Wie man eine HashMap baut

Tim Hegemann

Offenes Kolloquium am 5. Juni 2024

Recap: Hash Tables

Assumption: large universe U (that means |U]| >> |K])

) -

1

Recap: Hash Tables

Assumption: large universe U (that means |U]| >> |K])
hash function h: U — {0, 1, ..., m - 1}

o |m — 1

-2

Recap: Hash Tables

Assumption: large universe U (that means |U]| >> |K])
hash function h: U — {0, 1, ..., m - 1}

o |m — 1

Recap: Hash Tables

Assumption: large universe U (that means |U]| >> |K])
hash function h: U — {0, 1, ..., m - 1}

o |m — 1

Recap: Hash Tables

Assumption: large universe U (that means |U]| >> |K])
hash function h: U — {0, 1, ..., m - 1}

o |m — 1

¢"
.

Recap: Hash Tables

Assumption: large universe U (that means |U]| >> |K])
hash function h: U — {0, 1, ..., m - 1}

o |m — 1

¢"
.

Recap: Hash Tables

Assumption: large universe U (that means |U]| >> |K])
hash function h: U — {0, 1, ..., m - 1}

o |m — 1

v ® -|0k40

¢"
.

®(collision

f!_:I. l:; o o[k o

Recap: Hash Tables

Assumption: large universe U (that means |U]| >> |K])
hash function h: U — {0, 1, ..., m - 1}

o |m — 1

v ® -|0k40

¢"
.

®(collision

f!_:I. l:; o o[k o

b\ chaining hash table

"""""" ° -lokzo

Asymptotic Runtimes

Asymptotic Runtimes

find 0(1)
insert 0(1)
delete 0(1)

Asymptotic Runtimes

find 0(1) *
insert 0O(1)*
delete 0(1)*

* expected

Asymptotic Runtimes

find 0(1) *
insert 0O(1) *1
delete 0(1) *(2)

* expected

1 amortized

Asymptotic Runtimes

find 0(1) *1

insert 0O(1)*11

delete O(2) "1 load factor: a = lrnLI
* expected
1 amortized

Tif your load factor is reasonably low

Asymptotic Runtimes

find O(1) >t
insert O(1)*17t

delete O(1)*@)Tt |K|
load factor: a = —

* expected

1 amortized
Tif your load factor is reasonably low

T if you believe in your hash function

Asymptotic Runtimes

worst case
find O(1) >t O(n)
insert O(1)*17t O(n)
delete 0O(1)*() 1t O(n) |K|
load factor: a = —
m
* expected
1 amortized

Tif your load factor is reasonably low

T if you believe in your hash function

Worst Case - Does it Matter?

Worst Case — Does it Matter?

Worst Case — Does it Matter?

That JSON object will most likely end up in a hash map.

Worst Case — Does it Matter?

That JSON object will most likely end up in a hash map.

Adding n elements to a hash map has worst-case runtime 0(n?)

Worst Case — Does it Matter?

That JSON object will most likely end up in a hash map.

Adding n elements to a hash map has worst-case runtime 0(n?)

Algorithmic Complexity Attack (commonly known as HashDoS)

Worst Case — Does 1t Happen?

Worst Case - Does It Happen?

java.lang.String.hashCode()

Worst Case - Does It Happen?

java.lang.String.hashCode()

h(S) =2 31n—i © S

Worst Case - Does It Happen?

java.lang.String.hashCode()

h(s) = 331" - 5, ("ABC") = 31- (31 (65) + 66) + 67

5 -

A

Worst Case - Does It Happen?

java.lang.String.hashCode()

h(s) = 331" - 5, ("ABC") = 31- (31 (65) + 66) + 67

h("ABC") =312-65+31"-66 + 31°- 67

Equivalent Substrings

Equivalent Substrings h(s) =5 31" . s

"tt".hashCode() = 3712
"uU".hashCode() = 3712

"v6".hashCode() = 3712

Equivalent Substrings

"tt".hashCode() = 3712
"uU".hashCode() = 3712

"v6".hashCode() = 3712

"tta".hashCode() = 115169

h(s) =3 31" . s,

Equivalent Substrings h(s) =5 31" . s

"tt".hashCode() = 3712
"uU".hashCode() = 3712

"v6".hashCode() = 3712

"tta".hashCode() = 115169
"uUa".hashCode() = 115169

"v6a".hashCode() = 115169

Equivalent Substrings h(s) =5 31" . s

"tt".hashCode() = 3712 "tttt".hashCode() = 3570944
"uU".hashCode() = 3712

"v6".hashCode() = 3712

"tta".hashCode() = 115169
"uUa".hashCode() = 115169

"vb6a".hashCode() = 115169

Equivalent Substrings h(s) =5 31" . s

"tt".hashCode() = 3712 "tttt".hashCode() = 3570944
"uU".hashCode() = 3712 "ttuU".hashCode() = 3570944

"v6".hashCode() = 3712

"tta".hashCode() = 115169
"uUa".hashCode() = 115169

"vb6a".hashCode() = 115169

Equivalent Substrings h(s) =5 311 . s,

"tt".hashCode() = 3712 "tttt".hashCode() = 3570944
"uU".hashCode() = 3712 "ttuU".hashCode() = 3570944
"v6".hashCode() = 3712 "ttv6".hashCode() = 3570944

"uUtt".hashCode() = 3570944

"tta".hashCode() = 115169
"vott".hashCode() = 3570944

"uUa".hashCode() = 115169
"veuU".hashCode() = 3570944

"vb6a".hashCode() = 115169

Equivalent Substrings

"tt".hashCode() = 3712
"uU".hashCode() = 3712

"v6".hashCode() = 3712

"tta".hashCode() = 115169
"uUa".hashCode() = 115169

"vb6a".hashCode() = 115169

h(s) =3 31" . s,

"tttt".hashCode() = 3570944
"ttuU".hashCode() = 3570944
"ttv6".hashCode() = 3570944
"uUtt".hashCode() = 3570944
"vbtt".hashCode() = 3570944

"veuU".hashCode() = 3570944

00

01

02

10

20

21

Equivalent Substrings

How do we solve this?

Equivalent Substrings

How do we solve this?

Randomize your hash function!

Further Reading - Part |

“Effective Denial of Service attacks against web %
application platforms” by alech and zeri g

%g :
[https://media.ccc.de/v/28c3-4680] E té%‘ 8,

[®] 54 “Hash-flooding DoS reloaded: attacks and defenses”
;g fizEs by djb, Jean-Philippe Aumasson, and Martin BloBlet

E v o w3, [https://media.ccc.de/v/29¢3-5152]

Chaining Hash Maps - Operations

R e

w(o| k7 [*fc_le| ks [o[._le| k1 |

-lo R3 (e

-Io R, |e®

0.7

R e

w(o| k7 [*fc_le| ks [o[._le| k1 |

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations

Chaining Hash Maps - Operations

find(ks) with h(ks) = 4

0.7

R e

w(o| k7 [*fc_le| ks [o[._le| k1 |

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations

find(ks) with h(ks) = 4

0.7

R e

w(o| k7 [*fc_le| ks [o[._le| k1 |

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations

find(ks) with h(ks) = 4

0.7

R e

~(8| Rz |*[._le| ks [o[_le| k1 |

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations

find(ks) with h(ks) = 4

0.7

R e

o R [ol ks |l e[o

-lo R3 (e

-Io R, |e®

0.7

find(ks) with h(ks) = 4

A

find(ky) with h(ky)

R e

w(o| k7 [*fc_le| ks [o[._le| k1 |

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations

0.7

find(ks) with h(ks) = 4

A

find(ky) with h(ky)

R e

w(o| k7 [*fc_le| ks [o[._le| k1 |

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations

0.7

find(ks) with h(ks) = 4

A

find(ky) with h(ky)

R e

~(8| Rz |*[._le| ks [o[_le| k1 |

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations

0.7

find(ks) with h(ks) = 4

A

find(ky) with h(ky)

R e

o R [ol ks |l e[o

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations

0.7

find(ks) with h(ks) = 4

A

find(ky) with h(ky)

R e

o k7 [te] ks |ofc e[o

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations

0.7

find(ks) with h(ks) = 4

A

find(ky) with h(ky)

R e

-Io R7 O’l::lp Rs 01:'» kR, o T Nil

-lo R3 (e

-Io R, |e®

Chaining Hash Maps - Operations

Chaining Hash Maps - Operations

a=0.7 find(ks) with h(ks) = 4

A

o1 o[kg [o[ks o find(ky) with h(Ry)

insert(kRg) with h(kg)

6

° -|0k70’l::|pk5.1:|,0k10

Chaining Hash Maps - Operations

a=0.7 find(ks) with h(ks) = 4

A

o1 o[kg [o[ks o find(ky) with h(Ry)

insert(kRg) with h(kg)

6

° -|0k70’l::|pk5.1:|,0k10

Chaining Hash Maps - Operations

a:

0.7

b
P

find(ks) with h(ks) =

find(ky) with h(ky)

insert(kRg) with h(kg)

A

A

6

Chaining Hash Maps - Operations

a:

0.8

b
P

find(ks) with h(ks) =

find(ky) with h(ky)

insert(kRg) with h(kg)

A

A

6

Chaining Hash Maps - Operations

a =

1.2

k1o

TP

Ry,

P

U Ol

find(ks) with h(ks) = 4

find(ky) with h(ky) = 4

insert(kg) with h(kg) = 6

insert(ky,) with h(kqy) = 8

Chaining Hash Maps - Operations

a=12 ®

k1o

TP

Ry,

P

U Ol

find(ks) with h(ks) = 4

find(ky) with h(ky) = 4

insert(kg) with h(kg) = 6

insert(ky,) with h(kqy) = 8

Chaining Hash Maps - Operations

1. allocate a larger array (length m’)

Chaining Hash Maps - Operations

1. allocate a larger array (length m’)
2. find a new hash function
h:U—={0,1,..m -1}

Chaining Hash Maps - Operations

0 m' -1
o r o T o ® r o ? ? r o o o r o o ? o ?
vy I v vy
o o o o ® o o ® o
Ry Rg R3 Rg[|R2 |[Re IR10 Ria| |Rs
Q o Q o o o o o o
R Ry,
o
Q 1. allocate a larger array (length m’)
2. find a new hash function
R11 h:uU—{01,..,.m -1}
o

3. rehash and reinsert all items

Chaining Hash Maps - Operations

0 m' -1
o r o T o ® r o ? ? r o o o r o o ? o ?
vy I v vy
o o o o ® o o ® o
Ry Rg R3 Rg[|R2 |[Re IR10 Ria| |Rs
Q o Q o o o o o o
R Ry,
o
Q 1. allocate a larger array (length m’)
2. find a new hash function
R11 a=06@ h:U—{0,1,..m -1}
o

3. rehash and reinsert all items

Chaining Hash Maps - Operations

m' -1

6

delete(k;) with h(k3)

= <
°
o||v_o <
°
°
o||v_o km
°
°
°
0||v_o ~
o||v_o o
o||v_o &
°
o||v_o &
°
°
o||v_o <
°
o||v_0 &
°

R11

Chaining Hash Maps - Operations

m' -1

6

delete(k;) with h(k3)

= <
°
o||v_o <
°
°
o||v_o km
°
°
°
0||v_o ~
o||v_o o
o||v_o &
°
o||v_o &
°
°
o||v_o <
°
o||v_0 &
°

R11

Chaining Hash Maps - Operations

m' -1

6

delete(k;) with h(k3)

= <
°
o||v_o <
°
°
o||v_o km
°
°
°
0||v_o ~
o||v_o o
o||v_o &
°
o||v_o &
°
°
o||v_o <
°
o||v_0 &
°

R11

Chaining Hash Maps - Operations

m' -1

6

delete(k;) with h(k3)

= <

°

o||v_o <

°

°

o||v_o =
o

°

°

°

0||v_o ~

o||v_o o

o||v_o &

°

*——>

°

°

o||v_o <

°

o||v_0 &

°

R11

Chaining Hash Maps - Operations

m’ -

6

delete(k;) with h(k3)

= <

°

o||v_o <

°

°

o||v_o =
&

°

°

°

0||v_o ~

o||v_o o

o||v_o &

°

®

°

°

o||v_o <

°

A=

°

R11

Chaining Hash Maps - Operations

m’ -

Array

ol o[
o||v_o <
oo &
o||v_o ~
o||v_o o
o||v_o &
0||v_o <
s o

R11

Chaining Hash Maps - Operations

Linked List vs Array List

Access Data by Reference
107 |

find iterate remove

Linked List vs Array List

Access Data by Reference
107 |

find iterate remove

1.5

0.5

Access Data by Known Index

get

|
remove

Linked List vs Array List

Access Data by Reference Access Data by Known Index
107 |

find iterate remove get remove

Linked List vs Array List

Every data structure is bad at
something. Linked lists are just
bad at most things.

Probing Hash Table

Probing Hash Table

0

insert(kq)

h(kq) = 3

Probing Hash Table

R

0

insert(kq)

h(kq) = 3

Probing Hash Table

0 m-1

insert(kq)

insert(k,)

Probing Hash Table

0 m-1

insert(kq)

insert(k,)

Probing Hash Table

0 m-1
insert(kq)

insert(k,)
insert(ks)

Probing Hash Table

0 m-1
insert(kq)

insert(k,)
insert(ks)

Probing Hash Table

O > m_l

insert(ky) linear probing

insert(k,)

insert(ks3)

Probing Hash Table

O > m_l

insert(ky) linear probing

insert(k,)

insert(ks3)

Probing Hash Table

0

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)

Probing Hash Table

0

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)

Probing Hash Table

O R

0 m-1

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)

Probing Hash Table

QR

0 m-1

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)

insert(Rks)

Probing Hash Table

0

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)

insert(Rks)

m-1

Probing Hash Table

0 m-1

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)

insert(Rks)

Probing Hash Table

0 m-1

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)
insert(Rks)
find(k,)

Probing Hash Table

0 m-1

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)
insert(Rks)
find(k,)

Probing Hash Table

0 m-1

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)
insert(Rks)
find(k,)

Probing Hash Table

0 m-1

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)
insert(Rks)
find(k,)

find(k,)

Probing Hash Table

0 m-1

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)
insert(Rks)
find(k,)

find(k,)

Probing Hash Table

0 m-1

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)
insert(Rks)
find(k,)

find(k,)

Probing Hash Table

0 m-1

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)
insert(Rks)
find(k,)

find(k,)

Probing Hash Table

0 m-1

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)
insert(Rks)
find(k,)

find(k,)

Probing Hash Table

0

insert(Rq)
insert(k,)
insert(ks3)
insert(k,)
insert(Rks)
find(k,)

find(k,)

Probing Hash Table

k’1 I’(’3 I’\’4 I?5

Ry

Mm © ™m - ™M o

—]~ i~
Dl N ™M 5 1N X

load factor: a

Omax?

(((((\M-
o Srer B e B S
rrrrr(
Q VvV OV OV O TS
n o n nu u un o
cC S £ £ £ [

Probing Hash Table

k’1 I’(’3 I’\’4 I?5

Ry

Mm O© M I ™ o

—]~ i~
— o o < Lo X

load factor: a

Omax < 1

(((((\M-
o Srer B e B S
rrrrr(
Q VvV OV OV O TS
n o n nu u un o
cC S £ £ £ [

Probing Hash Table

0 m-1

insert(Rq)
insert(k,)
insert(Rs)
insert(ky)
insert(Rks)
delete(R3)

Probing Hash Table

0 m-1

insert(Rq)
insert(k,)
insert(Rs)
insert(ky)
insert(Rks)
delete(R3)

Probing Hash Table

0 m-1

insert(Rq)
insert(k,)
insert(Rs)
insert(ky)
insert(Rks)
delete(R3)

Probing Hash Table

DEREE

0 m-1

insert(Rq)
insert(k,)
insert(Rs)
insert(ky)
insert(Rks)
delete(R3)

Probing Hash Table

m O Mm I o

—~ —~ —~
— o ™ . LN
L LK &K & X

S S N N NS

< L L <

Awum_f._v.:____ _________:_M)_; : .

l’&/”” h

Probing Hash Table

k, 3 . ka | Rs

0 m-1

insert(kq) Including tombstones!
insert(k,) 3
insert(k3) load factor: o = Il
insert(kys) §
insert(ks)

delete(ks)

=S
N

~ ~— 0

>
~3
w »~» W O W

N

=S
Ny

w

>
x

~

-

>
&

Probing Hash Table

k, 3 . ka | Rs

0 m-1

insert(kq)

insert(k;) (occupied when find
insert(ks) { free when insert
insert(k,) . :

. Ignore when rebuild
insert(ks))

delete(ks)

=S
N

~_ ~— ~— ~

>
>
w »~» W O W

N

=S
Ny

w

>
x

~

/N /N /N /N

-

>
&

Is it Any Better?

worst case
find 0(1) *1t O(n)
insert O(1)*17t O(n)

delete O(1)*@)Tt O(n)

* expected

1 amortized
Tif your load factor is reasonably low

T if you believe in your hash function

Is it Any Better?

worst case
* 9t
find 0(1) O(n) Weaknesses
insert O(1)*11t Oo(n) probe sequence is bad when:
® o Is high
* t
delete O(1) * (V1 O(n) e hash function builds
clusters
* expected e especially for unsuccessful
lookups
1 amortized

Tif your load factor is reasonably low

T if you believe in your hash function

Robin Hood to the Rescue

Robin Hood to the Rescue

m O© ™Mm I ™

—

o\«

o
o\

o
o\

4
o\

LN
o\

SN (N N N SN

L

L

R1|R3|Rs|Rs

Ry

L

L

L

Robin Hood to the Rescue

psl O

m O© ™Mm I ™

—

o\«

o
o\

o
o\

4
o\

LN
o\

SN (N N N SN

L

L

R1|R3|Rs|Rs

Ry

L

L

L

Robin Hood to the Rescue

0

psl O

m O© ™Mm I ™

—

o\«

o
o\

o
o\

4
o\

LN
o\

SN (N N N SN

L

L

R1|R3|Rs|Rs

Ry

L

L

L

Robin Hood to the Rescue

1

0

psl O

m O© ™Mm I ™

—

o\«

o
o\

o
o\

4
o\

LN
o\

SN (N N N SN

L

L

R1|R3|Rs|Rs

Ry

L

L

L

Robin Hood to the Rescue

1 1

0

psl O

m O© ™Mm I ™

—

o\«

o
o\

o
o\

4
o\

LN
o\

SN (N N N SN

L

L

R1|R3|Rs|Rs

Ry

L

L

L

psl O

Robin Hood to the Rescue

0 1 1 3

Ry

R1

R3

Ry,

Rs

m-1

>
&

S
N
N

S

>

—~~ —~ o~ —~
A A
W

— ~— — ~— ~—
|

w > W o W

S
-
&

Robin Hood to the Rescue

0

psl O

m O© ™Mm I ™

—

o\«

o
o\

o
X

4
o\

LN
o\

SN (N N N SN

L

L

L

L

L

Robin Hood to the Rescue

h(Rs)
h(ks)

—

o™
A\

~~
o+
—
Q
n
-

Robin Hood to the Rescue

h(Rs)
h(ks)

—

o™
A\

~~
o+
—
Q
n
-

Robin Hood to the Rescue

1

0

psl O

R1|R3

Ry

h(Rs)
h(ks)

—

o™
A\

~~
o+
—
Q
n
-

Robin Hood to the Rescue

0

psl O

Ry

h(Rs)
h(ks)

—

o™
A\

~~
o+
—
Q
n
-

insert(k,)

Robin Hood to the Rescue

psl O 0 1 1
Ry R1|R3| Ry psl 1
0 m-1

insert(k3)

insert(k,)

N

N N 0 I~ |~

>
w > W o W

>
—~ —~ —~

N

>
N

w

A

>
~

>
-

ol

Robin Hood to the Rescue

psl O 0 1 1
ka| T [kafks]k psl 0
0 m-1

insert(k3)
insert(k,)

insert(ks)

N

N N 0 I~ |~

>
w > W o W

>
—~ —~ —~

N

>
N

w

A

>
~

>
-

ol

Robin Hood to the Rescue

psl O 0 1 1
ks RR psl 1
0 m-1

insert(k3)
insert(k,)

insert(ks)

N

N N 0 I~ |~

>
w > W o W

>
—~ —~ —~

N

>
N

w

A

>
~

>
-

ol

Robin Hood to the Rescue

psl O 0 1 1
Ry R1 k’3 psl 2
0 m-1

insert(k3)
insert(k,)

insert(ks)

N

N N 0 I~ |~

>
w > W o W

>
—~ —~ —~

N

>
N

w

A

>
~

>
-

ol

Robin Hood to the Rescue

psl O 0 1 1
R, R1|R3|Rs
0 m-1
insert(k3)
insert(k,)

insert(ks)

>
&

S
N
N

S

>

—~~ —~ o~ —~
A A
W

— ~— — ~— ~—
|

w > W o W

S
-
&

Robin Hood to the Rescue

2
psl O 0 1 1%
R, R1|R3|Rs
0 m-1
insert(k3)
insert(k,)

insert(ks)

>
&

S
N
N

S

>

—~~ —~ o~ —~
A A
W

— ~— — ~— ~—
|

w > W o W

S
-
&

Robin Hood to the Rescue

2
psl O 0 1 72 2
Ry R1|R3|Rs| Ry
0 m-1
insert(k3)
insert(k,)

insert(ks)

>
&

S
N
N

S

>

—~~ —~ o~ —~
A A
W

— ~— — ~— ~—
|

w > W o W

S
-
&

Robin Hood to the Rescue

2
psl O 0 1 72 2
k k1| R3] ks | ks
0 m-1
insert(k3)
insert(k,)
insert(ks)

find(ky)

Robin Hood to the Rescue

PN

0 1
@

insert(k3)
insert(k,)
insert(ks)
find(Ry)

Robin Hood to the Rescue

psl O 0 1 % 2
Ry k’3 Rs | Ry, psl 0O h(kRy) =3
0 m -1 h(ky) = 0
h(k3) = 3
insert(k3) h(kR,) = &4
insert(k,) h(ks) = 3
nsert(ke) bl =3

find(ky)

Robin Hood to the Rescue

pst 0 0 1 % 2
k2 fa [ks ks [e psl 1 h(Ry) =3
0 m -1 h(ky) = 0
h(k3) = 3
insert(k3) h(Ry) = 4
insert(k,) h(ks) = 3
nsert(ke) iR =3

find(ky)

Robin Hood to the Rescue

pst 0 0 1 % 2
R R1 k’3l?4 psl 2. h(kRy) =3
0 m -1 h(ky) = 0
h(k3) = 3
insert(k3) h(Ry) = 4
insert(k,) h(ks) = 3
nsert(ke) bl =3

find(ky)

Robin Hood to the Rescue

pst 0 0 1 % 2
Ry R1| R3 ’?5 psl 3 h(kRy) =3
0 m -1 h(ky) = 0
h(k3) = 3
insert(k3) h(Ry) = 4
insert(k,) h(ks) = 3
nsert(ke) bl =3

find(ky)

Robin Hood to the Rescue

psl O 0 1 % 2
Ry Ry | R3 ’?5 psl 3 v h(kRy) =3
0 m -1 h(ky) = 0
h(k3) = 3
insert(k3) h(Ry) = 4
insert(k,) h(ks) = 3
nsert(ke) bl =3

find(ky)

Robin Hood to the Rescue

psl 0 0 1 % 2

R, R1|R3|Rs| Ry hik) =3
- m-1 h(ky) =0
h(ks) = 3
insert(ks) hika) =4
insert(k,) hiks) =3
nsert(ke) h(ke) =3

find(Ry)

delete(ks)

Robin Hood to the Rescue

2
o h(ky) =3
m-1 h(kZ) =0
h(k3) =3
insert(ks) hiky) =4
insert(k,) hiks) =3
nsert(ke) h(ky) =3
e

delete(ks)

Robin Hood to the Rescue

2

o h(ky) =3
m- 1 h(ky) =0
h(ks) = 3
insert(ks) hika) =4
insert(k,) hiks) =3
nsert(ke) h(ke) =3
find(ky) h(ks) =4

delete(k;)

insert(kg)

Robin Hood to the Rescue

2

o h(ky) =3
m- 1 h(ky) =0
h(ks) = 3
insert(ks) hika) =4
insert(k,) hiks) =3
nsert(ke) h(ke) =3
find(ky) h(ks) =4

delete(k;)

insert(kg)

Robin Hood to the Rescue

psl 0 0 1 % 2

- k1l?5 i h(Ry) =3
5 m-1 h(kZ) =0
h(k3) =3
insert(ks) hiky) =4
insert(k,) hiks) =3
insert(ks) hike) =3

ﬁnd(kx)

delete(ks)

Robin Hood to the Rescue

psl 0 0 1 % 2

R, I?1Dl?5 Ry, hik) =3
- m-1 h(ky) =0
h(k3) =3
insert(k;) hka) = 4
insert(k,) hiks) =3
insert(ks) hike) =3

ﬁnd(kx)

delete(ks)

Robin Hood to the Rescue

psl O 0 1 % ;

R, k] [Rs| ks —

|) shif nj’_l h(ky) =0
backshifting e

insert(R3) h(ke) — 4

insert(k,) h(ks) — 3

insert(ks) hik) — 3

fnde)

delete(ks)

Robin Hood to the Rescue

psl O 0 1 % ;

R, R1|Rs R, R

| ; shif nj’_l h(ky) =0
backshifting e

insert(R3) h(ke) — 4

insert(k,) h(ks) — 3

insert(ks) hik) — 3

fnde)

delete(ks)

Robin Hood to the Rescue

psl O 0 1 1
R, R1|Rs| R,
0 <+— m-1

“backshifting”

insert(k3)
insert(k,)
insert(ks)
find(Ry)

delete(ks)

Robin Hood to the Rescue

psl O 0 1 1
R R1| Rs | Ry,
0 m-1
Weaknesses

® memory consumption

>
&

S
N
N

S

>

—~~ —~ o~ —~
A A
W

— ~— — ~— ~—
|

w > W o W

S
-
&

Robin Hood to the Rescue

psl O 0 1 1
R, Rq | Rs | Ry
0 m-1

Weaknesses

® memory consumption
® average psl not better

>

—~ ~—~ —~
PN

N N 0 I~ |~

>
0~
w p» W o W

>
N

w

A

>
~

>
-

ol

Robin Hood to the Rescue

psl O 0 1 1
R, R1|Rs| Ry
0 m-1
Weaknesses

® memory consumption

® average psl not better

¢ deletes still slow and
complicated

>
&

S
N
N

S

>

—~~ —~ o~ —~
A A
>~ W

— — — ~— ~—
|

w »~» W o W

S
-
&

Robin Hood to the Rescue

>
&

psl O 0 1 1
R R1|Rs | Ry
0 m-1

Like Robin Hood, it does not
change the average wealth
(mean probe length),
only its distribution

>
N

>
N

w

A

>
~

—~~ —~ o~ —~

— — — ~— ~—
|

w »~» W o W

>
-

ol

Cuckoo Hashing

Worst case
find 0(1) *7t O(n)
insert O(1) *197 O(n)

delete 0O(1)*@ 1t O(n)

* expected

1 amortized
Tif your load factor is reasonably low

T if you believe in your hash function

Cuckoo Hashing

worst case
find O(1) *+ o6m) 0(1)
insert O(1) *197 O(n)

delete 0O(1)*@ 1t O(n)

* expected

1 amortized
Tif your load factor is reasonably low

T if you believe in your hash function

Cuckoo Hashing

worst case
find O(1) *+ o6m) 0(1)
insert O(1) *197 O(n)

delete O(1) *to-¥t o) 0(1)

* expected

1 amortized
Tif your load factor is reasonably low

T if you believe in your hash function

Cuckoo Hashing

Cuckoo Hashing

insert(R)

Cuckoo Hashing

insert(R)

Cuckoo Hashing

T1 k’1
0 m-1
T
0 m-1 k1
R;
insert(R)

insert(k,)

Cuckoo Hashing

T1 Ry R1
0 m-1
T
0 m-1 R,
Ry
insert(R)

insert(k,)

Cuckoo Hashing

T4 Ry R1
0 m-1
T
0 m-1 R
Ry
insert(k,) ks
insert(k,)

insert(k3)

Cuckoo Hashing

T1 k’2 (

0 m-1
T
0 m-1 R,
Ry
insert(k,) ks
insert(k,)

insert(k3)

Cuckoo Hashing

T1 k’2 k3
0 m-1
T
0 m-1 R
Ry
insert(k,) ks
insert(k,)

insert(k3)

Cuckoo Hashing

T1 k’2 k3
0 m-1
T2 k1
0 m-1 R,
Ry
insert(k,) ks
insert(k,)

insert(k3)

Cuckoo Hashing

T4 Ry R3
0 m-1
R
k 0 1 m-1 R
Ry
insert(R) ks
insert(k,) R.
insert(ks3) e
insert(ky)
insert(ks)

Cuckoo Hashing

Tq Rs| |Ry4 R3
0 m-1
R R
15 - 2 1 - ki
Ry
insert(R) ks
insert(k,) R.
insert(ks3) e
insert(ky)
insert(ks)

Cuckoo Hashing

0 m-1

R R
15 - 2 1 L k-
Ry
insert(Rq) insert(ke) ks
insert(k,) R,
insert(Rs) ke
insert(k,) Re

insert(ks)

Cuckoo Hashing

Tl k6 I’\’4 I’\’3
0 m-1
T2 k2 . k
0 m-1 !
Ry
insert(Rq) insert(ke) ks
insert(k,) R,
insert(Rs) ke
insert(k,) b
6
insert(ks)

Cuckoo Hashing

o ol T
0 m-1
Ryl |[Rs
0 m-1
insert(R) insert(kg)
insert(k,)
insert(ks3)
insert(ky)
insert(ks)

Cuckoo Hashing

Tl k6 I’\’4 I?1
0 m-1
T, Ryl |Rs| |R3 b
0 m-1 !
Ry
insert(Rq) insert(ke) ks
insert(k,) R,
insert(Rs) ke
insert(k,) b
6
insert(ks)

Cuckoo Hashing

Tl k6 I’\’4 I?1
0 m-1
T, Ryl |Rs| |R3 b
0 m-1 1
Ry
insert(Rq) insert(ke) ks
insert(k,) find(k,) ke
insert(k;) ke
insert(k,) b
6
insert(ks)

Cuckoo Hashing

Tq Rg R
0 m-1
T, Ry |Rs b
0 m-1 1
Ry
insert(Rq) insert(ke) ks
insert(k,) find(k,) ke
insert(k;) ke
insert(k,) b
6
insert(ks)

Cuckoo Hashing

Tl k’6 I’\’4 I?1
0 m-1
T, Ryl |Rs| |R3 b
0 m-1 !
Ry
insert(Rq) insert(ke) ks
insert(k,) find(k,) ke
insert(ks) find(Rky) ke
insert(k,) b
6
|nsert(k5)

Cuckoo Hashing

T1 Rg Ry,
0 m-1
T, Rs| |R3 b
0 m-1 1
Ry
insert(Rq) insert(ke) ks
insert(k,) find(k,) ke
insert(ks) find(Rky) ke
insert(k,) b
6
|nsert(k5)

Cuckoo Hashing

Tl k’6 I’\’4 I?1
0 m-1
To| |R2| |Rs| |Rs b
0 m-1 1
Ry
insert(kq) insert(kg) ks
insert(k,) find(k,) ke
insert(ks) find(Rky) ke
insert(ky) delete(R3) b
6
insert(k5)

Cuckoo Hashing

T1 Rg Ry,
0 m-1
To| |R2| [Rs b
0 m-1 1
Ry
insert(kq) insert(kg) ks
insert(k,) find(k,) ke
insert(ks) find(Rky) ke
insert(ky) delete(R3) b
6
insert(k5)

Cuckoo Hashing

Tq Re Ry R1

0 m-1

R R
15 - 2 5 L k-
Ry

insert(Rq) insert(ke) ks

insert(k,) find(k,) ke

insert(ks) find(Rky) Re

insert(ky) delete(R3) Re

|nsert(k5)

Cuckoo Hashing

kel ke k1
0 m-1

Ryl |[Rs
0 m-1
insert(R) insert(kg)
insert(k,) find(k,)
insert(ks3) find(ky)
insert(ky) delete(ks)
insert(ks) insert(ky)

=
/.\

SO B B W O Kk, O

Cuckoo Hashing

kel ke k1
0 m-1

Ryl |[Rs
0 m-1
insert(R) insert(kg)
insert(k,) find(k,)
insert(ks3) find(ky)
insert(ky) delete(ks)
insert(ks) insert(ky)

=
/.\

SO B B W O Kk, O

Cuckoo Hashing

Tl k6 I’\’4 k’1
0 m-1
k - Rx hi(:) hy(-)
T) 2 5 /
R, BT 3
0 m-1
N R, 1 1
insert(R) insert(ke) ks 6 5
insert(k,) find(ky) ke 3 5
insert(ks) find(Rky) ke 71 3
insert(k,) delete(ks) he 74 3
6
insert(k5) insert(kx) k 6 1
X

Cuckoo Hashing

>
—
—~~
N
3 <4 -
N
— /

ke BT 3

R, 10 1
insert(kq) insert(ke) ks | 6 5
insert(k,) find(ks) ke 3 5
insert(ks) find(Ry) ke 4 3
insert(k,) delete(ks) ke I 3
insert(ks) insert(ky) kR, 16 1

Cuckoo Hashing

T1 AN
-
hi(-) hay(-)
T>
O L R, 6T 3
R, 1 1
insert(R) insert(ke) ks 6 5
insert(k,) find(k,) ke 3 5
insert(ks) find(Rky) ke 71 3
insert(k,) delete(ks) he 74 3
6
insert(k5) insert(kx) k 6 1
X

Cuckoo Hashing

- o kmOh no! A cycle
i " R h1(-)
R
k 0 : m-1 R 6
R 1
insert(R) insert(kg) ks 6
insert(k,) find(k,) Re 3
insert(k3) find(ky) e 1
insert(k,) delete(ks) ke 1
insert(ks) insert(k,) ks .

Cuckoo Hashing

R, A
-1

. ky hi() ha()
R 1 1

insert(kg) ks 6 5
find(ks) ke 3 1B
find(ky) Re 1 3
delete(ks) ke 1 3
insert(ky) b e]

X

Cuckoo Hashing

R, A
m-1
Rx hi(-) hy(-)
! R &0 3
Oh no! Acycle ® Ry 1 1
insert(kg) ks 6 5
find(k,) ke 3 5
find(ky) Re 1 3
delete(ks) ke 1 3
insert(ky) b e]
X

Cuckoo Hashing It’s time to

rebuild your
hash table!
T R
0 m-1
Rx ha(-) ha(-
Tz 3 A
m-1
Oh no! Acycle ® Ry 1 1
insert(R) insert(kg) ks 6 5
insert(k,) find(ky) k, 3 5
insert(ks) find(Rky) ke 71 3
! nsert(k,) delete(ks) ke 1 3
insert(ks) insert(ky) kR, 176 1

Cuckoo Hashing

Tq LA
O _
hi(-) hy(:)
.
2 - I?1 6 3
R, AN i
Problems Ry © 6 5
® Insertin O(1)*111 only as long k 3 5
as a < 0.5)
e requires a good hash function ks [1 3
* not cache friendly ke | 1 3
ke | 6 1

“In theory, there is no difference
between theory and practice;

“In theory, there is no difference
between theory and practice;
but, in practice, there is.”

Clock Cycles

Clock Cycles

300

250

200

e
(61
o

—
o
o

50

300

250

200

ey
(&)
(=]

—
o
o

(o))
o

Successful Lookup

o H

~ Cuckoo
4 Two-Way Chaining
= Chained Hashing
x- Linear Probing

log n
Unsuccessful Lookup

20

22

o H

~ Cuckoo
- Two-Way Chaining
-~ Chained Hashing
-~ Linear Probing

[

o]

X

20

22

450

400

350

300

N
(o))
o

Clock Cycles
g

150

100

50

350

300

250

Clock Cycles
a3
o (=)

—_
o
o

N
(=}

nsert

- Cuckoo

Two-Way Chaining
Chained Hashing
Linear Probing

ol

14

16 18 20

log n
Delete

22

- Cuckoo

Two-Way Chaining
Chained Hashing
Linear Probing

o BB,

22

Ed Swisstable

k1.k4

Ed Swisstable

k1.k4

Idea

Use a little bit of extra memory for
parallel lookups with uncertainty

Ed Swisstable

m.m

Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Ed Swisstable

Re

R7

m.m

Ingredients:
B derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

h: U — ub4

Ed Swisstable

Re

R7

m.m

Ingredients:
B derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

h: U — ub4

H1(R) = h(R) mod m

Ed Swisstable

Re

R7

m.m ks

Ingredients:
B derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

h: U— ub4
H1(R) = h(R) mod m
Hz(l’\’) = h(l’\’) >> 57

“first 7 bits”

Ed Swisstable

T

m.m

Ingredients:
e derive two hash functions
B use m+ 16 bytes of metadata
e SIMD instructions

Ed Swisstable

| 0 k, ke | k7 3 .m ke

0 m — 1
Ingredients: m bytes of
e derive two hash functions OxFF =empty
B use m+ 16 bytes of metadata 0x380 = deleted

¢ SIMD instructions 0x00...0x7F = occupiedh

Ed Swisstable

| Il k ke| k7 A AR

0 m — 1
Ingredients: m bytes of
e derive two hash functions OxFF =empty
B use m+ 16 bytes of metadata 0x380 = deleted

¢ SIMD instructions 0x00...0x7F = occupiedh

use H, for the occupied bytes

Ed Swisstable

T

ke | k7 3 .m ke

Ingredients:
e derive two hash functions
B use m+ 16 bytes of metadata
e SIMD instructions

m — 1
m bytes of
OxFF =empty
0x80 = deleted

0x00...0x7F = occu piedh

use H, for the occupied bytes

+ reprise of the first 16 bytes

Ed Swisstable

T

ke | k7 3 .m ke

Ingredients:

e derive two hash functions

0 m — 1
m bytes of
OxFF =empty _
0x80 = deleted

B use m+ 16 bytes of metadata

e SIMD instructions
m

reprise

0x00...0x7F = occu piedh

use H, for the occupied bytes
+ reprise of the first 16 bytes

Ed Swisstable

T

m.m

Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
e find(k: Key)
® insert(k: Key)
o delete(k: Key)

Ed Swisstable

T

Re

m.m

Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
B find(k: Key)
® insert(k: Key)
o delete(k: Key)

Steps:

1. start at bucket Hq(R)

Ed Swisstable

H1(I?) =8

T

Re

m.m

Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
B find(k: Key)
® insert(k: Key)
o delete(k: Key)

Steps:

1. start at bucket Hq(R)

Ed Swisstable

H1(I?) =8

group J
| 0 k, ke | k7 3 . k| Rs
0 m—1
Ingredients: Steps:

e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
B find(k: Key)
® insert(k: Key)
o delete(k: Key)

1. start at bucket Hq(R)
2. search group for Hy(R)

Ed Swisstable

H1(I?) =8

¢

Re | R7

m.m

group
L
0
Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata
B SIMD instructions

Search group for k with

Hz(k) =0x3F

Ed Swisstable

H1(I?) =8

¢

Re | R7

m.m

group
L
0
Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata
B SIMD instructions

Search group for k with

Hz(k) =0x3F

_mm_setl epi8

Ed Swisstable

I Im Ry Re | R7 I’\’1.’?4 Rs
0 m—1
Ingredients: Search group for k with
e derive two hash functions H,(R) = @x3F
®usem-+ 16 byjces of metadata _mm_setl epi8
B SIMD Instructions
0x3F — |3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F

Ed Swisstable

group JH1(I?) =8
| [l k, ke | k7 m.m ke
0
Ingredients: Search group for k with
e derive two hash functions H,(R) = @x3F
®usem-+ 16 byjces of metadata _mm_cmpeq_epi8
B SIMD Instructions
0x3F — |3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F

Ed Swisstable

| [l k, ke | k7 m.m ke
0 m—1
Ingredients: Search group for k with
e derive two hash functions H,(R) = @x3F
®usem-+ 16 byjces of metadata _mm_cmpeq_epi8
B SIMD Instructions
group |05|7B|3F|28|FF|40|6A|37[42|3F|FF|58[80|FF|36|00
0x3F — |3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F

Ed Swisstable

group

L

Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata

B SIMD instructions

group

O0x3F

JH1(I?)=8
k, ke | k7 m.m ke
0
Search group for k with
Hz(k)=®x3:
_mm_cmpeq_ep18
05|/7/B|3F|28|FF|40|6A|37|42|3F|FF|58|80|FF|36]|00
3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F
00|00|FF|00(00|00|00|00|00|FF|00|00|00(00|00]|00

Ed Swisstable

group

L

Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata

B SIMD instructions

group

O0x3F

JH1(I?)=8
k, ke | k7 m.m ke
0 m — 1
Search group for k with
Hz(k)=®x3F
_mm_movemask ep18
05|/B|3F|28|FF|40|6A|37]|42|3F|FF|58|80|FF|36]|00
3F|I3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F
00|00|FF|00(00|00|00|00|00|FF|00|00|00(00|00]|00

Ed Swisstable

group

L

Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata

B SIMD instructions

group

O0x3F

0x2040 <

JH1(I?)=8
k, ke | k7 m.m ke
0 m — 1
Search group for k with
Hz(k)=®x3F
_mm_movemask ep18
05|/B|3F|28|FF|40|6A|37]|42|3F|FF|58|80|FF|36]|00
3F|I3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F|3F
00|00|FF|00(00]|00|00|00|00|FF|00]00|00(00|00]|00

Ed Swisstable

H1(I?) =8

group J
| 0 k, ke | k7 3 . k| Rs
0 m—1
Ingredients: Steps:

e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
B find(k: Key)
® insert(k: Key)
o delete(k: Key)

1. start at bucket Hq(R)

2. search group for Hy(R)

3. for each match, check keys,
return true if found

Ed Swisstable

H1(I?) =8

ke | k7 3 .m ke

group
L
0
Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
B find(k: Key)
® insert(k: Key)
o delete(k: Key)

Steps:

1.
2.
3.

4,

start at bucket H+(R)

search group for H,(R)

for each match, check keys,
return true if found
search group for an empty
bucket

Ed Swisstable

H1(I?) =8

ke | k7 3 .m ke

group
L
0
Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
B find(k: Key)
® insert(k: Key)
o delete(k: Key)

Steps:

1.
2.
3.

4,

start at bucket H+(R)

search group for H,(R)

for each match, check keys,
return true if found
search group for an empty
bucket

= search group for OxFF

Ed Swisstable

H1(I?) =8

ke | k7 3 .m ke

group
L
0
Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
B find(k: Key)
® insert(k: Key)
o delete(k: Key)

Steps:

1.
2.
3.

4,

Ul

start at bucket H+(R)

search group for H,(R)

for each match, check keys,
return true if found
search group for an empty
bucket

. return false if found
. otherweise, check the next

group

Ed Swisstable
H1(I?) =8

¢
| Il k ke| k7 A AR

0 m — 1

Ingredients: Case 1: Risin the table
¢ derive two hash functions find R, then replace it
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
e find(k: Key)
B insert(k: Key)
o delete(k: Key)

Ed Swisstable

group
|

[l

Ingredients:

e derive two hash functions
® use m+ 16 bytes of metadata

m.m

e SIMD instructions

Operations:

e find(k: Key)
B insert(k: Key)
o delete(k: Key)

Rs

Case 1: Ris in the table
find R, then replace it

Case 2: Ris not in the table

1. start at bucket Hq(R)
2. search group for empty or

deleted

m —1

Ed Swisstable

group ‘!H1(k) =
[[ZEEED BE
0 m — 1
Ingredients: Case 1: Risin the table
¢ derive two hash functions find R, then replace it

® use m+16 bytes of metadata ;50 2. ks not in the table

e SIMD instructions
1. start at bucket Hq(R)

Operations: 2. search group for empty or
e find(k: Key) deleted

B insert(k: Key)
e delete(k: Key) =movemask on group

Ed Swisstable

group ‘!H1(k) =
[[ZEEED BE
0 m — 1
Ingredients: Case 1: Risin the table
¢ derive two hash functions find R, then replace it

® use m+16 bytes of metadata ;50 2. ks not in the table

e SIMD instructions
1. start at bucket Hq(R)

Operations: 2. search group for empty or
e find(k: Key) deleted
B insert(k: Key) 3. if found, insert R

o delete(k: Key)

B~

. otherwise, check the next
group

Ed Swisstable

T

m.m

Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
e find(k: Key)
® insert(k: Key)
B delete(k: Key)

Ed Swisstable

T

Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
e find(k: Key)
® insert(k: Key)
B delete(k: Key)

Ed Swisstable

Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:
e find(k: Key)
® insert(k: Key)
B delete(k: Key)

Ed Swisstable

Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:

e find(k: Key)
® insert(k: Key)
B delete(k: Key)

Ed Swisstable

Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:

e find(k: Key)
® insert(k: Key)
B delete(k: Key)

> 16

Ed Swisstable

Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions

Operations:

e find(k: Key)
® insert(k: Key)
B delete(k: Key)

> 16

Ed Swisstable

k’z k6 I?7 I’\"] I'\’4 I’\’5
0 m —1
Ingredients:
e derive two hash functions
® use m+ 16 bytes of metadata
e SIMD instructions Weaknesses

Operations:
e find(k: Key)
® insert(k: Key)
o delete(k: Key)

e requires SIMD instructions
¢ hash function must use Its
high bits

Further Reading - Part Il

“Designing a Fast, Efficient, Cache-friendly Hash Table,
Step by Step” by Matt Kulukundis

[https://youtu.be/ncHMEUmM)Zf4?si=grOfZfZklwi2FFhV]

“Swisstable, a Quick and Dirty Description”
by Aria Beingessner

[https:/ /faultlore.com/blah/hashbrown-tldr/]

Pedro Celis, Per-Ake Larson and James lan Munro, “Robin hood hashing,” Foundations
of Computer Science (SFCS), pp. 281-288, 1985, do1:10.1109/SFCS.1985. 48.

Rasmus Pagh and Flemming Friche Rodler, “Cuckoo hashing,” Journal of Algorithms,
51(2):281-288, 2004, d0i:10.1016/j.jalgor.2003.12.002.

	Titelseite

