140 GB
VRAM just to load the model and

perform inference

At least twice to train the model one
sample at a time.

We’d really like to make use of all
this pretraining

https://huggingface.co/meta-llama/Meta-Llama-3-8B

Finetuning your own Model - Adapters

•Add adapter-layers between (some) pretrained
layers

• Freeze the original model’s weights

•Resulting model has comparable performance
to full finetuning

•Need to train fewer weights, but still need to
load the original model + added layers

68

Houlsby, Neil, et al. "Parameter-efficient transfer learning for NLP." International
conference on machine learning. PMLR, 2019. (adapted)

Finetuning your own Model – LoRa (Low Rank Adaptation)

69

• Instead of inserting new layers, train an “offset” to
the existing layers

ℎ = 𝑊𝑥 + 𝑉𝑥

•Updates in finetuning tend to focus on some specific
aspects of the internal representation

• few weights in 𝑉 ∈ ℝ𝑑×𝑑 contain most of the
information

• 𝑉 ∈ ℝ𝑑×𝑑 can be approximated via a low-rank matrix

Adapter
Weights

𝑉 ∈ ℝ𝑑×𝑑

𝑟𝑎𝑛𝑘(𝑀) is the number of linearly independent columns in 𝑀

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv
preprint arXiv:2106.09685 (2021). (adapted)

Finetuning your own Model – LoRa (Low Rank Adaptation)

70

Adapter
Weights

𝑉 ∈ ℝ𝑑×𝑑

𝑟𝑎𝑛𝑘(𝑀) is the number of linearly independent columns in 𝑀

≈ ×

𝑀 ∈ ℝ𝑚×𝑛 A ∈ ℝ𝑚×𝑟 B ∈ ℝ𝑟×𝑛

If 𝑟 ≪ 𝑚, 𝑛 this takes a lot fewer parameters
𝑀 has 𝑚×𝑛 parameters

𝐴𝐵 has r(𝑚+𝑛) parameters

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv
preprint arXiv:2106.09685 (2021).

Finetuning your own Model – LoRa (Low Rank Adaptation)

71

𝑟𝑎𝑛𝑘(𝑀) is the number of linearly independent columns in 𝑀

≈ ×

𝑀 ∈ ℝ𝑚×𝑛 A ∈ ℝ𝑚×𝑟 B ∈ ℝ𝑟×𝑛

If 𝑟 ≪ 𝑚, 𝑛 this takes a lot fewer parameters

𝑀 has 𝑚 × 𝑛 parameters
𝐴𝐵 has r(𝑚 + 𝑛) parameters

We can learn two small matrices rather than a full adapter Matrix

ℎ = 𝑊𝑥 + 𝑉𝑥 ≈ 𝑊𝑥 + 𝐵𝐴𝑥
Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv
preprint arXiv:2106.09685 (2021).

Finetuning your own Model – QLoRa

72

We saved parameters here

But we still need to perform
the forward pass through the
entire model

Solution: Model Quantization

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv
preprint arXiv:2106.09685 (2021).

Finetuning your own Model – QLoRa

73

Model Quantization

Model weights are typically stored in 16 or 32 Bits as floating point numbers

Idea: Map weights to a smaller number of approximate values

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑
127

𝑎𝑏𝑠𝑚𝑎𝑥(𝑋𝐼𝑛𝑡8)
𝑋𝐼𝑛𝑡8 = round 𝑐𝐹𝑃32 × 𝑋𝐹𝑃32

1. Normalize weights with regard to largest input value
2. Map values to integers
3. Store integer weights
4. Dequantize these values only during computation:

𝑑𝑒𝑞𝑢𝑎𝑛𝑡 𝑐𝐹𝑃32, 𝑋𝐹𝑃32 =
𝑋𝐼𝑛𝑡8

𝑐𝐹𝑃32
≈ 𝑋𝐹𝑃32

Outliers can cause issues → Split Matrix up into smaller chunks with their own 𝑐

A constant, depending on
the largest input

Finetuning your own Model – QLoRa

74

We saved parameters here

And significantly reduced
the memory requirements
on this part

→ We can finetune many large models
(like LLMs) on consumer Hardware

Note: We cannot train the
quantized model, but we can
merge in the trained
adapters afterwards

Hu, Edward J., et al. "Lora: Low-rank adaptation of large
language models." arXiv preprint arXiv:2106.09685 (2021).

	Slide 1
	Slide 2: Attention, please!
	Slide 3: Recall: Loung-Attention
	Slide 4: Attention, please!
	Slide 5: Transformer — Is Attention All You Need?
	Slide 6: Transformer Key Idea — (Multi-Head Self-)Attention
	Slide 7: Transformer Key Idea — (Multi-Head) Self-Attention
	Slide 8: Transformer Key Idea — (Multi-Head) Self-Attention
	Slide 9: Transformer Key Idea — Multi-Head Self-Attention
	Slide 10: Transformer — Is Attention All You Need?
	Slide 11: Byte Pair Encoding — From Words to Subwords
	Slide 12: Byte Pair Encoding — From Words to Subwords
	Slide 13: Byte Pair Encoding — From Words to Subwords
	Slide 14: Byte Pair Encoding — From Words to Subwords
	Slide 15: Byte Pair Encoding — From Words to Subwords
	Slide 16: Byte Pair Encoding — From Words to Subwords
	Slide 17: Byte Pair Encoding — From Words to Subwords
	Slide 18: Byte Pair Encoding — From Words to Subwords
	Slide 19: Byte Pair Encoding — From Words to Subwords
	Slide 20: Byte Pair Encoding — From Words to Subwords
	Slide 21: Byte Pair Encoding — From Words to Subwords
	Slide 22: Byte Pair Encoding — From Words to Subwords
	Slide 23: Byte Pair Encoding — From Words to Subwords
	Slide 24: Byte Pair Encoding — From Words to Subwords
	Slide 25: Positional Encoding — A Notion of Order
	Slide 26: Positional Encoding — A Notion of Order
	Slide 27: Positional Encoding — A Notion of Order
	Slide 28: Positional Encoding — A Notion of Order
	Slide 30: Transformer — Is Attention All You Need?
	Slide 31: Transformer — Results
	Slide 32: Next Step: The Evolved Transformer
	Slide 33: The Transformer
	Slide 34: The Evolved Transformer
	Slide 35: Evolved Transformer vs. Transformer — Results
	Slide 36: Machine Translation — State of the Art
	Slide 40: BERT
	Slide 41: BERT — Bidirectional Encoder Representations from Transformers
	Slide 42: BERT — Masked Language Model
	Slide 43: BERT — Next Sentence Prediction
	Slide 44: BERT — Contextualised Word Embeddings
	Slide 45: BERT — Contextualised Word Embeddings
	Slide 46: BERT — Single Sentence Classification Tasks
	Slide 47: BERT — Sentence Pair Classification Tasks
	Slide 48: BERT — Question Answering Tasks
	Slide 49: BERT — Single Sentence Tagging Tasks
	Slide 50: BERT — Results
	Slide 51: BERT — Derivatives
	Slide 52: GPT
	Slide 53: What about the Decoder?
	Slide 54: What about the Decoder?
	Slide 55: What about the Decoder?
	Slide 56: What about the Decoder?
	Slide 57: Vision Transformer
	Slide 58: Revisiting CNNs
	Slide 59: Vision Transformer (ViT) - “An image is worth 16 × 16 words”
	Slide 60: Vision Transformer (ViT) - “An image is worth 16 × 16 words”
	Slide 61: Vision Transformer (ViT) - “An image is worth 16 × 16 words”
	Slide 62: Vision Transformer (ViT) - “An image is worth 16 × 16 words”
	Slide 63: Beyond Re-using Transformers - Swin-Transformers
	Slide 64: Beyond Transformers? CNNs or Transformers
	Slide 65: Finetuning your own Model
	Slide 66: Finetuning your own Model
	Slide 67: Finetuning your own Model
	Slide 68: Finetuning your own Model - Adapters
	Slide 69: Finetuning your own Model – LoRa (Low Rank Adaptation)
	Slide 70: Finetuning your own Model – LoRa (Low Rank Adaptation)
	Slide 71: Finetuning your own Model – LoRa (Low Rank Adaptation)
	Slide 72: Finetuning your own Model – QLoRa
	Slide 73: Finetuning your own Model – QLoRa
	Slide 74: Finetuning your own Model – QLoRa

