
1 - 1

Offenes Kolloquium am 5. Juni 2024

Tim Hegemann

Wie man eine HashMap baut

2 - 1

Recap: Hash Tables

U

K
k1
k2 k3

k4 k5

Assumption: large universe U (that means |U| >> |K|)

2 - 2

Recap: Hash Tables

U

K

0

m− 1

k1
k2 k3

k4 k5

Assumption: large universe U (that means |U| >> |K|)
hash function h: U → {0, 1, …, m − 1}

2 - 3

Recap: Hash Tables

U

K

0

m− 1

k1
k2 k3

k4 k5

Assumption: large universe U (that means |U| >> |K|)
hash function h: U → {0, 1, …, m − 1}

k1

2 - 4

Recap: Hash Tables

U

K

0

m− 1

k1
k2 k3

k4 k5

Assumption: large universe U (that means |U| >> |K|)
hash function h: U → {0, 1, …, m − 1}

k2

k1

2 - 5

Recap: Hash Tables

U

K

0

m− 1

k1
k2 k3

k4 k5

Assumption: large universe U (that means |U| >> |K|)
hash function h: U → {0, 1, …, m − 1}

k3

k2

k4

k1

2 - 6

Recap: Hash Tables

U

K

0

m− 1

k1
k2 k3

k4 k5

Assumption: large universe U (that means |U| >> |K|)
hash function h: U → {0, 1, …, m − 1}

k3

k2

k4

k1

2 - 7

Recap: Hash Tables

U

K

0

m− 1

k1
k2 k3

k4 k5

collision

Assumption: large universe U (that means |U| >> |K|)
hash function h: U → {0, 1, …, m − 1}

k1
k3

k2

k4

k5

2 - 8

Recap: Hash Tables

U

K

0

m− 1

k1
k2 k3

k4 k5

collision

Assumption: large universe U (that means |U| >> |K|)
hash function h: U → {0, 1, …, m − 1}

k1
k3

k2

k4

k5

chaining hash table

3 - 1

Asymptotic Runtimes

3 - 2

Asymptotic Runtimes

worst case
find O(1) * ¶ † O(n)
insert O(1) * 1 ¶ † O(n)
delete O(1) * (1) ¶ † O(n)

3 - 3

Asymptotic Runtimes

worst case
find O(1) * ¶ † O(n)
insert O(1) * 1 ¶ † O(n)
delete O(1) * (1) ¶ † O(n)

* expected

3 - 4

Asymptotic Runtimes

worst case
find O(1) * ¶ † O(n)
insert O(1) * 1 ¶ † O(n)
delete O(1) * (1) ¶ † O(n)

* expected
1 amortized

3 - 5

Asymptotic Runtimes

worst case
find O(1) * ¶ † O(n)
insert O(1) * 1 ¶ † O(n)
delete O(1) * (1) ¶ † O(n)

* expected
1 amortized

load factor: α = |K|m

¶ if your load factor is reasonably low

3 - 6

Asymptotic Runtimes

worst case
find O(1) * ¶ † O(n)
insert O(1) * 1 ¶ † O(n)
delete O(1) * (1) ¶ † O(n)

* expected
1 amortized

† if you believe in your hash function

load factor: α = |K|m

¶ if your load factor is reasonably low

3 - 7

Asymptotic Runtimes

worst case
find O(1) * ¶ † O(n)
insert O(1) * 1 ¶ † O(n)
delete O(1) * (1) ¶ † O(n)

* expected
1 amortized

† if you believe in your hash function

load factor: α = |K|m

¶ if your load factor is reasonably low

4 - 1

Worst Case – Does it Matter?

4 - 2

Worst Case – Does it Matter?

curl -- header "Content-Type: application/json" \
-- request POST \
-- data '{"foo":"xyz","bar":"abc"}' \
http://localhost:3000/api/json}}

4 - 3

Worst Case – Does it Matter?

curl -- header "Content-Type: application/json" \
-- request POST \
-- data '{"foo":"xyz","bar":"abc"}' \
http://localhost:3000/api/json}}

That JSON object will most likely end up in a hash map.

4 - 4

Worst Case – Does it Matter?

curl -- header "Content-Type: application/json" \
-- request POST \
-- data '{"foo":"xyz","bar":"abc"}' \
http://localhost:3000/api/json}}

That JSON object will most likely end up in a hash map.

Adding n elements to a hash map has worst-case runtime O(n²)

4 - 5

Worst Case – Does it Matter?

curl -- header "Content-Type: application/json" \
-- request POST \
-- data '{"foo":"xyz","bar":"abc"}' \
http://localhost:3000/api/json}}

That JSON object will most likely end up in a hash map.

Adding n elements to a hash map has worst-case runtime O(n²)

Algorithmic Complexity Attack (commonly known as HashDoS)

5 - 1

Worst Case – Does it Happen?

5 - 2

Worst Case – Does it Happen?

int result = 0;
int end = fromIndex + length;
for (int i = fromIndex; i < end; i++) {

result = 31 * result + JLA.getUTF16Char(value, i);
}
return result;

java.lang.String.hashCode()

5 - 3

Worst Case – Does it Happen?

int result = 0;
int end = fromIndex + length;
for (int i = fromIndex; i < end; i++) {

result = 31 * result + JLA.getUTF16Char(value, i);
}
return result;

java.lang.String.hashCode()

h(s) = Σ 31n−i · si

5 - 4

Worst Case – Does it Happen?

int result = 0;
int end = fromIndex + length;
for (int i = fromIndex; i < end; i++) {

result = 31 * result + JLA.getUTF16Char(value, i);
}
return result;

java.lang.String.hashCode()

h(s) = Σ 31n−i · si h("ABC") = 31 · (31 · (65) + 66) + 67

h("ABC") = 31² · 65 + 31¹ · 66 + 31⁰ · 67

5 - 5

Worst Case – Does it Happen?

int result = 0;
int end = fromIndex + length;
for (int i = fromIndex; i < end; i++) {

result = 31 * result + JLA.getUTF16Char(value, i);
}
return result;

java.lang.String.hashCode()

h(s) = Σ 31n−i · si h("ABC") = 31 · (31 · (65) + 66) + 67

h("ABC") = 31² · 65 + 31¹ · 66 + 31⁰ · 67

6 - 1

Equivalent Substrings

6 - 2

Equivalent Substrings

"tt".hashCode() = 3712

"uU".hashCode() = 3712

"v6".hashCode() = 3712

h(s) = Σ 31n−i · si

6 - 3

Equivalent Substrings

"tt".hashCode() = 3712

"uU".hashCode() = 3712

"v6".hashCode() = 3712

"tta".hashCode() = 115169

"uUa".hashCode() = 115169

"v6a".hashCode() = 115169

h(s) = Σ 31n−i · si

6 - 4

Equivalent Substrings

"tt".hashCode() = 3712

"uU".hashCode() = 3712

"v6".hashCode() = 3712

"tta".hashCode() = 115169

"uUa".hashCode() = 115169

"v6a".hashCode() = 115169

h(s) = Σ 31n−i · si

6 - 5

Equivalent Substrings

"tt".hashCode() = 3712

"uU".hashCode() = 3712

"v6".hashCode() = 3712

"tta".hashCode() = 115169

"uUa".hashCode() = 115169

"v6a".hashCode() = 115169

h(s) = Σ 31n−i · si

"tttt".hashCode() = 3570944

"ttuU".hashCode() = 3570944

"ttv6".hashCode() = 3570944

"uUtt".hashCode() = 3570944

"v6tt".hashCode() = 3570944

"v6uU".hashCode() = 3570944

…

6 - 6

Equivalent Substrings

"tt".hashCode() = 3712

"uU".hashCode() = 3712

"v6".hashCode() = 3712

"tta".hashCode() = 115169

"uUa".hashCode() = 115169

"v6a".hashCode() = 115169

h(s) = Σ 31n−i · si

"tttt".hashCode() = 3570944

"ttuU".hashCode() = 3570944

"ttv6".hashCode() = 3570944

"uUtt".hashCode() = 3570944

"v6tt".hashCode() = 3570944

"v6uU".hashCode() = 3570944

…

6 - 7

Equivalent Substrings

"tt".hashCode() = 3712

"uU".hashCode() = 3712

"v6".hashCode() = 3712

"tta".hashCode() = 115169

"uUa".hashCode() = 115169

"v6a".hashCode() = 115169

h(s) = Σ 31n−i · si

"tttt".hashCode() = 3570944

"ttuU".hashCode() = 3570944

"ttv6".hashCode() = 3570944

"uUtt".hashCode() = 3570944

"v6tt".hashCode() = 3570944

"v6uU".hashCode() = 3570944

…

6 - 8

Equivalent Substrings

"tt".hashCode() = 3712

"uU".hashCode() = 3712

"v6".hashCode() = 3712

"tta".hashCode() = 115169

"uUa".hashCode() = 115169

"v6a".hashCode() = 115169

h(s) = Σ 31n−i · si

"tttt".hashCode() = 3570944

"ttuU".hashCode() = 3570944

"ttv6".hashCode() = 3570944

"uUtt".hashCode() = 3570944

"v6tt".hashCode() = 3570944

"v6uU".hashCode() = 3570944

…

0 0

0 1

0 2

1 0

2 0

2 1

…

6 - 9

Equivalent Substrings

How do we solve this?

6 - 10

Equivalent Substrings

How do we solve this?

Randomize your hash function!

7 - 1

Further Reading – Part I

“Effective Denial of Service attacks against web
application platforms” by alech and zeri

“Hash-flooding DoS reloaded: attacks and defenses”
by djb, Jean-Philippe Aumasson, and Martin Bloßlet

[https://media.ccc.de/v/28c3-4680]

[https://media.ccc.de/v/29c3-5152]

8 - 1

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

8 - 2

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

α = 0.7

8 - 3

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

α = 0.7 find(k5) with h(k5) = 4

8 - 4

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

α = 0.7 find(k5) with h(k5) = 4

8 - 5

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

α = 0.7 find(k5) with h(k5) = 4

8 - 6

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

α = 0.7 find(k5) with h(k5) = 4

8 - 7

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

α = 0.7 find(k5) with h(k5) = 4

find(kx) with h(kx) = 4

8 - 8

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

α = 0.7 find(k5) with h(k5) = 4

find(kx) with h(kx) = 4

8 - 9

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

α = 0.7 find(k5) with h(k5) = 4

find(kx) with h(kx) = 4

8 - 10

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

α = 0.7 find(k5) with h(k5) = 4

find(kx) with h(kx) = 4

8 - 11

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

α = 0.7 find(k5) with h(k5) = 4

find(kx) with h(kx) = 4

8 - 12

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

α = 0.7 find(k5) with h(k5) = 4

find(kx) with h(kx) = 4

Nil

8 - 13

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

α = 0.7 find(k5) with h(k5) = 4

find(kx) with h(kx) = 4

insert(k8) with h(k8) = 6

8 - 14

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

α = 0.7 find(k5) with h(k5) = 4

find(kx) with h(kx) = 4

insert(k8) with h(k8) = 6

8 - 15

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

α = 0.7 find(k5) with h(k5) = 4

find(kx) with h(kx) = 4

insert(k8) with h(k8) = 6
k8

8 - 16

Chaining Hash Maps – Operations

0

9

k5
k3

k2

k6

k7

k4

k1

find(k5) with h(k5) = 4

find(kx) with h(kx) = 4

insert(k8) with h(k8) = 6
k8

α = 0.8

8 - 17

Chaining Hash Maps – Operations

0

9

k5
k3

k6

k7

k4

k1

find(k5) with h(k5) = 4

find(kx) with h(kx) = 4

insert(k8) with h(k8) = 6
k8

insert(k12) with h(k12) = 8

…

k12 k10 k9

k2k11

α = 1.2

8 - 18

Chaining Hash Maps – Operations

0

9

k5
k3

k6

k7

k4

k1

find(k5) with h(k5) = 4

find(kx) with h(kx) = 4

insert(k8) with h(k8) = 6
k8

insert(k12) with h(k12) = 8

…

k12 k10 k9

k2k11

α = 1.2

8 - 19

Chaining Hash Maps – Operations

1. allocate a larger array (length m′)
2. find a new hash function
h′: U → { 0, 1, …, m′ − 1 }

3. rehash and reinsert all items

8 - 20

Chaining Hash Maps – Operations

0 m′ − 1

1. allocate a larger array (length m′)
2. find a new hash function
h′: U → { 0, 1, …, m′ − 1 }

3. rehash and reinsert all items

8 - 21

Chaining Hash Maps – Operations

0 m′ − 1

1. allocate a larger array (length m′)
2. find a new hash function
h′: U → { 0, 1, …, m′ − 1 }

3. rehash and reinsert all items

k12k10k9 k6k8

k1

k5k7 k3

k4

k2

k11

8 - 22

Chaining Hash Maps – Operations

0 m′ − 1

1. allocate a larger array (length m′)
2. find a new hash function
h′: U → { 0, 1, …, m′ − 1 }

3. rehash and reinsert all items

k12k10k9 k6k8

k1

k5k7 k3

k4

k2

k11 α = 0.6

8 - 23

Chaining Hash Maps – Operations

0 m′ − 1

k12k10k9 k6k8

k1

k5k7 k3

k4

k2

k11 delete(k3) with h(k3) = 6

8 - 24

Chaining Hash Maps – Operations

0 m′ − 1

k12k10k9 k6k8

k1

k5k7 k3

k4

k2

k11 delete(k3) with h(k3) = 6

8 - 25

Chaining Hash Maps – Operations

0 m′ − 1

k12k10k9 k6k8

k1

k5k7 k3

k4

k2

k11 delete(k3) with h(k3) = 6

8 - 26

Chaining Hash Maps – Operations

0 m′ − 1

k12k10k9 k6k8

k1

k5k7

k4

k2

k11 delete(k3) with h(k3) = 6

8 - 27

Chaining Hash Maps – Operations

0 m′ − 1

k12k10k9 k6k8

k1

k5k7

k4

k2

k11 delete(k3) with h(k3) = 6

8 - 28

Chaining Hash Maps – Operations

0 m′ − 1

k12k10k9 k6k8

k1

k5k7

k4

k2

k11

Array

8 - 29

Chaining Hash Maps – Operations

0 m′ − 1

k12k10k9 k6k8

k1

k5k7

k4

k2

k11

Array

Linked List

9 - 1

Linked List vs Array List

find iterate remove
0

0.5

1

1.5

2
·107

Access Data by Reference

9 - 2

Linked List vs Array List

find iterate remove
0

0.5

1

1.5

2
·107

Access Data by Reference

get remove
0

0.5

1

1.5

2
·107

Access Data by Known Index

9 - 3

Linked List vs Array List

find iterate remove
0

0.5

1

1.5

2
·107

Access Data by Reference

get remove

101

104

107

Access Data by Known Index
beware!

9 - 4

Linked List vs Array List

Every data structure is bad at
something. Linked lists are just

bad at most things.

10 - 1

Probing Hash Table

0 m − 1

10 - 2

Probing Hash Table

0 m − 1

h(k1) = 3insert(k1)

10 - 3

Probing Hash Table

k1
0 m − 1

h(k1) = 3insert(k1)

10 - 4

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

insert(k1)
insert(k2)

10 - 5

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

insert(k1)
insert(k2)

10 - 6

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

insert(k1)
insert(k2)
insert(k3)

10 - 7

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

insert(k1)
insert(k2)
insert(k3)

10 - 8

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

“linear probing”insert(k1)
insert(k2)
insert(k3)

10 - 9

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

“linear probing”insert(k1)
insert(k2)
insert(k3)

10 - 10

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

10 - 11

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

10 - 12

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

10 - 13

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

10 - 14

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

10 - 15

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

10 - 16

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

find(k4)

10 - 17

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

find(k4)

10 - 18

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

find(k4)

10 - 19

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

find(k4)
h(kx) = 3

find(kx)

10 - 20

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

find(k4)
h(kx) = 3

find(kx)

10 - 21

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

find(k4)
h(kx) = 3

find(kx)

10 - 22

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

find(k4)
h(kx) = 3

find(kx)

10 - 23

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

find(k4)
h(kx) = 3

find(kx)

10 - 24

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

find(k4)
h(kx) = 3

find(kx)

10 - 25

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

load factor: α = |K|m

αmax?
find(k4)

h(kx) = 3

find(kx)

10 - 26

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

load factor: α = |K|m

find(k4)
h(kx) = 3

find(kx)

αmax < 1

10 - 27

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

delete(k3)

10 - 28

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

delete(k3)

10 - 29

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

delete(k3)

10 - 30

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

delete(k3)

?

10 - 31

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

delete(k3)

10 - 32

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

load factor: α = |K|m

delete(k3)

including tombstones!

10 - 33

Probing Hash Table

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4

k4

insert(k1)
insert(k2)
insert(k3)
insert(k4)

h(k5) = 3insert(k5)

k5

delete(k3)


occupied when find

free when insert

ignore when rebuild

11 - 1

Is it Any Better?

worst case
find O(1) * ¶ † O(n)
insert O(1) * 1 ¶ † O(n)
delete O(1) * (1) ¶ † O(n)

* expected
1 amortized

† if you believe in your hash function

¶ if your load factor is reasonably low

11 - 2

Is it Any Better?

Weaknesses
probe sequence is bad when:

• α is high
• hash function builds
clusters

• especially for unsuccessful
lookups

worst case
find O(1) * ¶ † O(n)
insert O(1) * 1 ¶ † O(n)
delete O(1) * (1) ¶ † O(n)

* expected
1 amortized

† if you believe in your hash function

¶ if your load factor is reasonably low

12 - 1

Robin Hood to the Rescue

12 - 2

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

h(k5) = 3

k5

12 - 3

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

h(k5) = 3

psl 0
k5

12 - 4

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

h(k5) = 3

psl 0 0
k5

12 - 5

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

h(k5) = 3

psl 0 0 1
k5

12 - 6

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

h(k5) = 3

psl 0 0 1 1
k5

12 - 7

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

h(k5) = 3

psl 0 0 1 1 3
k5

12 - 8

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4
h(k5) = 3

psl 0 0

12 - 9

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4
h(k5) = 3

psl 0 0

insert(k3)

12 - 10

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4
h(k5) = 3

psl 0 0

insert(k3)

psl 0

12 - 11

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1

insert(k3)

12 - 12

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1

insert(k4)
insert(k3)

psl 0

12 - 13

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k3)

psl 1

12 - 14

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

insert(k3)

psl 0

12 - 15

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

insert(k3)

psl 1

12 - 16

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4

k4

h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

insert(k3)

psl 2

12 - 17

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

insert(k3)

k5

12 - 18

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

insert(k3)

k5

2

12 - 19

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

insert(k3)

k5

2

k4

2

12 - 20

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

insert(k3)

find(kx)

k5

2

k4

2

h(kx) = 3

12 - 21

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

insert(k3)

find(kx)

k5

2

k4

2

h(kx) = 3

12 - 22

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

insert(k3)

find(kx)

k5

2

k4

2

h(kx) = 3

psl 0

12 - 23

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

insert(k3)

find(kx)

k5

2

k4

2

h(kx) = 3

psl 1

12 - 24

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

insert(k3)

find(kx)

k5

2

k4

2

h(kx) = 3

psl 2

12 - 25

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

insert(k3)

find(kx)

k5

2

k4

2

h(kx) = 3

psl 3

12 - 26

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

insert(k3)

find(kx)

k5

2

k4

2

h(kx) = 3

psl 3 3

12 - 27

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

delete(k3)

insert(k3)

find(kx)

k5

2

k4

2

h(kx) = 3

12 - 28

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

delete(k3)

insert(k3)

find(kx)

k5

2

k4

2

h(kx) = 3

12 - 29

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

delete(k3)

insert(k3)

find(kx)

k5

2

k4

2

h(kx) = 3
h(k6) = 4

insert(k6)

12 - 30

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

delete(k3)

insert(k3)

find(kx)

k5

2

k4

2

h(kx) = 3
h(k6) = 4

insert(k6)

12 - 31

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3

k3

h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

delete(k3)

insert(k3)

find(kx)

k5

2

k4

2

h(kx) = 3

12 - 32

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

delete(k3)

insert(k3)

find(kx)

k5

2

k4

2

h(kx) = 3

12 - 33

Robin Hood to the Rescue

k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

delete(k3)

insert(k3)

find(kx)

k5

2

k4

2

h(kx) = 3

“backshifting”

12 - 34

Robin Hood to the Rescue

k5k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4
h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

delete(k3)

insert(k3)

find(kx)

2

k4

2

h(kx) = 3

“backshifting”

12 - 35

Robin Hood to the Rescue

k5k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4

k4

h(k5) = 3

psl 0 0 1 1

insert(k4)
insert(k5)

delete(k3)

insert(k3)

find(kx)
h(kx) = 3

“backshifting”

12 - 36

Robin Hood to the Rescue

k5k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4

k4

h(k5) = 3

psl 0 0 1 1

Weaknesses
• memory consumption
• average psl not better
• deletes still slow and
complicated

12 - 37

Robin Hood to the Rescue

k5k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4

k4

h(k5) = 3

psl 0 0 1 1

Weaknesses
• memory consumption
• average psl not better
• deletes still slow and
complicated

12 - 38

Robin Hood to the Rescue

k5k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4

k4

h(k5) = 3

psl 0 0 1 1

Weaknesses
• memory consumption
• average psl not better
• deletes still slow and
complicated

12 - 39

Robin Hood to the Rescue

k5k1
0 m − 1

h(k1) = 3
h(k2) = 0

k2

h(k3) = 3
h(k4) = 4

k4

h(k5) = 3

psl 0 0 1 1

Like Robin Hood, it does not
change the average wealth

(mean probe length),
only its distribution

13 - 1

Cuckoo Hashing

worst case
find O(1) * ¶ † O(n)
insert O(1) * 1 ¶ † O(n)
delete O(1) * (1) ¶ † O(n)

* expected
1 amortized

† if you believe in your hash function

¶ if your load factor is reasonably low

13 - 2

Cuckoo Hashing

O(1)
worst case

find O(1) * ¶ † O(n)
insert O(1) * 1 ¶ † O(n)
delete O(1) * (1) ¶ † O(n)

* expected
1 amortized

† if you believe in your hash function

¶ if your load factor is reasonably low

13 - 3

Cuckoo Hashing

O(1)

O(1)

worst case
find O(1) * ¶ † O(n)
insert O(1) * 1 ¶ † O(n)
delete O(1) * (1) ¶ † O(n)

* expected
1 amortized

† if you believe in your hash function

¶ if your load factor is reasonably low

13 - 4

Cuckoo Hashing

0 m − 1

0 m − 1

T1

T2

13 - 5

Cuckoo Hashing

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k1)

13 - 6

Cuckoo Hashing

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k1)

k1

13 - 7

Cuckoo Hashing

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k1)

k1

13 - 8

Cuckoo Hashing

k2
0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k1)

k1

13 - 9

Cuckoo Hashing

k2
0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

insert(k1)

k1

13 - 10

Cuckoo Hashing

k2
0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

insert(k1)

k1

13 - 11

Cuckoo Hashing

k2
0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

insert(k1)

k3

13 - 12

Cuckoo Hashing

k2
0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

insert(k1)

k1

k3

13 - 13

Cuckoo Hashing

k2
0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

insert(k1)

insert(k4)
insert(k5)

k1

k3

13 - 14

Cuckoo Hashing

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

insert(k1)

insert(k4)
insert(k5)

k4k5

k1

k3

13 - 15

Cuckoo Hashing

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

insert(k1)

insert(k4)
insert(k5)

k4k5

k1

k3

insert(k6)

13 - 16

Cuckoo Hashing

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

insert(k1)

insert(k4)
insert(k5)

k4

k1

k3

insert(k6)

13 - 17

Cuckoo Hashing

k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

insert(k1)

insert(k4)
insert(k5)

k4 k3

insert(k6)

13 - 18

Cuckoo Hashing

k3k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

insert(k1)

insert(k4)
insert(k5)

k4 k1

insert(k6)

13 - 19

Cuckoo Hashing

k3k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

insert(k1)

insert(k4)
insert(k5)

k4 k1

find(k4)
insert(k6)

13 - 20

Cuckoo Hashing

k3k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

insert(k1)

insert(k4)
insert(k5)

k4 k1

find(k4)
insert(k6)

13 - 21

Cuckoo Hashing

k3k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)
insert(k6)

13 - 22

Cuckoo Hashing

k3k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)
insert(k6)

13 - 23

Cuckoo Hashing

k3k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

delete(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)
insert(k6)

13 - 24

Cuckoo Hashing

k3k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

delete(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)
insert(k6)

13 - 25

Cuckoo Hashing

k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

delete(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)
insert(k6)

13 - 26

Cuckoo Hashing

k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

delete(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)

insert(kx)

insert(k6)

13 - 27

Cuckoo Hashing

k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

delete(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)

insert(kx)

kx

insert(k6)

13 - 28

Cuckoo Hashing

k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

delete(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)

insert(kx)

kx

insert(k6)

13 - 29

Cuckoo Hashing

k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

delete(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)

insert(kx)

kx

insert(k6)

13 - 30

Cuckoo Hashing

k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

delete(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)

insert(kx)

kx

insert(k6)

13 - 31

Cuckoo Hashing

k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

delete(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)

insert(kx)

kx

Oh no! A cycle

insert(k6)

13 - 32

Cuckoo Hashing

k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

delete(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)

insert(kx)

kx

insert(k6)

13 - 33

Cuckoo Hashing

k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

delete(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)

insert(kx)

kx

Oh no! A cycle
insert(k6)

13 - 34

Cuckoo Hashing

k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

delete(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)

insert(kx)

kx

Oh no! A cycle

It’s time to
rebuild your
hash table!

3 4

insert(k6)

13 - 35

Cuckoo Hashing

k5

k6

k2

0 m − 1

0 m − 1

T1

T2
h1(·) h2(·)

k1 6 3
k2 1 1
k3 6 5
k4 3 5
k5 1 3
k6 1 3
kx 6 1

insert(k2)
insert(k3)

delete(k3)

insert(k1)

find(kx)
insert(k4)
insert(k5)

k4 k1

find(k4)

insert(kx)

Problems
• Insert in O(1) * 1 ¶ † only as long
as α < 0.5

• requires a good hash function
• not cache friendly

14 - 1

“In theory, there is no difference
between theory and practice;
but, in practice, there is.”

14 - 2

“In theory, there is no difference
between theory and practice;
but, in practice, there is.”

14 - 3

15 - 1

Swisstable

15 - 2

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

15 - 3

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Idea
Use a little bit of extra memory for
parallel lookups with uncertainty

15 - 4

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

15 - 5

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

h: U → u64

15 - 6

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

h: U → u64
H1(k) = h(k) mod m

15 - 7

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

h: U → u64
H1(k) = h(k) mod m
H2(k) = h(k) >> 57

“first 7 bits”

15 - 8

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

15 - 9

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

m bytes of
0×FF = empty
0×80 = deleted
0×00…0×7F = occupied

15 - 10

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

m bytes of
0×FF = empty
0×80 = deleted
0×00…0×7F = occupied
use H2 for the occupied bytes

15 - 11

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

m bytes of
0×FF = empty
0×80 = deleted
0×00…0×7F = occupied
use H2 for the occupied bytes
+ reprise of the first 16 bytes

15 - 12

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

m bytes of
0×FF = empty
0×80 = deleted
0×00…0×7F = occupied
use H2 for the occupied bytes
+ reprise of the first 16 bytes

m

reprise

15 - 13

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

15 - 14

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

Steps:
1. start at bucket H1(k)
2. search group for H2(k)
3. for each match, check keys,
return true if found

4. search group for an empty
bucket

5. return false if found
6. otherweise, check the next
group

15 - 15

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

Steps:
1. start at bucket H1(k)
2. search group for H2(k)
3. for each match, check keys,
return true if found

4. search group for an empty
bucket

5. return false if found
6. otherweise, check the next
group

H1(k) = 8

15 - 16

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

Steps:
1. start at bucket H1(k)
2. search group for H2(k)
3. for each match, check keys,
return true if found

4. search group for an empty
bucket

5. return false if found
6. otherweise, check the next
group

H1(k) = 8group

15 - 17

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

H1(k) = 8group

Search group for k with
H2(k) = 0×3F

15 - 18

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions _mm_set1_epi8

H1(k) = 8group

Search group for k with
H2(k) = 0×3F

15 - 19

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions _mm_set1_epi8

3F0×3F 7→

H1(k) = 8group

Search group for k with
H2(k) = 0×3F

3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

15 - 20

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions _mm_cmpeq_epi8

3F0×3F 7→

H1(k) = 8group

Search group for k with
H2(k) = 0×3F

3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

15 - 21

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions _mm_cmpeq_epi8

3F0×3F 7→

05 7B 3F 28 FF 40 6A 37 42 3F FF 58 80 FF 36 00

H1(k) = 8group

Search group for k with
H2(k) = 0×3F

3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

group

15 - 22

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions _mm_cmpeq_epi8

3F0×3F 7→

05 7B 3F 28 FF 40 6A 37 42 3F FF 58 80 FF 36 00

00 00 FF 00 00 00 00 00 00 FF 00 00 00 00 00 00

H1(k) = 8group

Search group for k with
H2(k) = 0×3F

3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

group

15 - 23

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions _mm_movemask_epi8

3F0×3F 7→

05 7B 3F 28 FF 40 6A 37 42 3F FF 58 80 FF 36 00

00 00 FF 00 00 00 00 00 00 FF 00 00 00 00 00 00

H1(k) = 8group

Search group for k with
H2(k) = 0×3F

3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

group

15 - 24

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions _mm_movemask_epi8

3F0×3F 7→

05 7B 3F 28 FF 40 6A 37 42 3F FF 58 80 FF 36 00

00 00 FF 00 00 00 00 00 00 FF 00 00 00 00 00 007→0×2040

H1(k) = 8group

Search group for k with
H2(k) = 0×3F

3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

group

15 - 25

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

Steps:
1. start at bucket H1(k)
2. search group for H2(k)
3. for each match, check keys,
return true if found

4. search group for an empty
bucket

5. return false if found
6. otherweise, check the next
group

H1(k) = 8group

15 - 26

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

Steps:
1. start at bucket H1(k)
2. search group for H2(k)
3. for each match, check keys,
return true if found

4. search group for an empty
bucket

5. return false if found
6. otherweise, check the next
group

H1(k) = 8group

15 - 27

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

Steps:
1. start at bucket H1(k)
2. search group for H2(k)
3. for each match, check keys,
return true if found

4. search group for an empty
bucket

5. return false if found
6. otherweise, check the next
group

H1(k) = 8group

= search group for 0×FF

15 - 28

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

Steps:
1. start at bucket H1(k)
2. search group for H2(k)
3. for each match, check keys,
return true if found

4. search group for an empty
bucket

5. return false if found
6. otherweise, check the next
group

H1(k) = 8group

15 - 29

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

H1(k) = 8

Case 1: k is in the table
find k, then replace it

15 - 30

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

Case 1: k is in the table
find k, then replace it

Case 2: k is not in the table
1. start at bucket H1(k)
2. search group for empty or
deleted

3. if found, insert k
4. otherwise, check the next
group

H1(k) = 5group

15 - 31

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

Case 1: k is in the table
find k, then replace it

Case 2: k is not in the table
1. start at bucket H1(k)
2. search group for empty or
deleted

3. if found, insert k
4. otherwise, check the next
group

H1(k) = 5group

= movemask on group

15 - 32

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

Case 1: k is in the table
find k, then replace it

Case 2: k is not in the table
1. start at bucket H1(k)
2. search group for empty or
deleted

3. if found, insert k
4. otherwise, check the next
group

H1(k) = 5group

15 - 33

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

15 - 34

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

15 - 35

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

15 - 36

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

?

15 - 37

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

> 16

15 - 38

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

> 16

!

15 - 39

Swisstable

0 m− 1
k2 k6 k1k7 k4 k5

Ingredients:
• derive two hash functions
• use m+16 bytes of metadata
• SIMD instructions

Operations:
• find(k: Key)
• insert(k: Key)
• delete(k: Key)

Weaknesses
• requires SIMD instructions
• hash function must use its
high bits

16 - 1

Further Reading – Part II

Pedro Celis, Per-Ake Larson and James Ian Munro, “Robin hood hashing,” Foundations
of Computer Science (SFCS), pp. 281–288, 1985, doi:10.1109/SFCS.1985.48.

Rasmus Pagh and Flemming Friche Rodler, “Cuckoo hashing,” Journal of Algorithms,
51(2):281–288, 2004, doi:10.1016/j.jalgor.2003.12.002.

“Designing a Fast, Efficient, Cache-friendly Hash Table,
Step by Step” by Matt Kulukundis

[https://youtu.be/ncHmEUmJZf4?si=grOfZfZklwi2FFhV]

“Swisstable, a Quick and Dirty Description”
by Aria Beingessner

[https://faultlore.com/blah/hashbrown-tldr/]

	Titelseite

