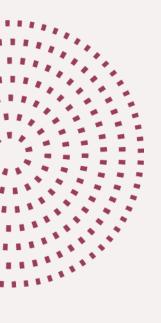


After this lecture, you'll...

- Know what cross-lingual word embeddings (CLWEs) are
- Understand methods for inducing CLWEs from scratch
- Understand how to induce CLWEs from monolingual embeddings
- Know the limitations of unsupervised induction of CLWEs
- Be able to evaluate the quality of CLWEs
- Be aware of resources with word/sentence translations

Cross-Lingual Word Embeddings

- Joint Training (from scratch)
- Projection-Based CLWEs
- Unsupervised Induction of CLWEs
- Evaluation of CLWEs



Cross-Lingual Word Embeddings

- A semantic vector space in which words with similar meaning have similar vectors
 - Whether they come from the same language or from different languages.

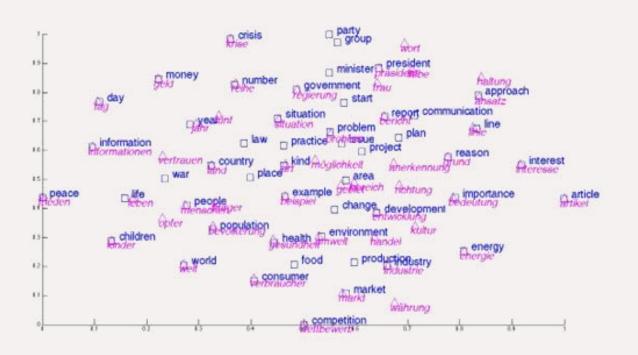


Image from: Luong, M. T., Pham, H., & Manning, C. D. (2015). <u>Bilingual word representations with monolingual quality in mind</u>. *Proc. 1st Workshop on vector space modeling for natural language processing* (pp. 151-159).

Cross-Lingual Word Embeddings

Ruder, S., Vulić, I., & Søgaard, A. (2019). <u>A Survey of Cross-Lingual Word Embedding Models</u>. Journal of Artificial Intelligence Research, 65, 569-631.

- Type of bilingual / multilingual signal
 Document-level, sentence-level, word-level, no signal (i.e., unsupervised)
- Comparability
 Parallel texts, comparable texts, not comparable (i.e., randomly aligned)
- Point (time) of alignment

 Joint embedding models vs. Post-hoc alignment
- **Modality**Text only vs. using images for alignment

Content

- Cross-Lingual Word Embeddings
 - Joint Training (from Scratch)
 - Projection-Based CLWEs
 - Unsupervised Induction of CLWEs
- Evaluation of CLWEs

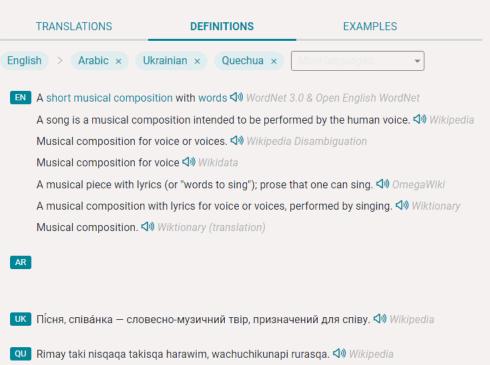
- Joint Cross-Lingual/Multilingual Word Embedding approaches induce embeddings of words from <u>both/all languages</u> simultaneously
- Using different types of (gold) bilingual signal:
 - Word translations
 - Easier/cheaper to obtain (+)
 - Less reliable signal, words <u>out of</u> context (-)
 - Sentence translations
 - More difficult/expensive to obtain (-)
 - Richer signal for aligning representations between languages (+)

- Input
 - Dictionary of word translations $D = \{(w_{s'}^k, w_t^k)\}_k$
 - Source language corpus C_s and vocabulary V_s
 - Target language corpus C_t and vocabulary V_t
- Q: Where to get D from?
 - Massively multilingual lexico-semantic resources!
 - BabelNet, PanLex, ...
 - BabelNet covers over 500 languages
 - Caveat: not all languages have same coverage
 - PanLex covers 5,700 languages
 - Caveat: <u>very low coverage</u> for most languages

BabelNet

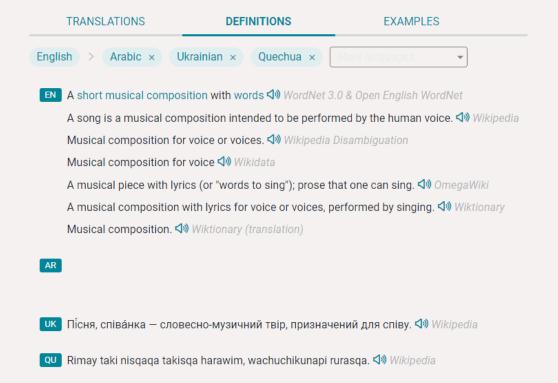
- Massively multilingual lexico-semantic network
 - Effectively, a graph
 - Nodes are so-called synonym sets (synsets)





BabelNet

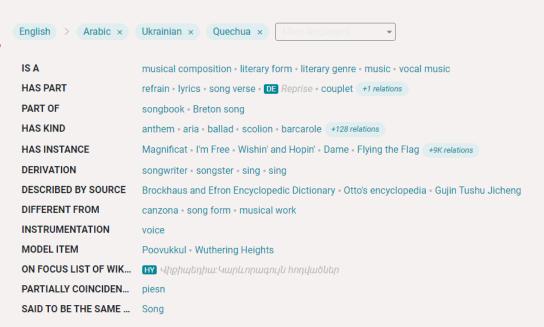
- Effectively, a graph
- Nodes are so-called synonym sets (synsets)
 - Multilingual glosses (definitions) available



BabelNet

BabelNet

- Massively multilingual lexico-semantic network
 - Effectively, a graph with typed edges
 - Nodes are so-called synonym sets (synsets)
 - <u>Edges</u> are lexico-semantic relations between synsets, e.g.:
 - Hypernymy (is-a)
 - Meronymy (part-of)
 - •



- Word-level alignments: $D = \{(w_{s'}^k, w_t^k)\}_i$
- Source language corpus C_s and vocabulary V_s
- Target language corpus C_t and vocabulary V_t
- Idea: modify the word embedding model (e.g., Skip-Gram) so that words that are mutual translations <u>share the embedding vector</u>
 - I.e., for each pair (w_s^i, w_t^i) from D, enforce $\mathbf{x}_s^k = \mathbf{x}_t^k$
- Joint vocabulary $V = V_s \cup V_T$
 - Corresponding joint embedding matrices: $\mathbf{W}_1 \in \mathbb{R}^{|V| \times d}$ and $\mathbf{W}_2 \in \mathbb{R}^{d \times |V|}$
 - Shared embeddings \mathbf{x}^{k_1} and \mathbf{x}^{k_2} for mutual translations \mathbf{w}^{k_s} and \mathbf{w}^{k_t}

Joint CLWEs with Word Translations

 Training data: simple <u>concatenation</u> of the corpora in both languages

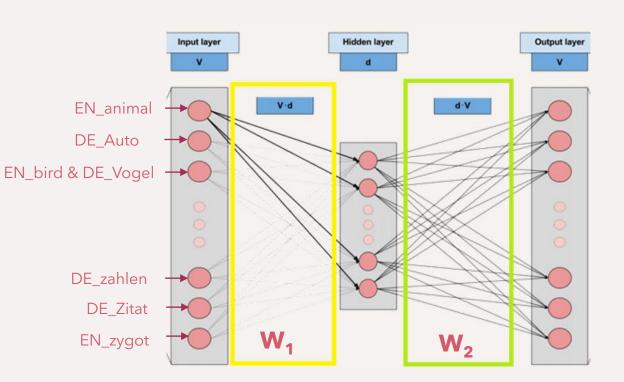
Example: EN source, DE target

• D = {..., (bird, Vogel), ...}

Context (EN): blue **bird** flies over the nest...

Context (DE): Gesang des roten schönen Vogels ...

 Tied vectors of word translations drive the representational alignment between languages



Joint CLWEs with Sentence Translations

Luong, M. T., Pham, H., & Manning, C. D. (2015, June). <u>Bilingual word representations</u> with monolingual quality in mind. In *Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing* (pp. 151-159).

- Parallel sentences required
 - A model for word alignment also needed
 - We'll cover word alignment in Lecture 8

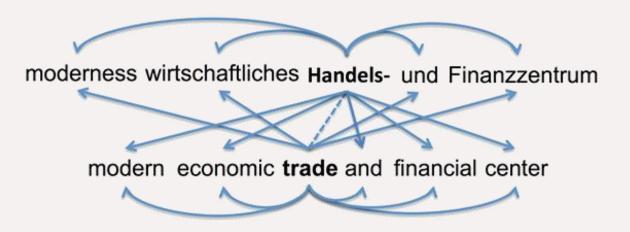


Image from: Luong et al.

Luong, M. T., Pham, H., & Manning, C. D. (2015, June). <u>Bilingual word representations</u> with monolingual quality in mind. In *Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing* (pp. 151-159).

- Parallel sentences required
- Monolingual (both languages):
 - Handels- → moderness
 - Handels- → wirtchaftliches
 - ...
 - trade → modern
 - trade → economic
 - •

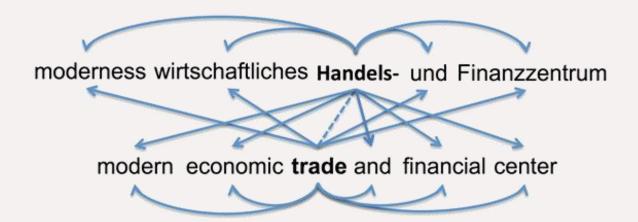


Image from: Luong et al.

Luong, M. T., Pham, H., & Manning, C. D. (2015, June). <u>Bilingual word representations</u> with monolingual quality in mind. In *Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing* (pp. 151-159).

- Parallel sentences required
- Cross-lingual (both languages):
 - Handels- → modern
 - Handels- → economic
 - ...
 - trade → moderness
 - trade → wirtschaftliches

•

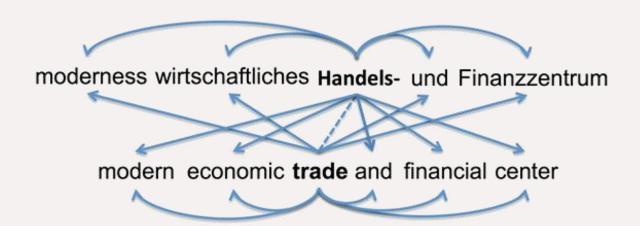


Image from: Luong et al.

- Q: Where to get parallel sentences from?
- Parallel corpora is the main training data for machine translation
 - Collecting it (manually, automatically, semi-automatically) has therefore been a major focus in MT
 - We will discuss approaches for creating parallel data in Lecture 9
 - Some prominent sources of parallel data
 - Opus: Aggregator of all Open-Source parallel corpora
 - WikiMatrix: automatically created from Wikipedia
 - Based on multilingual sentence encoders (Lecture 10)
 - "Quasi-parallel" not manually curated
 - 85 languages and 1620 language pairs
 - Multi-Bible: Manual Bible translations exist in 1500+ languages
 - Multi-parallel: sentences aligned across many (all) languages

Content

- Cross-Lingual Word Embeddings
 - Joint Training (from Scratch)
 - Projection-Based CLWEs
 - Unsupervised Induction of CLWEs
- Evaluation of CLWEs

- Q: What could be the main shortcoming of joint CLWE models?
 - Let's say we have N languages
 - And we need words from all N in a joint embedding space
- For each language pair: train a bilingual model from scratch
- For a multilingual space:
 - Let's say we have a pivot language (commonly English)
 - We induce N-1 bilingual spaces EN-L2
 - Q: how to align these N-1 spaces?
 - Q: Multilingual Skip-Gram?
 - We'd need multi-parallel corpora usually very limited in size

- On the other hand, pretrained monolingual word embeddings exist for very many languages
- Idea: can we (cheaply) align monolingual embedding spaces post-hoc?
- To get a multilingual word embedding space for N languages :
 - 1. Train N monolingual spaces
 - 2. Learn N-1 (cheap) alignments (N-1 languages to EN as pivot)
- Let $X_{L1} \in \mathbb{R}^{|Vs| \times d}$ and $X_{L2} \in \mathbb{R}^{|Vt| \times d}$ be the independently trained monolingual embeddings of two languages L1 and L2
- **Projection-based CLWEs**: find an "alignment" between X_{L1} and X_{L2} such that words with similar meaning (across langs) get similar vectors

• Post-hoc alignment of monolingual word embedding spaces

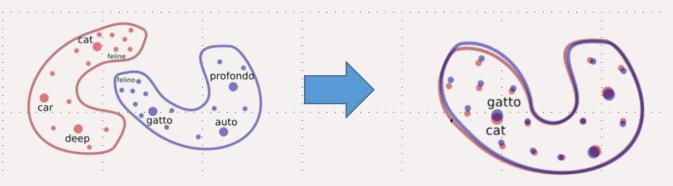
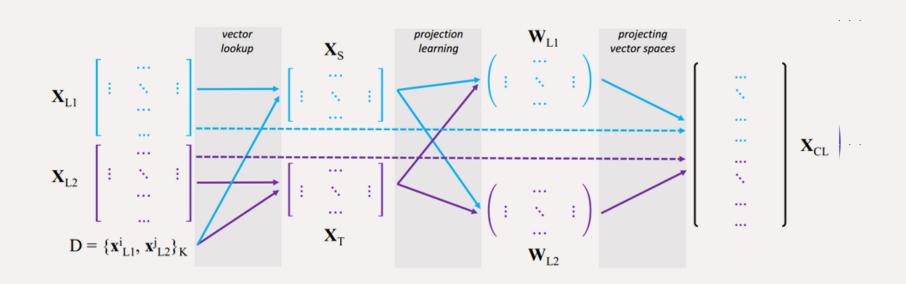


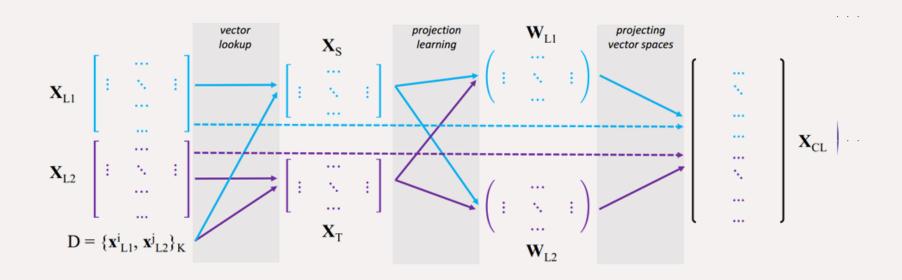
Image from: Lample, G., Conneau, A., Ranzato, M. A., Denoyer, L., & Jégou, H. (2018) Word translation without parallel data. In International Conference on Learning Representations.

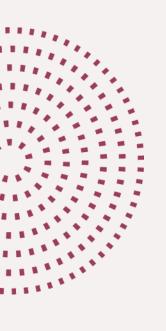
• In general, we are looking for functions f and g that produce a meaningful bilingual embedding space $f(\mathbf{X}_{L1}|\mathbf{\theta}_{L1}) \cup g(\mathbf{X}_{L2}|\mathbf{\theta}_{L2})$

- Post-hoc alignment of independently trained monolingual word embedding spaces
 - Alignment based on word translation pairs, $\mathbf{D} = \{(\mathbf{x}^k_{L1}, \mathbf{x}^k_{L2})\}_k$ is the set of word embedding pairs between the languages corresponding to pairs of mutual translations

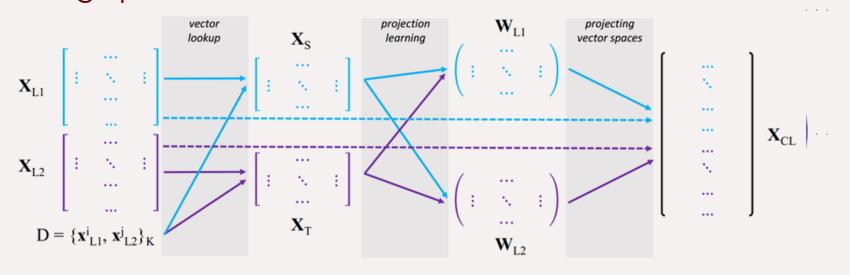


- Post-hoc alignment of independently trained monolingual word embedding spaces
 - Alignment based on word translation pairs, $\mathbf{D} = \{(\mathbf{x}^k_{L1}, \mathbf{x}^k_{L2})\}_k$ is the set of word embedding pairs between the languages corresponding to pairs of mutual translations
 - We stack $\{\mathbf{x}^{k}_{1:1}\}_{k}$ into matrix $\mathbf{X_{S}} \in \mathbb{R}^{k \times d1}$ and $\{\mathbf{x}^{k}_{1:2}\}_{k}$ into the matrix $\mathbf{X_{T}} \in \mathbb{R}^{k \times d2}$



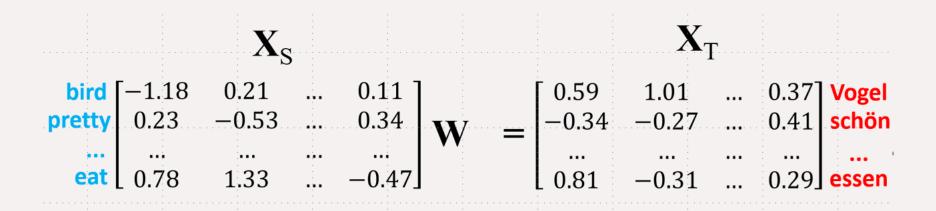


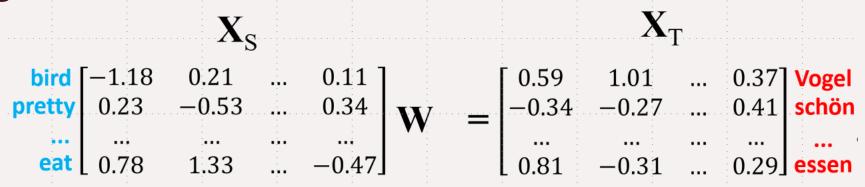
 Post-hoc alignment of independently trained monolingual word embedding spaces



- In the general case, we want to find **projection matrices** $W_{L1} \in \mathbb{R}^{d1 \times d}$ and $W_{L2} \in \mathbb{R}^{d2 \times d}$ such that $X_S W_{L1} = X_T W_{L2}$
 - This is a model, in which W_{L1} and W_{L2} are <u>parameters</u>
 - Q: What objective function to use?

- Find projection matrices
 - $W_{L1} \in \mathbb{R}^{d1 \times d}$ and $W_{L2} \in \mathbb{R}^{d2 \times d}$ such that $X_S W_{L1} = X_T W_{L2}$
 - In practice, the problem is equivalent to learning one parameter matrix \mathbf{W} , i.e., $\mathbf{X_SW} = \mathbf{X_T}$

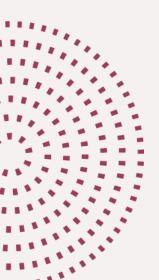




$$\operatorname{argmin}_{\mathbf{W}} \| \mathbf{X}_{\mathbf{S}} \mathbf{W} - \mathbf{X}_{\mathbf{T}} \|_{2}$$

- Minimize the Euclidean distance between source language projections and corresponding target language vectors
- If **W** is unconstrained, no unique closed form solution
 - Numeric optimization → minimization with GD

Mikolov, T., Le, Q. V., & Sutskever, I. (2013). <u>Exploiting similarities among languages for machine translation</u>. *arXiv preprint arXiv:1309.4168*.



The corresponding objective is least squares:

$$\operatorname{argmin}_{\mathbf{W}} \| \mathbf{X}_{\mathbf{S}} \mathbf{W} - \mathbf{X}_{\mathbf{T}} \|_{2}$$

- Mikolov et al. find W via numeric optimization
- Trains in mini-batches of k word pairs
- With mini-batch gradient descent

Smith, S. L., Turban, D. H., Hamblin, S., & Hammerla, N. Y. <u>Offline bilingual word vectors, orthogonal transformations and the inverted softmax</u>. In *International Conference on Learning Representations*.

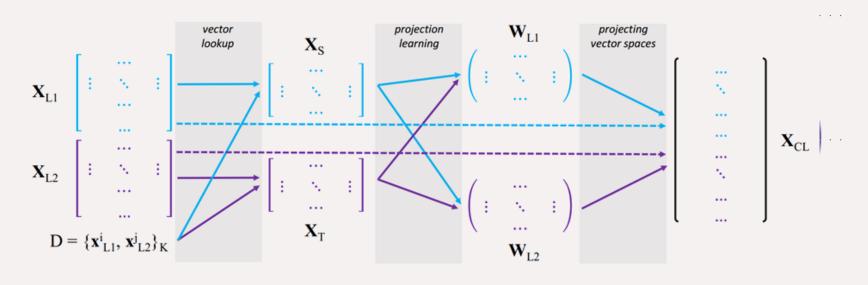
 Turns out that we learn <u>better projections</u> if we constraint W to be an orthogonal matrix, i.e., such that its rows and columns are orthonormal

$$\operatorname{argmin}_{\mathbf{W}} \| \mathbf{X}_{\mathbf{S}} \mathbf{W} - \mathbf{X}_{\mathbf{T}} \|_{2}$$
, s.t. $\mathbf{W}^{\mathsf{T}} \mathbf{W} = \mathbf{I}$

• This optimization problem is known as the Procrustes problem and has a <u>closed-form solution</u>:

$$\mathbf{W} = \mathbf{U}\mathbf{V}^{\mathsf{T}}$$
 where $\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathsf{SVD}(\mathbf{X}_{\mathsf{T}}\,\mathbf{X}^{\mathsf{-1}}_{\mathsf{S}})$

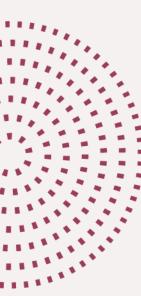
• SVD = a <u>matrix factorization method</u> called Singular Value Decomposition



- So, in practice, $\mathbf{W_{L2}} = \mathbf{I}$ and we obtain $\mathbf{W} = \mathbf{W_{L1}}$ by solving the Procrustes problem on $\mathbf{X_S}$ and $\mathbf{X_T}$
- Having "learned" the projection W, we project the whole embedding space of L1 (source) into the embedding space of L2 (target)

$$\mathbf{X}_{\text{biling}} = \mathbf{X}_{\text{L1}} \mathbf{W} \cup \mathbf{X}_{\text{L2}}$$

- Advantage of projection-based CLWE methods over joint induction:
 - Compute: learning an orthogonal projection (i.e., solving Procrustes)
 is very computationally cheap
 - Flexibility: works regardless of how the monolingual embedding spaces \mathbf{X}_{L1} and \mathbf{X}_{L2} were obtained
 - Even if X_{12} and X_{12} trained with different methods
 - Performance: the quality of CLWEs induced via projection <u>matches or</u> <u>surpasses</u> that of jointly induced CLWEs
- Q: Where do we get word translations for training the projection **W**?
- Q: How many word translation pairs do we need to learn a good projection?
 - I.e., what value should we set k in $D = \{(w_{s'}^k, w_t^k)\}_k$ to?



Glavaš, G., Litschko, R., Ruder, S., & Vulić, I. (2019, July). <u>How to (Properly) Evaluate Cross-Lingual Word Embeddings: On Strong Baselines, Comparative Analyses, and Some Misconceptions</u>. In Proceedings of ACL (pp. 710-721).

- Depends on several factors, primarily
 - (1) Lexical proximity of languages,
 - (2) Quality of monolingual word embeddings (size of pretraining corpora)
- In general, performance saturates with ca. 5K translation pairs
 - Marginal gains with more translation pairs
- Q: why do we stick to a <u>linear model</u>? Why not learn a non-linear model (with more parameters than a single projection matrix)?

Content

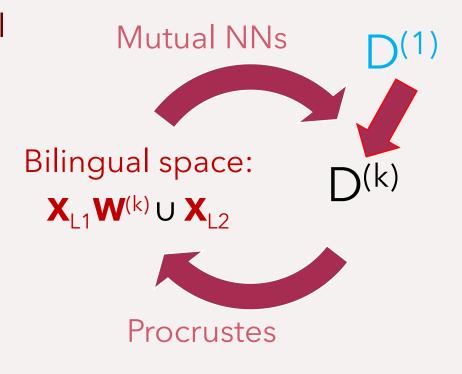
- Cross-Lingual Word Embeddings
 - Joint Training (from Scratch)
 - Projection-Based CLWEs
 - Unsupervised Induction of CLWEs
- Evaluation of CLWEs

• **Unsupervised CLWEs**: In 2018, a flood of work introducing projection-based CLWE methods that <u>do not require any word translations</u>

- The same general framework for all unsupervised CLE models
- 1. Induce (automatically) initial word alignment dictionary D⁽¹⁾

Repeat:

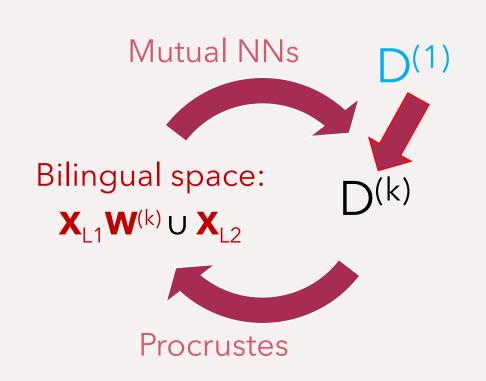
- 2. Learn the projection $\mathbf{W}^{(k)}$ using $\mathbf{D}^{(k)}$
- 3. Induce new dictionary $\mathbf{D}^{(k+1)}$ from $\mathbf{X}_{11} \mathbf{W}^{(k)} \cup \mathbf{X}_{12}$



Unsupervised Projection-Based CLWEs

Lample, G., Conneau, A., Ranzato, M. A., Denoyer, L., & Jégou, H. (2018) <u>Word</u> <u>translation without parallel data</u>. In International Conference on Learning Representations.

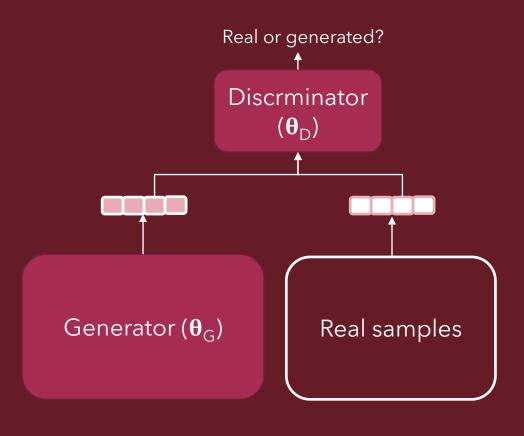
- Generator: the projection matrix W
- Discriminator: classifier that distinguishes between $\mathbf{x}_{L1}\mathbf{W}$ and \mathbf{x}_{L2} , i.e., predicts whether a vector has been obtained by:
- 1. Transforming source language vector \mathbf{x}_{L1} with the projection matrix \mathbf{W} (i.e., $\mathbf{x}_{L1}\mathbf{W}$) or
- 2. if its an original target language vector \mathbf{x}_{L2}



Generative Adversarial Networks

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014, December). <u>Generative Adversarial Nets</u>. In Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2 (pp. 2672-2680).

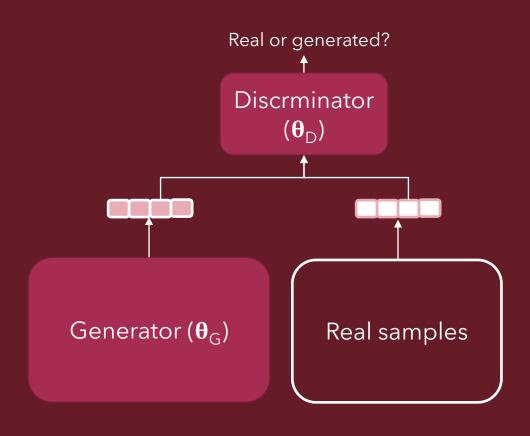
- Generator: our core neural model that generates vectors in continous space
 - Images, word embeddings, ...
 - Parameters: θ_{G}
- Discriminator: a binary classifier that predicts whether a vector was
 - (1) generated by the generator or
 - (2) it is a real/original vector
 - Parameters: θ_{D}



Generative Adversarial Networks

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014, December). <u>Generative Adversarial Nets</u>. In Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2 (pp. 2672-2680).

- **Generator**: $Gen(\mathbf{x}|\mathbf{\theta}_G)$
- **Discriminator**: Disc $(\mathbf{x}|\mathbf{\theta}_D)$
- Discriminator's job is to minimize its binary classification loss
- Generator's job is to fool the discriminator
 - I.e., maximize the discriminator's loss



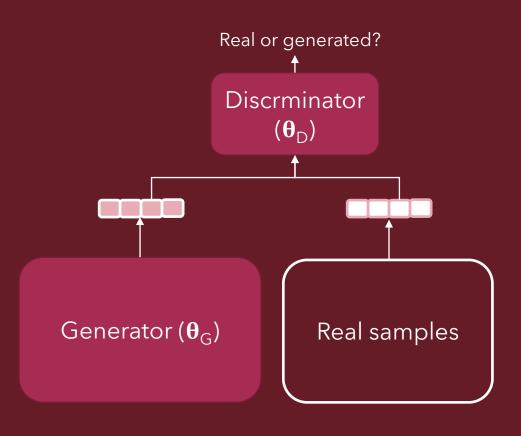
Generative Adversarial Networks

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014, December). <u>Generative Adversarial Nets</u>. In Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2 (pp. 2672-2680).

Generator: Gen($\mathbf{x}|\mathbf{\theta}_{G}$)

Discriminator: Disc $(\mathbf{x}|\mathbf{\theta}_D)$

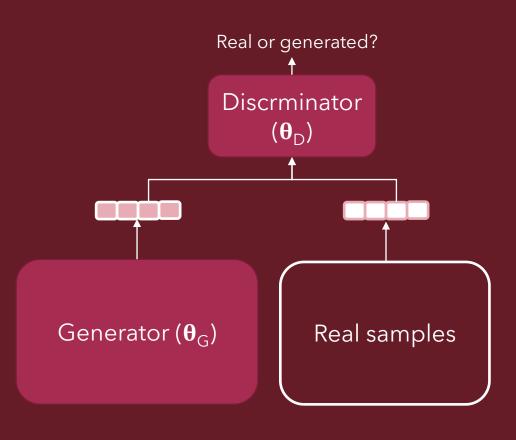
- Generator's job is to **fool** the discriminator
 - Generations are better the more they resemble the real examples
 - I.e., generations fit well into the "distribution" of real examples



Generative Adversarial Networks

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014, December). Generative Adversarial Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2 (pp. 2672-2680).

- A competition that iteratively makes both become better
- Iteratively:
 - 1. Feed into discriminator either (1) $\mathbf{x} = \text{Gen(input}|\mathbf{\theta}_{G})$ or a real sample \mathbf{x}
 - 2. Compute the discriminator's loss $L_D(Disc(\mathbf{x}|\mathbf{\theta}_D))$
 - 3. Minimize discriminator's parameters with GD: $\theta_D^{(k+1)} = \theta_D^{(k+1)} \eta \nabla_{\theta} L_D$



Generative Adversarial Networks

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014, December). <u>Generative Adversarial Nets</u>. In Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2 (pp. 2672-2680).

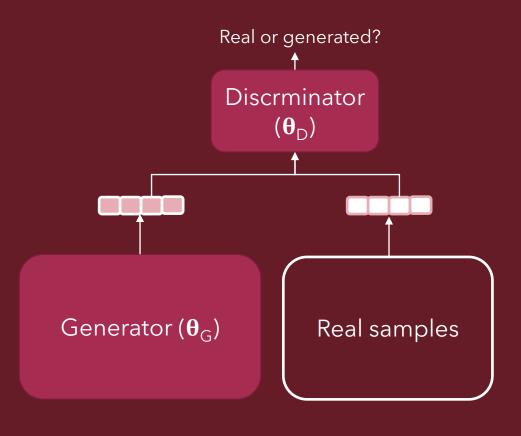
- A competition that iteratively makes both become better
- Iteratively:

• • •

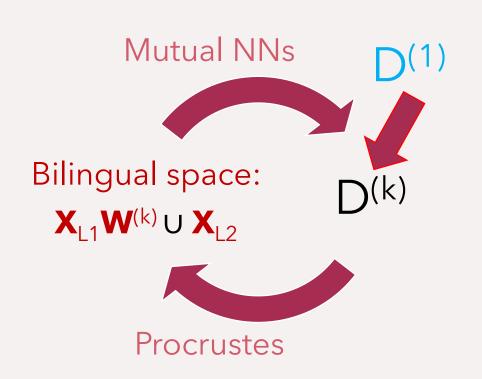
3. Minimize discriminator's parameters (GD): $\theta_{D}^{(k+1)} = \theta_{D}^{(k+1)} - \eta \nabla_{\theta D} L_{D}$

4. If **x** is a generated sample, **x** = Gen(input $|\theta_G|$) then update θ_G to maximize L_D :

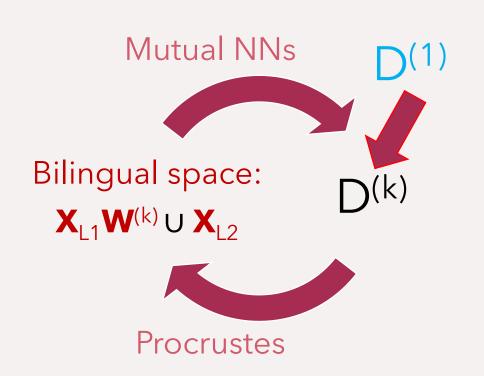
$$\mathbf{e}_{G}^{(k+1)} + \eta \nabla_{\mathbf{e}G} \mathbf{L}_{D}$$



- The dictionary $D^{(k+1)}$ (next iteration):
 - Mutual <u>nearest neighbours</u> in $X_{L1}W^{(k)} \cup X_{L2}$
 - $\mathbf{W}^{(k)}$ induced using dictionary $D^{(k)}$ from the current iteration
- Q: how do we find mutual NNs?
 - 1. For each \mathbf{x}_{L1}^{i} in $\mathbf{X}_{L1}\mathbf{W}^{(k)}$ rank all vectors from \mathbf{x}_{L2}^{j} in \mathbf{X}_{L2}
 - 2. For each \mathbf{x}^{j}_{L2} in \mathbf{X}_{L2} rank all vectors from \mathbf{x}^{i}_{L1} in $\mathbf{X}_{L1}\mathbf{W}^{(k)}$
 - Some measure of vector similarity
 - NNs are xⁱ_{L1} and x^j_{L2} that are on top of each other's ranking



- Q: how do we find mutual NNs?
 - Some measure of vector similarity
 - NNs are xⁱ_{L1} and x^j_{L2} that are on top of each other's ranking
- Similarity measure: cosine similarity
- Hubness problem:
 - Vector space: $\mathbf{X} \in \mathbb{R}^{d \times |V|}$
 - If |V| >> d, there will be (by chance)
 vectors in x ∈ X that have high-similarity
 with many/most other vectors
 - Skewes similarity measures like cosine



Unsupervised Projection-Based CLWEs

Lample, G., Conneau, A., Ranzato, M. A., Denoyer, L., & Jégou, H. (2018) Word translation without parallel data. In International Conference on Learning Representations.

- Quality of CLWE: accuracy of retrieving translation pair for a given word
 - When w_{L1}^i with vector \mathbf{x}_{L1}^i as "query", we rank all $\mathbf{x} \in \mathbf{X}_{L2}$ based on similarity with \mathbf{x}_{L1}^i : where in the ranking is the vector \mathbf{x}_{L2}^i of the actual word translation w_{L2}^i
- Hubness problem in CLWEs:
 - A hub vector $\mathbf{x}_{L1}^i \in \mathbf{X}_{L1} \mathbf{W}$: high similarity with many vectors in \mathbf{X}_{L2} (and vice versa)
- Cross-Domain Similarity Local Scaling
 - Cosine similarity <u>adjusted</u> for the hubness of both vectors

$$CSLS(\mathbf{x}_{L1} \in \mathbf{X}_{L1}\mathbf{W}, \mathbf{x}_{L2} \in \mathbf{X}_{L2}) = 2*cos(\mathbf{x}_{L1}, \mathbf{x}_{L2}) - r_{L2}(\mathbf{x}_{L1}) - r_{L1}(\mathbf{x}_{L2})$$

Unsupervised Projection-Based CLWEs

Lample, G., Conneau, A., Ranzato, M. A., Denoyer, L., & Jégou, H. (2018) Word translation without parallel data. In International Conference on Learning Representations.

- Cross-Domain Similarity Local Scaling
 - Cosine similarity <u>adjusted</u> for the hubness of both vectors

$$CSLS(\mathbf{x}_{L1} \in \mathbf{X}_{L1}\mathbf{W}, \, \mathbf{x}_{L2} \in \mathbf{X}_{L2}) = 2*\cos(\mathbf{x}_{L1}, \mathbf{x}_{L2}) - r_{L2}(\mathbf{x}_{L1}) - r_{L1}(\mathbf{x}_{L2})$$

- $r_{L2}(\mathbf{x}_{L1})$ is the <u>average cosine similarity</u> that \mathbf{x}_{L1} has with <u>K most similar</u> vectors $\mathbf{x}_{L2} \in \mathbf{X}_{L2}$
- $r_{L1}(\mathbf{x}_{L2})$ is the <u>average cosine similarity</u> that \mathbf{x}_{L2} has with <u>K most similar</u> vectors $\mathbf{x}_{L1} \in \mathbf{X}_{L1} \mathbf{W}$

- "No bilingual signal required"
- Thus applicable to "under-resourced languages"
- But: Supervised models don't need many word pairs (e.g., 1-5K)
 - Trivial to obtain for any language pair from resources like: BabelNet, PanLex
 - If a few thousand word translation pairs cannot be obtained
 - Then a language is so low-resource that we likely don't have reliable monolingual embeddings due to too <u>small corpora in that language</u>

Unsupervised CLWEs: Criticism

- "Without using any character information, our model even outperforms existing supervised methods on cross-lingual tasks for some language pairs"
- "Our method succeeds in all tested scenarios and obtains the best published results in standard datasets, even surpassing previous supervised systems"
- "...our method achieves better performance than recent state-of-the-art deep adversarial approaches and is competitive with the supervised baseline"
- Unintuitive: unsupervised CLE models all solve Procrustes problem in the final step, only on the less reliable (automatically induced)

Content

- Cross-Lingual Word Embeddings
 - Joint Training (from Scratch)
 - Projection-Based CLWEs
 - Unsupervised Induction of CLWEs
- Evaluation of CLWEs

Evaluation of CLWEs

Glavaš, G., Litschko, R., Ruder, S., & Vulić, I. (2019, July). <u>How to (Properly) Evaluate Cross-Lingual Word Embeddings: On Strong Baselines, Comparative Analyses, and Some Misconceptions</u>. In Proceedings of ACL (pp. 710-721).

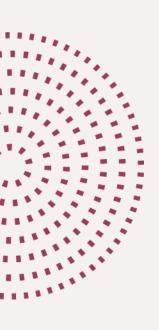
- Bilingual Lexicon Induction (BLI)
- Cross-Lingual Word Similarity (XL-SIM)

Extrinsic evaluation:

- Cross-lingual transfer in downstream NLP tasks (e.g., text classification)
- More in Lecture 6 ©

Bilingual Lexicon Induction

- Essentially the same task as in "training": word translation
- Given a test dictionary $D_{test} = \{(w^k_{L1}, w^k_{L1})\}_k$ and a bilingual embedding space $\mathbf{X}_{L1,L2}$ (for projection-based CLWEs $\mathbf{X}_{L1,L2} = \mathbf{X}_{L1} \mathbf{W} \cup \mathbf{X}_{L2}$)
- For w_{L1}^k with vector \mathbf{x}_{L1} as "query", we rank all $\mathbf{x} \in \mathbf{X}_{L2}$ based on similarity with \mathbf{x}_{L1} : let r be the rank at which we find the vector \mathbf{x}_{L2}^j of the translation w_{L2}^j
- Two common performance measures:
 - Precision@1 (P@1): percentage of pairs (out of k) for which r = 1
 - Mean reciprocal rank (MRR): average of 1/r (across all k pairs)



Evaluation of CLWEs

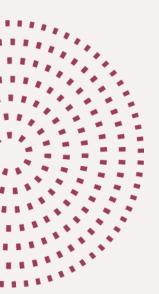
Vulić, I., Baker, S., Ponti, E. M., Petti, U., Leviant, I., Wing, K., ... & Korhonen, A. (2020). <u>Multi-simlex: A large-scale evaluation of multilingual and cross-lingual lexical semantic similarity</u>. Computational Linguistics, 46(4), 847-897.

Cross-Lingual Word Similarity

- Evaluate CLWEs the same way we evaluate monolingual word embeddings
- Given two words, w_{L1} , w_{L2} measure the similarity of their vectors
 - E.g., CSLS(**x**_{L1}, **x**_{L2})
- Compare embedding similarities against human judgments of semantic similarity for pairs of words
 - Performance measure: Spearman correlation (of two sets of scores)
- XL-SIM: pairs of words from different languages
 - Need bilingual human annotators
 - Subjective task: need multiple annotators (average their scores)

- "Without using any character information, our model even outperforms existing supervised methods on cross-lingual tasks for some language pairs"
- "Our method succeeds in all tested scenarios and obtains the best published results in standard datasets, even surpassing previous supervised systems"
- "...our method achieves better performance than recent state-of-the-art deep adversarial approaches and is competitive with the supervised baseline"
- Unintuitive: unsupervised CLE models all <u>solve Procrustes problem in the final</u> <u>step</u>, only on the <u>less reliable</u> (automatically induced) D

- Unintuitive: unsupervised CLWE models all solve Procrustes problem in the final step, only on the less reliable (automatically induced)
- Performance of unsupervised CLWE models* depends on the extent to which the monolingual embedding spaces X_{L1} and X_{L2} have the "same shape" (isomorphism)
 - Good between close and high-resource languages
 - E.g., EN-DE, EN-ES, EN-IT, ...
 - Q: What about low-resource and distant languages?



- Wider evaluation:
 - 15 languages
 (210 BLI evaluations)

Language	Family	Type	ISO 639-1
Bulgarian	IE: Slavic	fusional	BG
Catalan	IE: Romance	fusional	CA
Esperanto	(constructed)	agglutinative	EO
Estonian	Uralic	agglutinative	ET
Basque	– (isolate)	agglutinative	EU
Finnish	Uralic	agglutinative	FI
Hebrew	Afro-Asiatic	introflexive	HE
Hungarian	Uralic	agglutinative	HU
Indonesian	Austronesian	isolating	ID
Georgian	Kartvelian	agglutinative	KA
Korean	Koreanic	agglutinative	KO
Lithuanian	IE: Baltic	fusional	LT
Bokmål	IE: Germanic	fusional	NO
Thai	Kra-Dai	isolating	TH
Turkish	Turkic	agglutinative	TR

Vulić, I., Glavaš, G., Reichart, R., & Korhonen, A. (2019). <u>Do We Really Need Fully Unsupervised Cross-Lingual Embeddings</u>? In Proceedings of the EMNLP (pp. 4407-4418).

Wider evaluation: 15 language (210 BLI evaluations)

