Deep Learning
Summer semester ‘24

Data Science Research at &
Chair of Computer Sme;csp“

Digital Humanities « = Estimation of air. quality

Social-Media-Analysis

Analysistof bee behavior
3

Structured Knowledge (KG) TEXT AN AI.YSIS & ENVIRONMENTAL < "“"}:“élima Mw} !
KNOWLEDGE GRAPHS DATA SCIENCE

Knowledge Enriched D 1) ‘ v
ﬁ INtiral Manguags DEEP LEAHNING ﬁ Dy:apmi:::nsl:sgio:s

Processing

S\ RECOMMENDER Al-SECURITY &
SYSTEMS FRAUD DETECTION

Product recommendations Explainable Al

q A % Q N .
Supporting medical dlagno\slsk N Detection of hacker attacks

-

pUser analysis dné\modelllng AN RQcomendﬂ“on Fraud detection in ERP systems
v o
and Security

1. Recurrent Neural Networks in Theory

1. Vanilla RNNs

2. Backpropagation Through Time (BPTT)

3. The Long Term: LSTMs and Friends
2. Sequence to Sequence

3. Attention

 Vanilla RNNs

* Backpropagation Through Time (BPTT)
* LSTM and friends

* |[dea:
* Given a sequence of characters d = (dy, d5, ..., d,,) of length n. Learn a model M that
predicts the next character in the sequence, d,, 44
* Example:
,The Dursleys had everything they wanted, ..."
« M(,T“) =,h"
* M(,Th“) = e
* M(,,The Dursleys ha“) =,,d“

mmm) Tr3in as a classification problem with samples ((dl, dy, ..., dy), dk+1)

How can we process sequences?

 Remember a fully connected (FCN) layer is defined as:
y=f(Wx+b)

* The layer takes only one input x, but we have a sequence of characters!

* Possible Solutions:

» Concatenate the individual character vectors: x = concat(d4, d,, ..., dy)
* We already saw that this leads to large weight matrices!
* Furthermore, we can not process sequences of arbitrary length ®

T 1
* Average over the individual character vectors: x = —kzlsisk d;

* Input vector can be kept small
* Sequences of arbitrary length are possible
* Allstructure is lost ®

— How to preserve structure, yet process sequences of arbitrary length?

Overview: Types of Neural Networks for all Purposes

Fully Connected Network mapping a Network returning an
Network sequence to one output output after each timestep
of a sequence

Recurrent Neural Networks

y1=f(Wd; + b)

y2, = f(Wd; + b)
y3 = f(Wds + b)

Every character is considered
individually.
How do we preserve information
about prior characters?

- Add connections between the
networks!

Character-based Text Generation: From FCN to RNN

Idea
add a state h that is carried between
inputs.
Update state with current input
extract output y from current state h
Share the weights between the
timesteps!

hy = op(Wpdy + Uphy)

h, = o, (Wpd, + Uphy)

h; = op(W,d3 + Uyh,)

V3 = O-y(Wyh3 A by)

_ This view is called an unrolled
RNN

he = fann (e, he—q) = o (Wpxe + Uphe_q + bp)

Wy : maps input x; into internal state space
U, : extracts relevant information from prior
state hy_4

F“ oy, : internal activation function
/i

rN (X Re—q)

* Learnable parameters: W,, Uy,

* Initial state hg is commonly initialized as 0-

vector
L., Elman Jeffrey: Finding Structure in Time. In: Cognitive Science, 14 (1990), Nr. 2, S. 179-211

many to one

* How do we learn the parameters of the RNN?

- Let’s apply Backpropagation on the unrolled network!
e Similar for all types mentioned above
* Focus on many-to-one for , handy” gradients

* Remember: An unrolled RNN is basically a feedforward network with some additional
properties:
* State h; accumulates information about the sequence
 All weights are shared between timesteps/layers

* Errors are backpropagated through h; over all t steps of the sequence.

- How does the gradient actually flow through an RNN cell?

fran(x2, he)

he = fann (e, heoq) =
on (Wyxe + Uphe_q)

mma Ry (X1, ho) d frvn(x3, hy)

frNN (x¢, he—1)

he = favn (e, heoq) =
o (Wyxe + Uphe_q)

frwn (X he—1)

Adding a second timestep
works just the same:

fann (-1, he—2)

* BPTT over a network with
* one RNN cell, unrolled over three timesteps
* one fully connected layer

* and a loss function at the end

o rmn R mn2 Jef ns Jo e w5
” rnnl oL rnn2 oL mn3 —) WA oL o
o _ = — —=

ohy 6hla: ahza_ 3213 - L
oL L L)
/ T 1oyt T "(c)—UT —wr o'(d)=— oL
o' (¢co) T Uy o'(c1) 7 Up o'(¢c2) kg 54 /1 e

* Now let’s put this together on the next slide.
It will only hurt a bit

ah, ohy

oL rnnl oL rnn2 oL rn3 [— i WA oL o
oL . :

! aL T
a'(¢o) a_hth

! oL T
a'(c1) TR Up
2

oL

* Common problem in RNNs: vanishing or exploding gradients

Vanishing Gradient: Gradients from early timesteps get very small, having
almost no influence on the update

Exploding Gradient: Gradients from early timesteps get very large, causing
the optimiser to overshoot its goal

 Why?

k
- After backpropagation over k timesteps, the gradient contains (U,D . This either gets very
large or very small!

(Similar to the scalar case, where x* — co forx > 1 and x* - 0 forx < 1)

* Simple and effective remedy for exploding gradients:
Gradient Clipping
* During training, if a gradient gets larger than a predefined threshold, clip it to the threshold.

 Slightly more sophisticated alternative:
Gradient Rescaling
* Instead of clipping, rescale the gradients using

their norm. By Warren Long [CC BY 2.0
(https://creativecommons.org/licenses/by/2.0)],
via Wikimedia Commons

* Instead of Gradient Clipping/Rescaling, why not modify the RNN itself?

—>Hochreiter and Schmidhuber (1997) did just that!

—Long Short Term Memory (LSTM) is a variant of RNNs that can better model long-term
dependencies

Hochreiter, S. & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9, 1735—-1780.3

frvn (X, he—1)

T Idea:
Change the RNN cell
(equations) in such a way
that the gradients do not
vanish.

The following slides contain illustrations taken from Christopher Olah’s Blog:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN cell
boundary

he = o (Whxe + Uphe_1)

neural
network layer

Note that h;_4is transformed
into h;!

e State changes are incremental: ¢,y 1 = ¢ + Acsyq
* Contrast to Vanilla RNNs: Vanilla state change is a transformation/matrix multiplication!

 State updates are selective
* We only want to write things to the state that help us

* State access is selective
* We need a way to select the most relevant knowledge from the state

* Information can be deleted from the state
* Some information may become out-dated and must make way for more important stuff

- Each type of selectivity is modeled as a ,gate”

* Gates are modeled as layers similar to the Vanilla RNN
* They depend on the current input x; and the last shadow state h;_;
* We will see that the LSTM cell carries two states
1) the state (or memory) c;
2) the shadow state h;
* All gates have the following form:

g(he—1,x)) = oc(Wxy +Uhi—y + b)

Sigmoid activation function forces values in range [0, 1]

Interpretation (depending on the specific gate):

* 1-—keep all information, or read/write all information

* 0 -forget all information, or read/write none of that
information

forget gate

cell state (c;) is

updated
through gates

r

/7
T

wwwn

{
®

input/write gate

component-wise
operations

output gate

The state or memory c;_1 is

never transformed by matrix
multiplication

Both interactions are carried out
component-wise

ft = O-(fot F Ufht—l aF bf)

* The forget gate determines which information is outdated and can
be discarded

* The update of the cell state c; is done by component-wise
multiplication, resulting in a scaling of the previous state

LSTM — Input gate

= o(Wix¢ + Uihe—1 + b;)
= tanh(W.x; + U hy_1 + b,)

C¢ consists of candidate values for updating the memory state
* tanh is used instead of sigmoid, since it produces values in [-1, 1]
* remember that we want to model incremental state changes, the
value range enables us to add (> 0) or remove (< 0) information
[; is called the input gate and produces scaling factors (or weights) for the
candidate values

Component-wise
multiplication

* The new memory state is computed by:
* scaling the former memory state and thus ,forgetting” unnecessary
information (forget gate)
adding information from the scaled candidate values (input/write
gate)

= O-(Woxt + UOht—l + bO)
= 0; o tanh(c;)

* the final step is to decide what the output should be, this is controlled by
the output gate oy

Vanilla RNN
hy = o (Wpx + Uphe_y + bp)

LSTM

fe = o(Wexy + Urhy—y + by)

it = O'(Wixt + Uiht—l + bl)

0 = o(Wyxy + Uyhi_1 + b,)

¢t = fr© Ce—1 + i¢ o tanh(Wexe + Uche—y + bc)
hs = o; o tanh(c;)

z¢ = o(Wyxy + Uzhe—1 + by)
1t = o(Wexy + Uphe—y + by)
ht == tanh(tht + Uh(rt o ht—l) + bh)

he=(1—2z)ohyy+z,0hy

* GRU is a popular (and simpler) alternative cell
* merges input and forget gates
* uses only one state instead of two

* Note that BPTT can get quite computationally expensive
* Especially, when the sequences get very long

—In practice, BPTT is usually not done over the full sequence, but only over a part 2
Truncated BPTT

* Backpropagating over the whole sequence is often not computationally
feasible

* Naive solution:
Split the sequence into chunks of k steps and treat every chunk as an
individual training instance.

* Drawback:

This prevents the RNN from learning long-range dependencies that span
more than k steps.

5 chunk size: k =4

Sutskever, llya: Training recurrent neural networks. In: University of Toronto, Toronto, Ont., Canada (2013)

There is a different variant that preserves the state:

T — length of th
for t from 1 to T do ENET OF TNE SEHHENtE

" L t — current step
¢ = frnn(xp hey) ki — controls how often BPTT occurs
Yt = fout(he)

k, — controls how many steps are
) .. included in BPTT
if t divides k; then

Run BPTT on the chunk from t down to t—k,

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

030000083

Sutskever, llya: Training recurrent neural networks. In: University of Toronto, Toronto, Ont., Canada (2013)

* Note: The variants from the two previous slides only work with many-to-many networks!
* Why?
—> Need to calculate a loss at least every k or k; steps!

* What can we do for many-to-one tasks?

—> Calculate the forward pass
over the full sequence,
then do backpropagation

for k, steps D D D D
tot tt

many to many many to many

il

e PyTorch provides nn.RNN, nn.LSTM, and hn. GRU modules
* They return the output and hidden state for each timestep
* Backpropagate through all timesteps as you know it

* Truncated BPTT can be implemented by hand = not easy

* Truncated BPTT is also implemented in PyTorch Ignite = easy

(lgnite

* Text Generation = Given some training corpus, create new text that is ,similar” to the corpus

e Well-suited task for RNNs:

* Internal State encodes the text so far
* Qutput layer predicts the next token

* Possible at different levels:
* Word level
* Character level
* Phoneme level

* Popular blog post: ,The Unreasonable Effectiveness of Recurrent Neural Networks” (Andre;j
Karpathy)

* Train a character-level RNN on different corpora
* Generate new text

* Investigate what is going on!
* Look at different RNN cells
* Play around with hyperparameters

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Shakespeare!

PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Algebraic Geometry!

\begin{proof}

We may assume that S$S\mathcal{I}$ is an abelian sheaf on
S\mathcal{C}s.

\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$
is an injective and let $\mathfrak g$ be an abelian sheaf on XS.
Let \mathcal{F} be a fibered complex. Let \mathcal{F} be a
category.

\begin{enumerate}

\item \hyperref[setain-construction-phantom] {Lemma }

\label {lemma-characterize-quasi-finite}

Let \mathcal{F} be an abelian quasi-coherent sheaf on
S\mathcal{C}s.

Let S\mathcal{F}S$ be a coherent $\mathcal{O} X$-module. Then
S\mathcal{F}$ is an abelian catenary over $\mathcal{C}Ss$.

\item The following are equivalent

\begin{enumerate}

\item \mathcal{F} is an $\mathcal{O} X$-module.

\end{lemma }

Algebraic Geometry!

Proof. Omitted. @ a

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Ooy = Ox(L)

Proof. This is an algebraic space with the composition of sheaves F on Xz, we
have

Ox(F) = {morphy xo, (G, F)}
where G defines an isomorphism F — F of O-modules.
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ?7?. s
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open

covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a

b: XY a9YaYaY xxY =2 X.

scheme covering. Let

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. 0O

This since F € F and z € G the diagram

S—»

l

£ Ox

Spec(Ky) Morsets d(Oxy,,.G)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and

e the composition of G is a regular sequence,

e Oy is a sheaf of rings.

]

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. m]

Proof. This is clear that G is a finite presentation, see Lemmas ??.
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxz— Fz -1(Ox,0,) — O%.0x,(0%,)
is an isomorphism of covering of Oy,. If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme O x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. m]

If F is a finite direct sum Ox, is a closed immersion, see Lemma ??. This is a
sequence of F is a similar morphism.

Sequence-to-Sequence Models
From RNN to Seqg2Seq

Seq2Seq model (Encoder/Decoder)
Enhancements

Motivation for Sequence to Sequence

models - Machine Translation

* Task in Machine Translation (MT):
* Given a piece of text in a source language...
* ... translate the text to a different target language

Sindarin:

English:

Image: Ted Nasmith

* How to build a neural network for Machine Translation?

—->RNNSs seem like a natural choice

* Sequences as input and sequences as output
* But: some problems that we need to address to get better translations!
* Implicit model for alignment

Sindarin:

English:
* Performance deteriorates for long sentences

- Use Sequence to Sequence models with some further tweaks!

Sequence to Sequence models

(Seq2Seq)

one to one one to many many to one many to many many to many

Fully Connected Network mappinga Network returning an
Network sequence to one ougput output after each timestep
of a sequence

Recurrent Neural Networks

many to many

g

Idea:

Use the RNN output at
every timestep to predict
the translated word.

buy ENENES

wird Bananen kaufen.

Problem:
The word order differs between translated
sentences.

In the above case, the model can‘t know
whether Emma is going to eat, peel or buy the
banana!

many to many

g

Idea:

Use the RNN output at
every timestep to predict
the translated word.

walks next to Paul

lauft neben

Problem:
Usually input and target sentence do not have
the same number of words.

We can not accommodate source and target
sentences of different lengths with a single RNN!

* Clearly, a simple RNN is not sufficient!
* How can we tweak the model to overcome these problems?

Challenges:

1.Handle input and target sequences of different lengths

» Use two distinct RNNs:
» An encoder network maps the input to an internal representation h
» A decoder network generates a target sequence from h

2.Generate target sequence based on the full input sequence
»Encoder reads the entire sentence before passing it to the decoder

Encoder — Decoder Model

* High level visualisation of an Encoder-Decoder architecture:

Emma walks next to Paul

many to many

U

DW}DD
ik

* Now let’s look at the details!

l[auft neben

initial state

start token

sequence
representation:
final hidden
state of the
encoder

lauft neben

end token

walks next -

previous output is taken as
input for the next step

Color code for this lecture:
Encoder — Representation — Decoder

* To train the model, we need to define a loss function
 Since we have multiple outputs, we need to aggregate the loss somehow

* Idea: Use the probability the model assigns to the entire target sentence!

—> Probability of the target sentence (y4, ..., ¥n):

n

P(y1,) Yn) = 1_[

i=1

<begin> Emma ENERES <end>

P1 P2 P3 Pa Ps

Input sequence
representation

Encoder

Probability of the target sentence according to the decoder:
n

P(y1, s Yn) = pilyi]

4: A
=1

A good model should assign a high probability to the target translation!

This gives us the loss function:

n n
L=—-logP(yy, -, ¥n) = — logﬂpi[yi] T _Z log p;[yi]
i=1

=1

* That’s basically all we need!
* We can now train Sequence to Sequence models with an Encoder-Decoder architecture

* Let’s look at some optimisations to improve our results

No backprop today ®

Remember: We use the output from the previous step as input to the next step.

Emma walks next Paul <end>

Emma writes a to Paul

Prediction errors propagate as input for the next decoding step!
This can slow down training or could even lead to a diverging model.

Teacher Forcing:
During training, we already know the correct target words!
— Feed those to the decoder instead of the previous prediction

Emma WEILS next to

Emma writes a letter

* Problem of Teacher Forcing:

* During training, previous “output” is always correct
- Model relies too much on it!

* During prediction, the network can not handle wrong inputs

Emma walks next

<begin> Emma writes a

* Remember:
* Decoder returns a (local) probability distribution over target words at each timestep
* We want to find the most likely sequence globally

* So far, we just selected the most likely word
— Greedy Search

 Alternative: Consider multiple options and decide later
- Beam Search

* Encoder — Decoder is a very general and flexible model
* We can change individual parts separately to tune the model for a task.

— Let’s take a look at some improvements!

Problem:

Long sequences can cause the sequence representation to lose information
about the first steps.

Solution:

Additionally feed the reverse input sequence into a separate RNN and
concatenate the output.

Paul neben

neben

 |dea

 Modelling

 Evaluation

!

All information about the input sequence
needs to be encoded into a single vector.
This causes an information bottleneck.
Especially for long sequences!

Encoder

Decoder

Animation from: https://github.com/google/seq2seq

* Not just the last Encoder hidden state = save all Encoder hidden states

 For every decoding step, find a weighting of the Encoder hidden states
depending on the Decoder hidden state

* Calculate a weighted sum of Encoder hidden states and use it in the Decoder

—>Encoder can capture per-step information; no need to squeeze everything
into one hidden state

—>Decoder can pay attention to the important Encoder hidden states

Save all Encoder hidden states
when encoding the input sequence

Encoder

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

Normally, h, would be used as s.
We won‘t do this using attention.

$otot
hy hy hy
X, Xp X3 Xg
Y
Encoder

<begin>

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

Instead, we use the current Decoder
state and calculate the dot product
between it and the Encoder hidden
states.

<begin>

X1 X2
Y
Encoder

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

Using a Softmax activation across all
hidden states, we get attention weights

P 1
| softmax |
Fr ot 4

TTTT <begin>
s 0 & &
tototd

hy hy hy hy

current
decoder
state

Encoder

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

These weights are then
used to calculate a
weighted sum of the
Encoder hidden states,

attention weights called the context vector
for the current step

P 1
| softmax |
Fr ot 4

T T T T _. o <begin>
s 0 & &
tototd

hy

hy hy hs

current
decoder
state

Encoder

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

attention weights context vector

P 1
| softmax |
Fr ot 4

T T T T _. o <begin>
s 0 & &
ot ot
hy

hy h3

Use the context vector as another
input to the Neural Network that
calculates the output from the
Decoder hidden state.

current
decoder
state

X1
Y
Encoder

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

attention weights context vector

P 1
| softmax |
Fr ot 4

T T T T _. o <begin>
s 0 & &
tototd
hy

hy hy hs

current
decoder
state

Encoder

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

attention weights context vector

P 1
| softmax |
bor o

<begin>

Repeat this process
with every Decoder

current
hidden state.

decoder
state

Encoder

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

attention weights context vector

P 1
| softmax |
Fr ot 4

T T T T _. o <begin>
1 0 Q0 Q&
tototd
hy

hy hy hs

current
decoder
state

Encoder

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

attention weights context vector

P 1
| softmax |
Fr ot 4

T T T T _. - <begin>
22— 0 &
tototd
hy

hy hy hs

current
decoder
state

Encoder

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

* A context vector ¢; is computed as a weighted sum over k encoder states at every decoding

step i:
P k
C = Eauh]
j=1

* Where a;;is a scalar weighting factor computed as:
exp(eij)

;c=1 exp(e;;)

aij =

* And e;;is an alignment model:

e; = a(si—1,)

where a can be any transformation (e.g. a dot product)

* Allows the model to distribute information across encoder states and extract only necessary
bits at every decoder step.

* The attention weights can be visualized to allow insights into the models behaviour.

Visualising Attention

agreement

The

on

the
European
Economic

LI
accord

Here some words are in a

different order.
sur

la

The plotted weights show
how the attention shifts

accordingly.

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate.

* We now know a lot about techniques for machine translation

* We also know many ,,improvements” over the vanilla model

e But are they really useful?
How well do our models perform?

- We need some way to measure translation quality!

* Papineni et al, 2002: Bilingual evaluation understudy (BLEU)

* |n practice: Use Fourgram Precision
» Use lots of target translations

* Do not evaluate single sentences!
BLEU only works well for large corpora

- Now how well does the Attention model perform?

RNNsearch-50 |:
RNNsearch-30 |
RNNenc-50 '
RNNenc-30

)
—
Q
Q
n
-
=
—
M

20 30
Sentence length

All models are trained to translate sentences of length 30/50

* RNNsearch-k is an attention model trained on sentences of length k
* RNNenc-k is a normal seq2seq model trained on sentences of length k

Bahdanau,A D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate.

