Multilingual Natural
Language Processing

Team Projects
Goran Glavas, Benedikt Ebing, Fabian David Schmidt

Project Overview

 All groups (3 students) will tackle the same base task named
entity recognition

e Groups can select approach on how to tackle the task
* Short project presentations (~10 minutes) will be held 14t July
e Coaching sessions with TAs on demand (at most 2)

* Grading on 4-point scale from 0 to 3 points that count toward
exam bonus
* Take this nevertheless as a learning experience!

UN]

WU

Token Classification for Named Entity Recognition
with Transformer Models: Task at a Glance

Wall Street ||ponders|| Rubin ‘s role if Obama wins
Tokens
5 6 0 1 0 0 0 1 0 0
Labels
Pre- ' Wall Street ||pond|lers|| Rubin ‘s role if Obama || win E
RIOCESSY Viapped ¥ s 6 0o llo 1 0 0 0 1 0 E 0
Labels [xI—_— R [S N S) B | S | SR S) R I A |
{
Transformer
Predict 0 6 0 0 1 0 0 0 1 0 @ 0
5 6 0 0 1 0 0 0 1 0 @ 0
Evaluate
Token-level micro F1

Post-
process

Token Classification for Named Entity Recognition
with Transformers: Task Details

* Base model: smaller pre-trained multilingual transformers

* Goal: implement entire token classification pipeline &
architectural/model tweak by yourselves

* Datasets:

* Source language: CoNLL 2003 English / (WikiANN English)
» Target language(s): MasakhaNER

* Infrastructure: Google Colab / Kaggle
* Key: split tasks wisely!

UNI

WU Intermittent Language Modelling for Better Cross-

Lingual Transfer

Rationale Language Modelling Project
While multilingual language e Bilingual language modelling e Bilingual Language Modelling of
models span 100+ languages, simultaneously on source & Source & Target Language
vast majority of 7K languages are target language improves and (English + Yoruba)
un(der)represented in today’s stabilizes cross-lingual transfer * Perform zero-shot transfer from
models * Representations re-fined from CoNLL (news-domain) to
Post-hoc language modelling multilingual representation space languages part of MasakhaNER
greatly improves transfer * Suitable for post-hoc addition of ¢ Comparative Evaluation and
capabilities to unseen languages language unseen in initial Analysis between bilingually
(provided tokenizer can tokenize multilingual pre-training specialized and original

unseen language meaningfully)

BAD-X: Bilingual Adapters Improve Zero-Shot Cross-Lingual Transfer, NAACL 2022, https://aclanthology.org/2022.naacl-main.130/
Yoruba data: https://github.com/ajesujoba/YorubaTwi-Embedding
Zero-shot Cross-lingual Transfer is Under-specified Optimization, Repl4NLP 2022, https://arxiv.org/pdf/2207.05666.pdf

multilingual model

UNI

WU Parameter-Efficient Fine-Tuning (PEFT)

Rationale PEFT strategies need less VRAM Project
e Storage & training requirements ¢ PEFT strategies fine-tuneonlya ¢ Implement BitFit or Prefix-Tuning
are proportional to model size small fraction (0.1-3%) of the from scratch (w/o dedicated
* Model size keeps on increasing parameter count of the original frameworks) and compare
(albeit maybe starting to hit model against full fine-tuning
limits) * PEFT keeps (most often closeto) ¢ Perform zero-shot transfer
* Practical issue: hardly feasible to performance of “full fine-tuning’ evaluation from both WikiANN
fine-tune large models since they * Strategies: (wiki-domain) and CoNLL (news-
do not fit on GPU VRAM BitFit: only fine-tune bias terms domain) to languages part of
of layers MasakhaNER (African languages
* Prefix-Tuning: add new input in news domain)
embeddings

* Adapters, LoRA, ...

BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models, ACL 2022, https://aclanthology.org/2022.acl-short.1/
Prefix-Tuning: Optimizing Continuous Prompts for Generation, ACL 2021, https://aclanthology.org/2021.acl-long.353.pdf

UNI

WU SLICER: Sliced Fine-Tuning for Low-Resource Cross-
Lingual Transfer for NER

Rationale SLICER Project

* Premise: fine-tuning named e SLICER is an approach to force * Implement SLICER training step
entity recognition token representations to retain from scratch and compare
decontextualizes word more contextualization in against full fine-tuning
representations monolingual fine-tuning, leading * Perform zero-shot cross-lingual

* Implication: implicit "overfitting’ to more robust transfer in transfer evaluation from both
on monolingual token properties challenging scenarios WikiANN (wiki-domain) and
(casing, prefixes, suffixes) * Intuition: train classification on CoNLL (news-domain) to

» Effect: quality of cross-lingual slices (sub-segments, cf. multi- languages part of MasakhaNER
transfer to distant languages head attention) of token (African languages in news
suffers, as no subwords overlap representations, disabling the domain)
and syntax often is very different transformer to co-adapt on

redundancies; inference

{ V4 H
ensemble’ over slices
SLICER: Sliced Fine-Tuning for Low-Resource Cross-Lingual Transfer for Named Entity Recognition, EMNLP 2022, https://aclanthology.org/2022.emnlp-main.740/

UNI

WU Roadmap for the project

e Write the LightningModule
* Use ,xIm-roberta-base” as encoder
* Write your own model head for token classification
* Train your model minimizing cross entropy loss
* Evaluate your models on micro F1

e Use the AdamW optimizer with:

* Learning rate: 2e-5
e Weight decay: 0.05

* Add you projection specific modifications

UN]

WU Roadmap for the project

* Write the LightningDataModule

* Datasets to use:

* Train, Validation:
* https://huggingface.co/datasets/conll2003
* https://huggingface.co/datasets/wikiann
» Test: https://huggingface.co/datasets/masakhaner
* Take care when preprocessing the data (token classification task!)
» Additional resource: https://huggingface.co/learn/nlp-course/chapter7/2?fw=pt

* Take care of multiple test datasets (one for each target language)
e https://lightning.ai/docs/pytorch/LTS/guides/data.html

UNI

WU Roadmap for the project

* Write the final training script
* Train for 10 epochs on ConlLL /5 epochs on WikiAnn
* Test the model performance on the last checkpoint

UNI

wU Do’s & Don’ts

Do’s Don’ts
* Use AutoModel.from pretrained * Blindly copy available open-source code
* Write your own classification head * Turn a group project into a single person
tailored to the token classification task effort

e Use available frameworks to simplify
boilerplate code (pre-processing, post-
processing, CLI, etc.) and transformer
implementation

» Refer to existing code with code
comment citations

