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worst case
find O(1) >t O(n)
insert O(1)*17t O(n)
delete 0O(1)*() 1t O(n) |K|
load factor: a = —
m
* expected
1 amortized

Tif your load factor is reasonably low

T if you believe in your hash function



Worst Case - Does it Matter?



Worst Case — Does it Matter?




Worst Case — Does it Matter?

That JSON object will most likely end up in a hash map.



Worst Case — Does it Matter?

That JSON object will most likely end up in a hash map.

Adding n elements to a hash map has worst-case runtime 0(n?)



Worst Case — Does it Matter?

That JSON object will most likely end up in a hash map.

Adding n elements to a hash map has worst-case runtime 0(n?)

Algorithmic Complexity Attack (commonly known as HashDoS)
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Worst Case - Does It Happen?

java.lang.String.hashCode()

h(s) = 331" - 5, ("ABC") = 31- (31 (65) + 66) + 67

h("ABC") =312-65+31"-66 + 31°- 67
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Equivalent Substrings

How do we solve this?

Randomize your hash function!



Further Reading - Part |

“Effective Denial of Service attacks against web %
application platforms” by alech and zeri g

%g :
[https://media.ccc.de/v/28c3-4680] E té%‘ 8,

[®] 54 “Hash-flooding DoS reloaded: attacks and defenses”
;g fizEs by djb, Jean-Philippe Aumasson, and Martin BloBlet

E v o w3, [https://media.ccc.de/v/29¢3-5152]




Chaining Hash Maps - Operations

R e

w(o| k7 [*fc_le| ks [o[._le| k1 |

-lo R3 (e

-Io R, |e®




0.7

R e

w(o| k7 [*fc_le| ks [o[._le| k1 |

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations




Chaining Hash Maps - Operations

find(ks) with h(ks) = 4

0.7

R e

w(o| k7 [*fc_le| ks [o[._le| k1 |

-lo R3 (e

-Io R, |e®




Chaining Hash Maps - Operations

find(ks) with h(ks) = 4

0.7

R e

w(o| k7 [*fc_le| ks [o[._le| k1 |

-lo R3 (e

-Io R, |e®




Chaining Hash Maps - Operations

find(ks) with h(ks) = 4

0.7

R e

~(8| Rz |*[._le| ks [o[_le| k1 |

-lo R3 (e

-Io R, |e®




Chaining Hash Maps - Operations

find(ks) with h(ks) = 4

0.7

R e

o R [ ol ks |l e[ o

-lo R3 (e

-Io R, |e®




0.7

find(ks) with h(ks) = 4

A

find(ky) with h(ky)

R e

w(o| k7 [*fc_le| ks [o[._le| k1 |

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations




0.7

find(ks) with h(ks) = 4

A

find(ky) with h(ky)

R e

w(o| k7 [*fc_le| ks [o[._le| k1 |

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations




0.7

find(ks) with h(ks) = 4

A

find(ky) with h(ky)

R e

~(8| Rz |*[._le| ks [o[_le| k1 |

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations




0.7

find(ks) with h(ks) = 4

A

find(ky) with h(ky)

R e

o R [ ol ks |l e[ o

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations




0.7

find(ks) with h(ks) = 4

A

find(ky) with h(ky)

R e

o k7 [ te] ks |ofc e[ o

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations




0.7

find(ks) with h(ks) = 4

A

find(ky) with h(ky)

R e

-Io R7 O’l::lp Rs 01:'» kR, o T Nil

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations




Chaining Hash Maps - Operations

a=0.7 find(ks) with h(ks) = 4

A

o1 o[ kg [ o[ ks o find(ky) with h(Ry)

insert(kRg) with h(kg)

6

° -|0k70’l::|pk5.1:|,0k10




Chaining Hash Maps - Operations

a=0.7 find(ks) with h(ks) = 4

A

o1 o[ kg [ o[ ks o find(ky) with h(Ry)

insert(kRg) with h(kg)

6

° -|0k70’l::|pk5.1:|,0k10




Chaining Hash Maps - Operations

a:

0.7

b
P

find(ks) with h(ks) =

find(ky) with h(ky)

insert(kRg) with h(kg)

A

A

6



Chaining Hash Maps - Operations

a:

0.8

b
P

find(ks) with h(ks) =

find(ky) with h(ky)

insert(kRg) with h(kg)

A

A

6



Chaining Hash Maps - Operations

a =

1.2

k1o

TP

Ry,

P

U Ol

find(ks) with h(ks) = 4

find(ky) with h(ky) = 4

insert(kg) with h(kg) = 6

insert(ky,) with h(kqy) = 8



Chaining Hash Maps - Operations

a=12 ®

k1o

TP

Ry,

P

U Ol

find(ks) with h(ks) = 4

find(ky) with h(ky) = 4

insert(kg) with h(kg) = 6

insert(ky,) with h(kqy) = 8



Chaining Hash Maps - Operations

1. allocate a larger array (length m’)



Chaining Hash Maps - Operations

1. allocate a larger array (length m’)
2. find a new hash function
h:U—={0,1,..m -1}



Chaining Hash Maps - Operations

0 m' -1
o r o T o ® r o ? ? r o o o r o o ? o ?
vy I v vy
o o o o ® o o ® o
Ry Rg R3 Rg[|R2 |[Re IR10 Ria|  |Rs
Q o Q o o o o o o
R Ry,
o
Q 1. allocate a larger array (length m’)
2. find a new hash function
R11 h:uU—{01,..,.m -1}
o

3. rehash and reinsert all items




Chaining Hash Maps - Operations

0 m' -1
o r o T o ® r o ? ? r o o o r o o ? o ?
vy I v vy
o o o o ® o o ® o
Ry Rg R3 Rg[|R2 |[Re IR10 Ria|  |Rs
Q o Q o o o o o o
R Ry,
o
Q 1. allocate a larger array (length m’)
2. find a new hash function
R11 a=06@ h:U—{0,1,..m -1}
o

3. rehash and reinsert all items




Chaining Hash Maps - Operations

m' -1

6

delete(k;) with h(k3)

= <
°
o||v_o <
°
°
o||v_o km
°
°
°
0||v_o ~
o||v_o o
o||v_o &
°
o||v_o &
°
°
o||v_o <
°
o||v_0 &
°

R11




Chaining Hash Maps - Operations

m' -1

6

delete(k;) with h(k3)

= <
°
o||v_o <
°
°
o||v_o km
°
°
°
0||v_o ~
o||v_o o
o||v_o &
°
o||v_o &
°
°
o||v_o <
°
o||v_0 &
°

R11




Chaining Hash Maps - Operations

m' -1

6

delete(k;) with h(k3)

= <
°
o||v_o <
°
°
o||v_o km
°
°
°
0||v_o ~
o||v_o o
o||v_o &
°
o||v_o &
°
°
o||v_o <
°
o||v_0 &
°

R11




Chaining Hash Maps - Operations

m' -1

6

delete(k;) with h(k3)

= <

°

o||v_o <

°

°

o||v_o =
o

°

°

°

0||v_o ~

o||v_o o

o||v_o &

°

*——>

°

°

o||v_o <

°

o||v_0 &

°

R11




Chaining Hash Maps - Operations

m’ -

6

delete(k;) with h(k3)

= <

°

o||v_o <

°

°

o||v_o =
&

°

°

°

0||v_o ~

o||v_o o

o||v_o &

°

®

°

°

o||v_o <

°

A=

°

R11




Chaining Hash Maps - Operations

m’ -

Array

ol o[
o||v_o <
oo &
o||v_o ~
o||v_o o
o||v_o &
0||v_o <
s o

R11




Chaining Hash Maps - Operations




Linked List vs Array List

Access Data by Reference
107 |

find iterate remove



Linked List vs Array List

Access Data by Reference
107 |

find iterate remove

1.5

0.5

Access Data by Known Index

get

|
remove




Linked List vs Array List

Access Data by Reference Access Data by Known Index
107 |

find iterate remove get remove



Linked List vs Array List

Every data structure is bad at
something. Linked lists are just
bad at most things.
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Is it Any Better?

worst case
find 0(1) *1t O(n)
insert O(1)*17t O(n)

delete O(1)*@)Tt O(n)

* expected

1 amortized
Tif your load factor is reasonably low

T if you believe in your hash function



Is it Any Better?

worst case
* 9t
find 0(1) O(n) Weaknesses
insert O(1)*11t Oo(n) probe sequence is bad when:
® o Is high
* t
delete  O(1) * (V1 O(n) e hash function builds
clusters
* expected e especially for unsuccessful
lookups
1 amortized

Tif your load factor is reasonably low

T if you believe in your hash function
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Robin Hood to the Rescue

2
psl O 0 1 72 2
Ry R1|R3|Rs| Ry
0 m-1
insert(k3)
insert(k,)

insert(ks)
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Robin Hood to the Rescue

2
psl O 0 1 72 2
k k1| R3] ks | ks
0 m-1
insert(k3)
insert(k,)
insert(ks)

find(ky)



Robin Hood to the Rescue

PN

0 1
@

insert(k3)
insert(k,)
insert(ks)
find(Ry)



Robin Hood to the Rescue

psl O 0 1 % 2
Ry k’3 Rs | Ry, psl 0O h(kRy) =3
0 m -1 h(ky) = 0
h(k3) = 3
insert(k3) h(kR,) = &4
insert(k,) h(ks) = 3
nsert(ke) bl =3

find(ky)




Robin Hood to the Rescue

pst 0 0 1 % 2
k2 fa [ ks ks [ e psl 1 h(Ry) =3
0 m -1 h(ky) = 0
h(k3) = 3
insert(k3) h(Ry) = 4
insert(k,) h(ks) = 3
nsert(ke) iR =3

find(ky)




Robin Hood to the Rescue

pst 0 0 1 % 2
R R1 k’3l?4 psl 2. h(kRy) =3
0 m -1 h(ky) = 0
h(k3) = 3
insert(k3) h(Ry) = 4
insert(k,) h(ks) = 3
nsert(ke) bl =3

find(ky)




Robin Hood to the Rescue

pst 0 0 1 % 2
Ry R1| R3 ’?5 psl 3 h(kRy) =3
0 m -1 h(ky) = 0
h(k3) = 3
insert(k3) h(Ry) = 4
insert(k,) h(ks) = 3
nsert(ke) bl =3

find(ky)




Robin Hood to the Rescue

psl O 0 1 % 2
Ry Ry | R3 ’?5 psl 3 v h(kRy) =3
0 m -1 h(ky) = 0
h(k3) = 3
insert(k3) h(Ry) = 4
insert(k,) h(ks) = 3
nsert(ke) bl =3

find(ky)




Robin Hood to the Rescue

psl 0 0 1 % 2

R, R1|R3|Rs| Ry hik) =3
- m-1 h(ky) =0
h(ks) = 3
insert(ks) hika) =4
insert(k,) hiks) =3
nsert(ke) h(ke) =3

find(Ry)

delete(ks)




Robin Hood to the Rescue

2
o h(ky) =3
m-1 h(kZ) =0
h(k3) =3
insert(ks) hiky) =4
insert(k,) hiks) =3
nsert(ke) h(ky) =3
e

delete(ks)




Robin Hood to the Rescue

2

o h(ky) =3
m- 1 h(ky) =0
h(ks) = 3
insert(ks) hika) =4
insert(k,) hiks) =3
nsert(ke) h(ke) =3
find(ky) h(ks) =4

delete(k;)

insert(kg)



Robin Hood to the Rescue

2

o h(ky) =3
m- 1 h(ky) =0
h(ks) = 3
insert(ks) hika) =4
insert(k,) hiks) =3
nsert(ke) h(ke) =3
find(ky) h(ks) =4

delete(k;)

insert(kg)



Robin Hood to the Rescue

psl 0 0 1 % 2

- k1l?5 i h(Ry) =3
5 m-1 h(kZ) =0
h(k3) =3
insert(ks) hiky) =4
insert(k,) hiks) =3
insert(ks) hike) =3

ﬁnd(kx)

delete(ks)




Robin Hood to the Rescue

psl 0 0 1 % 2

R, I?1Dl?5 Ry, hik) =3
- m-1 h(ky) =0
h(k3) =3
insert(k;) hka) = 4
insert(k,) hiks) =3
insert(ks) hike) =3

ﬁnd(kx)

delete(ks)




Robin Hood to the Rescue

psl O 0 1 % ;

R, k] [Rs| ks —

| ) shif nj’_l h(ky) =0
backshifting e

insert(R3) h(ke) — 4

insert(k,) h(ks) — 3

insert(ks) hik) — 3

fnde)

delete(ks)




Robin Hood to the Rescue

psl O 0 1 % ;

R, R1|Rs R, R

| ; shif nj’_l h(ky) =0
backshifting e

insert(R3) h(ke) — 4

insert(k,) h(ks) — 3

insert(ks) hik) — 3

fnde)

delete(ks)




Robin Hood to the Rescue

psl O 0 1 1
R, R1|Rs| R,
0 <+— m-1

“backshifting”

insert(k3)
insert(k,)
insert(ks)
find(Ry)

delete(ks)



Robin Hood to the Rescue

psl O 0 1 1
R R1| Rs | Ry,
0 m-1
Weaknesses

® memory consumption
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Robin Hood to the Rescue

psl O 0 1 1
R, Rq | Rs | Ry
0 m-1

Weaknesses

® memory consumption
® average psl not better
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Robin Hood to the Rescue

psl O 0 1 1
R, R1|Rs| Ry
0 m-1
Weaknesses

® memory consumption

® average psl not better

¢ deletes still slow and
complicated
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Robin Hood to the Rescue

>
&

psl O 0 1 1
R R1|Rs | Ry
0 m-1

Like Robin Hood, it does not
change the average wealth
(mean probe length),
only its distribution
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Cuckoo Hashing

Worst case
find 0(1) *7t O(n)
insert O(1) *197 O(n)

delete 0O(1)*@ 1t O(n)

* expected

1 amortized
Tif your load factor is reasonably low

T if you believe in your hash function



Cuckoo Hashing

worst case
find O(1) *+ o6m) 0(1)
insert O(1) *197 O(n)

delete 0O(1)*@ 1t O(n)

* expected

1 amortized
Tif your load factor is reasonably low

T if you believe in your hash function



Cuckoo Hashing

worst case
find O(1) *+ o6m) 0(1)
insert O(1) *197 O(n)

delete O(1) *to-¥t o) 0(1)

* expected

1 amortized
Tif your load factor is reasonably low

T if you believe in your hash function




Cuckoo Hashing




Cuckoo Hashing

insert(R)



Cuckoo Hashing

insert(R)



Cuckoo Hashing

T1 k’1
0 m-1
T
0 m-1 k1
R;
insert(R)

insert(k,)



Cuckoo Hashing

T1 Ry R1
0 m-1
T
0 m-1 R,
Ry
insert(R)

insert(k,)



Cuckoo Hashing

T4 Ry R1
0 m-1
T
0 m-1 R
Ry
insert(k,) ks
insert(k,)

insert(k3)



Cuckoo Hashing

T1 k’2 (

0 m-1
T
0 m-1 R,
Ry
insert(k,) ks
insert(k,)

insert(k3)



Cuckoo Hashing

T1 k’2 k3
0 m-1
T
0 m-1 R
Ry
insert(k,) ks
insert(k,)

insert(k3)



Cuckoo Hashing

T1 k’2 k3
0 m-1
T2 k1
0 m-1 R,
Ry
insert(k,) ks
insert(k,)

insert(k3)



Cuckoo Hashing

T4 Ry R3
0 m-1
R
k 0 1 m-1 R
Ry
insert(R) ks
insert(k,) R.
insert(ks3) e
insert(ky)
insert(ks)



Cuckoo Hashing

Tq Rs| |Ry4 R3
0 m-1
R R
15 - 2 1 - ki
Ry
insert(R) ks
insert(k,) R.
insert(ks3) e
insert(ky)
insert(ks)



Cuckoo Hashing

0 m-1

R R
15 - 2 1 L k-
Ry
insert(Rq) insert(ke) ks
insert(k,) R,
insert(Rs) ke
insert(k,) Re

insert(ks)



Cuckoo Hashing

Tl k6 I’\’4 I’\’3
0 m-1
T2 k2 . k
0 m-1 !
Ry
insert(Rq) insert(ke) ks
insert(k,) R,
insert(Rs) ke
insert(k,) b
6
insert(ks)



Cuckoo Hashing

o ol T
0 m-1
Ryl |[Rs
0 m-1
insert(R) insert(kg)
insert(k,)
insert(ks3)
insert(ky)
insert(ks)




Cuckoo Hashing

Tl k6 I’\’4 I?1
0 m-1
T, Ryl |Rs| |R3 b
0 m-1 !
Ry
insert(Rq) insert(ke) ks
insert(k,) R,
insert(Rs) ke
insert(k,) b
6
insert(ks)



Cuckoo Hashing

Tl k6 I’\’4 I?1
0 m-1
T, Ryl |Rs| |R3 b
0 m-1 1
Ry
insert(Rq) insert(ke) ks
insert(k,) find(k,) ke
insert(k;) ke
insert(k,) b
6
insert(ks)



Cuckoo Hashing

Tq Rg R
0 m-1
T, Ry |Rs b
0 m-1 1
Ry
insert(Rq) insert(ke) ks
insert(k,) find(k,) ke
insert(k;) ke
insert(k,) b
6
insert(ks)



Cuckoo Hashing

Tl k’6 I’\’4 I?1
0 m-1
T, Ryl |Rs| |R3 b
0 m-1 !
Ry
insert(Rq) insert(ke) ks
insert(k,) find(k,) ke
insert(ks) find(Rky) ke
insert(k,) b
6
|nsert(k5) ..................................



Cuckoo Hashing

T1 Rg Ry,
0 m-1
T, Rs| |R3 b
0 m-1 1
Ry
insert(Rq) insert(ke) ks
insert(k,) find(k,) ke
insert(ks) find(Rky) ke
insert(k,) b
6
|nsert(k5) ..................................



Cuckoo Hashing

Tl k’6 I’\’4 I?1
0 m-1
To| |R2| |Rs| |Rs b
0 m-1 1
Ry
insert(kq) insert(kg) ks
insert(k,) find(k,) ke
insert(ks) find(Rky) ke
insert(ky) delete(R3) b
6
insert(k5) ..................................



Cuckoo Hashing

T1 Rg Ry,
0 m-1
To| |R2| [Rs b
0 m-1 1
Ry
insert(kq) insert(kg) ks
insert(k,) find(k,) ke
insert(ks) find(Rky) ke
insert(ky) delete(R3) b
6
insert(k5) ..................................



Cuckoo Hashing

Tq Re Ry R1

0 m-1

R R
15 - 2 5 L k-
Ry

insert(Rq) insert(ke) ks

insert(k,) find(k,) ke

insert(ks) find(Rky) Re

insert(ky) delete(R3) Re

|nsert(k5) ..................................



Cuckoo Hashing

kel ke k1
0 m-1

Ryl |[Rs
0 m-1
insert(R) insert(kg)
insert(k,) find(k,)
insert(ks3) find(ky)
insert(ky) delete(ks)
insert(ks) insert(ky)

=
/.\

SO B B W O Kk, O




Cuckoo Hashing

kel ke k1
0 m-1

Ryl |[Rs
0 m-1
insert(R) insert(kg)
insert(k,) find(k,)
insert(ks3) find(ky)
insert(ky) delete(ks)
insert(ks) insert(ky)

=
/.\

SO B B W O Kk, O




Cuckoo Hashing

Tl k6 I’\’4 k’1
0 m-1
k - Rx hi(:)  hy(-)
T) 2 5 /
R, BT 3
0 m-1
N R, 1 1
insert(R) insert(ke) ks 6 5
insert(k,) find(ky) ke 3 5
insert(ks) find(Rky) ke 71 3
insert(k,) delete(ks) he 74 3
6
insert(k5) insert(kx) k 6 1
X



Cuckoo Hashing

>
—
—~~
N
3 <4 -
N
— /

ke BT 3

R, 10 1
insert(kq) insert(ke) ks | 6 5
insert(k,) find(ks) ke 3 5
insert(ks) find(Ry) ke 4 3
insert(k,) delete(ks) ke I 3
insert(ks) insert(ky) kR, 16 1



Cuckoo Hashing

T1 AN
-
hi(-)  hay(-)
T>
O L R, 6T 3
R, 1 1
insert(R) insert(ke) ks 6 5
insert(k,) find(k,) ke 3 5
insert(ks) find(Rky) ke 71 3
insert(k,) delete(ks) he 74 3
6
insert(k5) insert(kx) k 6 1
X



Cuckoo Hashing

- o kmOh no! A cycle
i " R h1(-)
R
k 0 : m-1 R 6
R 1
insert(R) insert(kg) ks 6
insert(k,) find(k,) Re 3
insert(k3) find(ky) e 1
insert(k,) delete(ks) ke 1
insert(ks) insert(k,) ks .



Cuckoo Hashing

R, A
-1

. ky hi()  ha()
R 1 1

insert(kg) ks 6 5
find(ks) ke 3 1B
find(ky) Re 1 3
delete(ks) ke 1 3
insert(ky) b e ]

X



Cuckoo Hashing

R, A
m-1
Rx hi(-)  hy(-)
! R &0 3
Oh no! Acycle ® Ry 1 1
insert(kg) ks 6 5
find(k,) ke 3 5
find(ky) Re 1 3
delete(ks) ke 1 3
insert(ky) b e ]
X



Cuckoo Hashing It’s time to

rebuild your
hash table!
T R
0 m-1
Rx ha(-)  ha(-
Tz 3 A
m-1
Oh no! Acycle ® Ry 1 1
insert(R) insert(kg) ks 6 5
insert(k,) find(ky) k, 3 5
insert(ks) find(Rky) ke 71 3
! nsert(k,) delete(ks) ke 1 3
insert(ks) insert(ky) kR, 176 1



Cuckoo Hashing

Tq LA
O _
hi(-)  hy(:)
.
2 - I?1 6 3
R, AN i
Problems Ry © 6 5
® Insertin O(1)*111 only as long k 3 5
as a < 0.5 )
e requires a good hash function ks [ 1 3
* not cache friendly ke | 1 3
ke | 6 1



“In theory, there is no difference
between theory and practice;



“In theory, there is no difference
between theory and practice;
but, in practice, there is.”
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Ed Swisstable

k1.k4




Ed Swisstable

k1.k4

Idea

Use a little bit of extra memory for
parallel lookups with uncertainty




Ed Swisstable

m.m

Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions
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Ingredients:
B derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

h: U — ub4



Ed Swisstable

Re

R7

m.m

Ingredients:
B derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

h: U — ub4

H1(R) = h(R) mod m



Ed Swisstable

Re

R7

m.m ks

Ingredients:
B derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

h: U— ub4
H1(R) = h(R) mod m
Hz(l’\’) = h(l’\’) >> 57

“first 7 bits”



Ed Swisstable

T

m.m

Ingredients:
e derive two hash functions
B use m+ 16 bytes of metadata
e SIMD instructions




Ed Swisstable

| 0 k, ke | k7 3 .m ke

0 m — 1
Ingredients: m bytes of
e derive two hash functions OxFF =empty
B use m+ 16 bytes of metadata 0x380 = deleted

¢ SIMD instructions 0x00...0x7F = occupiedh



Ed Swisstable

| Il k ke| k7 A AR

0 m — 1
Ingredients: m bytes of
e derive two hash functions OxFF =empty
B use m+ 16 bytes of metadata 0x380 = deleted

¢ SIMD instructions 0x00...0x7F = occupiedh

use H, for the occupied bytes



Ed Swisstable

T

ke | k7 3 .m ke

Ingredients:
e derive two hash functions
B use m+ 16 bytes of metadata
e SIMD instructions

m — 1
m bytes of
OxFF =empty
0x80 = deleted

0x00...0x7F = occu piedh

use H, for the occupied bytes

+ reprise of the first 16 bytes



Ed Swisstable

T

ke | k7 3 .m ke

Ingredients:

e derive two hash functions

0 m — 1
m bytes of
OxFF =empty _
0x80 = deleted

B use m+ 16 bytes of metadata

e SIMD instructions
m

reprise

0x00...0x7F = occu piedh

use H, for the occupied bytes
+ reprise of the first 16 bytes



Ed Swisstable

T

m.m

Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
e find(k: Key)
® insert(k: Key)
o delete(k: Key)




Ed Swisstable

T

Re

m.m

Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
B find(k: Key)
® insert(k: Key)
o delete(k: Key)

Steps:

1. start at bucket Hq(R)



Ed Swisstable

H1(I?) =8

T

Re

m.m

Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
B find(k: Key)
® insert(k: Key)
o delete(k: Key)

Steps:

1. start at bucket Hq(R)



Ed Swisstable

H1(I?) =8

group J
| 0 k, ke | k7 3 . k| Rs
0 m—1
Ingredients: Steps:

e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
B find(k: Key)
® insert(k: Key)
o delete(k: Key)

1. start at bucket Hq(R)
2. search group for Hy(R)



Ed Swisstable

H1(I?) =8

¢

Re | R7

m.m

group
L
0
Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata
B SIMD instructions

Search group for k with

Hz(k) =0x3F



Ed Swisstable

H1(I?) =8

¢

Re | R7

m.m

group
L
0
Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata
B SIMD instructions

Search group for k with

Hz(k) =0x3F

_mm_setl epi8



Ed Swisstable

I Im Ry Re | R7 I’\’1.’?4 Rs
0 m—1
Ingredients: Search group for k with
e derive two hash functions H,(R) = @x3F
®usem-+ 16 byjces of metadata _mm_setl epi8
B SIMD Instructions
0x3F — |3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F




Ed Swisstable

group JH1(I?) =8
| [l k, ke | k7 m.m ke
0
Ingredients: Search group for k with
e derive two hash functions H,(R) = @x3F
®usem-+ 16 byjces of metadata _mm_cmpeq_epi8
B SIMD Instructions
0x3F — |3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F




Ed Swisstable

| [l k, ke | k7 m.m ke
0 m—1
Ingredients: Search group for k with
e derive two hash functions H,(R) = @x3F
®usem-+ 16 byjces of metadata _mm_cmpeq_epi8
B SIMD Instructions
group |05|7B|3F|28|FF|40|6A|37[42|3F|FF|58[80|FF|36|00
0x3F — |3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F




Ed Swisstable

group

L

Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata

B SIMD instructions

group

O0x3F

JH1(I?)=8
k, ke | k7 m.m ke
0
Search group for k with
Hz(k)=®x3:
_mm_cmpeq_ep18
05|/7/B|3F|28|FF|40|6A|37|42|3F|FF|58|80|FF|36]|00
3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F
00|00|FF|00(00|00|00|00|00|FF|00|00|00(00|00]|00




Ed Swisstable

group

L

Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata

B SIMD instructions

group

O0x3F

JH1(I?)=8
k, ke | k7 m.m ke
0 m — 1
Search group for k with
Hz(k)=®x3F
_mm_movemask ep18
05|/B|3F|28|FF|40|6A|37]|42|3F|FF|58|80|FF|36]|00
3F|I3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F
00|00|FF|00(00|00|00|00|00|FF|00|00|00(00|00]|00




Ed Swisstable

group

L

Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata

B SIMD instructions

group

O0x3F

0x2040 <

JH1(I?)=8
k, ke | k7 m.m ke
0 m — 1
Search group for k with
Hz(k)=®x3F
_mm_movemask ep18
05|/B|3F|28|FF|40|6A|37]|42|3F|FF|58|80|FF|36]|00
3F|I3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F
00|00|FF|00(00]|00|00|00|00|FF|00]00|00(00|00]|00




Ed Swisstable

H1(I?) =8

group J
| 0 k, ke | k7 3 . k| Rs
0 m—1
Ingredients: Steps:

e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
B find(k: Key)
® insert(k: Key)
o delete(k: Key)

1. start at bucket Hq(R)

2. search group for Hy(R)

3. for each match, check keys,
return true if found



Ed Swisstable

H1(I?) =8

ke | k7 3 .m ke

group
L
0
Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
B find(k: Key)
® insert(k: Key)
o delete(k: Key)

Steps:

1.
2.
3.

4,

start at bucket H+(R)

search group for H,(R)

for each match, check keys,
return true if found
search group for an empty
bucket



Ed Swisstable

H1(I?) =8

ke | k7 3 .m ke

group
L
0
Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
B find(k: Key)
® insert(k: Key)
o delete(k: Key)

Steps:

1.
2.
3.

4,

start at bucket H+(R)

search group for H,(R)

for each match, check keys,
return true if found
search group for an empty
bucket

= search group for OxFF



Ed Swisstable

H1(I?) =8

ke | k7 3 .m ke

group
L
0
Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
B find(k: Key)
® insert(k: Key)
o delete(k: Key)

Steps:

1.
2.
3.

4,

Ul

start at bucket H+(R)

search group for H,(R)

for each match, check keys,
return true if found
search group for an empty
bucket

. return false if found
. otherweise, check the next

group
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Ingredients: Case 1: Risin the table
¢ derive two hash functions find R, then replace it
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
e find(k: Key)
B insert(k: Key)
o delete(k: Key)
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group
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Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata

m.m

e SIMD instructions

Operations:

e find(k: Key)
B insert(k: Key)
o delete(k: Key)

Rs

Case 1: Ris in the table
find R, then replace it

Case 2: Ris not in the table

1. start at bucket Hq(R)
2. search group for empty or

deleted

m —1
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Ingredients: Case 1: Risin the table
¢ derive two hash functions find R, then replace it

® use m+16 bytes of metadata ;50 2. ks not in the table

e SIMD instructions
1. start at bucket Hq(R)

Operations: 2. search group for empty or
e find(k: Key) deleted

B insert(k: Key)
e delete(k: Key) =movemask on group
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group ‘!H1(k) =
[ [ ZEEED BE
0 m — 1
Ingredients: Case 1: Risin the table
¢ derive two hash functions find R, then replace it

® use m+16 bytes of metadata ;50 2. ks not in the table

e SIMD instructions
1. start at bucket Hq(R)

Operations: 2. search group for empty or
e find(k: Key) deleted
B insert(k: Key) 3. if found, insert R

o delete(k: Key)

B~

. otherwise, check the next
group
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Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
e find(k: Key)
® insert(k: Key)
B delete(k: Key)
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® insert(k: Key)
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Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:

e find(k: Key)
® insert(k: Key)
B delete(k: Key)

> 16
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Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:

e find(k: Key)
® insert(k: Key)
B delete(k: Key)

> 16
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Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions Weaknesses

Operations:
e find(k: Key)
® insert(k: Key)
o delete(k: Key)

e requires SIMD instructions
¢ hash function must use Its
high bits



Further Reading - Part Il

“Designing a Fast, Efficient, Cache-friendly Hash Table,
Step by Step” by Matt Kulukundis

[https://youtu.be/ncHMEUmM)Zf4?si=grOfZfZklwi2FFhV]

“Swisstable, a Quick and Dirty Description”
by Aria Beingessner

[https:/ /faultlore.com/blah/hashbrown-tldr/]

Pedro Celis, Per-Ake Larson and James lan Munro, “Robin hood hashing,” Foundations
of Computer Science (SFCS), pp. 281-288, 1985, do1:10.1109/SFCS.1985. 48.

Rasmus Pagh and Flemming Friche Rodler, “Cuckoo hashing,” Journal of Algorithms,
51(2):281-288, 2004, d0i:10.1016/j.jalgor.2003.12.002.
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