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• Vanilla RNNs
• Backpropagation Through Time (BPTT)
• LSTM and friends

5.1 Recurrent Neural Networks in Theory
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Character-based Text Generation

• Idea:
• Given a sequence of characters 𝑑 = 𝑑!, 𝑑", … , 𝑑#  of length n. Learn a model 𝑀 that 

predicts the next character in the sequence, 𝑑#$!
• Example:

„The Dursleys had everything they wanted, ...“
• M(„T“) = „h“
• M(„Th“) = „e“
• M(„The Dursleys ha“) = „d“

Train as a classification problem with samples 𝑑!, 𝑑", … , 𝑑% , 𝑑%$!

How can we process sequences?
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Character-based Text Generation (FCN)

• Remember a fully connected (FCN) layer is defined as:
𝑦 = 𝑓 𝑊𝑥 + 𝑏

• The layer takes only one input 𝑥, but we have a sequence of characters!

• Possible Solutions:
•  Concatenate the individual character vectors: x = 𝑐𝑜𝑛𝑐𝑎𝑡 𝑑!, 𝑑", … , 𝑑%

• We already saw that this leads to large weight matrices!
• Furthermore, we can not process sequences of arbitrary length L 

• Average over the individual character vectors: x = !
%
∑!&'&% 	𝑑'

• Input vector can be kept small
• Sequences of arbitrary length are possible
• All structure is lost L

• ...?

à How to preserve structure, yet process sequences of arbitrary length?
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Overview: Types of Neural Networks for all Purposes

Fully Connected
Network

Network mapping a
sequence to one output

Network returning an
output after each timestep

of a sequence

Recurrent Neural Networks
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Character-based Text Generation: From FCN to RNN

𝑑!

FCN

𝑦!

𝑦! = 𝑓 𝑊𝑑! + 𝑏

𝑑"

FCN

𝑦"

𝑑(

FCN

𝑦(

𝑦" = 𝑓 𝑊𝑑" + 𝑏
𝑦( = 𝑓 𝑊𝑑( + 𝑏

• Every character is considered 
individually.

• How do we preserve information 
about prior characters?

à Add connections between the 
networks!
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Character-based Text Generation: From FCN to RNN

𝑑!

RNN ℎ! = 𝜎) 𝑊)𝑑! + 𝑈)ℎ*

𝑑"

RNN

𝑑(

RNN

𝑦(

ℎ*

Idea
• add a state ℎ that is carried between 

inputs.
• Update state with current input
• extract output y from current state ℎ
• Share the weights between the 

timesteps!

ℎ" = 𝜎) 𝑊)𝑑" + 𝑈)ℎ!

ℎ( = 𝜎) 𝑊)𝑑( + 𝑈)ℎ"

ℎ! ℎ" ℎ(

𝑦( = 𝜎+ 𝑊+ℎ( + 𝑏+
This view is called an unrolled 
RNN
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Vanilla RNN

ℎ,-!

𝑦,

𝑓!"" 𝑥#, ℎ#$%

0.05
1.93

...
0.17

𝑥,

0.81
0.07

...
0.54

ℎ, = 𝑓.// 𝑥, , ℎ,-! = 𝜎) 𝑊)𝑥, + 𝑈)ℎ,-! + 𝑏)  

• 𝑊): maps input 𝑥, into internal state space
• 𝑈) : extracts relevant information from prior
              state ℎ,-!
• 𝑏) 	: bias. As usual, can be omitted using the bias trick
• 𝜎) : internal activation function

• Learnable parameters:   𝑊), 𝑈), 𝑊+, 𝑏), 𝑏+
• Initial state ℎ* is commonly initialized as 0-

vector 

𝑦, = 𝑓01, ℎ, = 	𝜎+ 𝑊+ℎ, + 𝑏+  

• 𝑊+  : maps state ℎ, into output space
• 𝑏+   : bias
• 𝜎+   : output activation function
                 Basically a fully connected layer

RNN Cell

L., Elman Jeffrey: Finding Structure in Time. In: Cognitive Science, 14 (1990), Nr. 2, S. 179-211 
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Training Recurrent Neural Networks

• How do we learn the parameters of the RNN?

à Let‘s apply Backpropagation on the unrolled network!
• Similar for all types mentioned above
• Focus on many-to-one for „handy“ gradients
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Backpropagation Through Time
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Unrolling the RNN over Time

• Remember: An unrolled RNN is basically a feedforward network with some additional 
properties:
• State ℎ, accumulates information about the sequence
• All weights are shared between timesteps/layers

• Errors are backpropagated through ℎ! over all 𝑡 steps of the sequence.

à How does the gradient actually flow through an RNN cell?

𝑓!"" 𝑥%, ℎ&

𝑥!

ℎ* 𝑓!"" 𝑥', ℎ(

𝑥(

𝑓!"" 𝑥(, ℎ%

𝑥"

ℎ! ℎ" ...

𝑦(

ℎ(
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𝑓!"" 𝑥(, ℎ%

A look at the computational graph...

𝑓!"" 𝑥%, ℎ&

𝑥!

ℎ*

𝑥"

ℎ!
𝑓!"" 𝑥', ℎ(

𝑥(

ℎ"

𝑊)

𝑈)

ℎ!

𝑥"

∗

∗

+ 𝜎)

ℎ, = 𝑓.// 𝑥, , ℎ,-! =
𝜎) 𝑊)𝑥, + 𝑈)ℎ,-!
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... and the gradient flow

𝑓!"" 𝑥#, ℎ#$%

𝑥,

ℎ,-!
ℎ,

𝑊)

𝑈)

ℎ,-!

𝑥,

∗

∗

+ 𝜎)
𝜕𝐿
𝜕ℎ#

𝜕𝐿
𝜕𝑐#

= 𝜎′(c))
𝜕𝐿
𝜕ℎ#

𝑎,

𝑏,

𝑐,𝜕𝐿
𝜕𝑐#

𝜕𝐿
𝜕𝑐#

	U*+

𝜕𝐿
𝜕ℎ#$%

= 𝜎′(𝑐#)
𝜕𝐿
𝜕ℎ#

	U*+

ℎ, = 𝑓.// 𝑥, , ℎ,-! =
𝜎) 𝑊)𝑥, + 𝑈)ℎ,-!

This is the gradient
through one timestep!
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Going Deeper

Adding a second timestep
works just the same:
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And for a Full Network

• BPTT over a network with
• one RNN cell, unrolled over three timesteps
• one fully connected layer
• and a loss function at the end

• Now let‘s put this together on the next slide.
It will only hurt a bit

rnn1 rnn2 rnn3 ! W! 𝜎

l

x, h0 x2, h1 x3, h2 h3 d

e

𝜕𝐿
𝜕ℎ!

=

𝜎′(𝑐!)
𝜕𝐿
𝜕ℎ"

𝑈#$

𝜕𝐿
𝜕ℎ"

=

𝜎′(𝑐")
𝜕𝐿
𝜕ℎ%

𝑈#$

𝜕𝐿
𝜕ℎ%

=

𝜎′(𝑐%)
𝜕𝐿
𝜕ℎ&

𝑈#$

𝜕𝐿
𝜕ℎ&

=

𝜕𝐿
𝜕𝑑

𝑊"
$

𝜕𝐿
𝜕𝑑

=

𝜎′(𝑑)
𝜕𝐿
𝜕𝑒 𝜕𝐿

𝜕𝑒

𝐿
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Backpropagation Through Time 

∂L

∂h0

= σ
′(c0)

∂L

∂h1

U
T
h

= σ
′(c0)σ

′(c1)
∂L

∂h2

U
T
h U

T
h

= σ
′(c0)σ

′(c1)σ
′(c2)

∂L

∂h3

U
T
h U

T
h U

T
h

= σ
′(x)σ′(c1)σ

′(c2)
∂L

∂d
W

T
1 U

T
h U

T
h U

T
h

= σ
′(c0)σ

′(c1)σ
′(c2)σ

′(d)
∂L

∂e
W

T
1 U

T
h U

T
h U

T
h

à Matrix 𝑈01 appears once per timestep!

rnn1 rnn2 rnn3 ! W! 𝜎

l

x, h0 x2, h1 x3, h2 h3 d

e

𝜕𝐿
𝜕ℎ!

=

𝜎′(𝑐!)
𝜕𝐿
𝜕ℎ"

𝑈#$

𝜕𝐿
𝜕ℎ"

=

𝜎′(𝑐")
𝜕𝐿
𝜕ℎ%

𝑈#$

𝜕𝐿
𝜕ℎ%

=

𝜎′(𝑐%)
𝜕𝐿
𝜕ℎ&

𝑈#$

𝜕𝐿
𝜕ℎ&

=

𝜕𝐿
𝜕𝑑

𝑊"
$

𝜕𝐿
𝜕𝑑

=

𝜎′(𝑑)
𝜕𝐿
𝜕𝑒 𝜕𝐿

𝜕𝑒

𝐿



20

Exploding and Vanishing Gradients

• Common problem in RNNs: vanishing or exploding gradients

• Why?
à After backpropagation over 𝑘 timesteps, the gradient contains 𝑈"#

$
. This either gets very 

large or very small!
(Similar to the scalar case, where 𝑥2 → ∞ for 𝑥 > 1 and 𝑥2 → 0 for 𝑥 < 1)

Vanishing Gradient: Gradients from early timesteps get very small, having 
    almost no influence on the update
Exploding Gradient: Gradients from early timesteps get very large, causing 
    the optimiser to overshoot its goal
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Combatting Exploding Gradients: Gradient Clipping

• Simple and effective remedy for exploding gradients:
Gradient Clipping
• During training, if a gradient gets larger than a predefined threshold, clip it to the threshold.

• Slightly more sophisticated alternative:
Gradient Rescaling
• Instead of clipping, rescale the gradients using

their norm. By Warren Long [CC BY 2.0 
(https://creativecommons.org/licenses/by/2.0)], 
via Wikimedia Commons
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Modifications of the Vanilla RNN

• Instead of Gradient Clipping/Rescaling, why not modify the RNN itself?

àHochreiter and Schmidhuber (1997) did just that!
àLong Short Term Memory (LSTM) is a variant of RNNs that can better model long-term 

dependencies

23Hochreiter, S. & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9, 1735—1780.



LSTM and Friends
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Long- Short Term Memory (LSTM)

ℎ,-!

𝑦,

𝑓!"" 𝑥#, ℎ#$%

0.05
1.93

...
0.17

𝑥,

0.81
0.07

...
0.54

RNN Cell

ℎ,-!

𝑦,

???

0.05
1.93

...
0.17

𝑥,

0.81
0.07

...
0.54

LSTM 
Cell

Idea: 
Change the RNN cell 
(equations) in such a way 
that the gradients do not 
vanish.

The following slides contain illustrations taken from Christopher Olah‘s Blog: 
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recall Vanilla RNN

ℎ9 = 𝜎: 𝑊:𝑥9 + 𝑈:ℎ9;<  

RNN cell 
boundary

neural 
network layer

Note that ℎ,-!is transformed 
into ℎ,!
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LSTM — Principles

• State changes are incremental: 𝑐!%& = 𝑐! + ∆𝑐!%&
• Contrast to Vanilla RNNs: Vanilla state change is a transformation/matrix multiplication!

• State updates are selective
• We only want to write things to the state that help us

• State access is selective
• We need a way to select the most relevant knowledge from the state

• Information can be deleted from the state
• Some information may become out-dated and must make way for more important stuff

Each type of selectivity is modeled as a „gate“
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LSTM — Gates

𝑔(ℎ,-!, 𝑥,) = 𝜎 𝑊𝑥, + 𝑈ℎ,-! + 𝑏

• Gates are modeled as layers similar to the Vanilla RNN
• They depend on the current input 𝑥, and the last shadow state ℎ,-! 

• We will see that the LSTM cell carries two states 
1) the state (or memory) 𝑐,  
2) the shadow state ℎ,

• All gates have the following form:

Sigmoid activation function forces values in range [0, 1]

Interpretation (depending on the specific gate):
• 1 – keep all information, or read/write all information
• 0 – forget all information, or read/write none of that 

information
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LSTM — Overview

𝑐,-! 𝑐,

ℎ,-! ℎ,

cell state (𝑐,) is 
updated 

through gates

forget gate

input/write gate

output gate

component-wise 
operations

+x
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LSTM — Memory state

• The state or memory 𝑐,-! is 
never transformed by matrix 
multiplication

• Both interactions are carried out 
component-wise
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LSTM — Forget gate

𝑓, = 𝜎 𝑊2𝑥, + 𝑈2ℎ,-! + 𝑏2

• The forget gate determines which information is outdated and can 
be discarded

• The update of the cell state 𝑐3  is done by component-wise 
multiplication, resulting in a scaling of the previous state
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LSTM — Input gate

𝑖, = 𝜎 𝑊'𝑥, + 𝑈'ℎ,-! + 𝑏'  
A𝑐, = 𝑡𝑎𝑛ℎ 𝑊3𝑥, + 𝑈3ℎ,-! + 𝑏3

• A𝑐, consists of candidate values for updating the memory state
• tanh is used instead of sigmoid, since it produces values in [-1, 1]
• remember that we want to model incremental state changes, the 

value range enables us to add (> 0) or remove (< 0) information
• 𝑖, is called the input gate and produces scaling factors (or weights) for the 

candidate values
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LSTM — Memory state update

𝑐, = 𝑓, ∘ 𝐶,-! + 𝑖, ∘ �̃�, 	

• The new memory state is computed by:
• scaling the former memory state and thus „forgetting“ unnecessary 

information (forget gate)
• adding information from the scaled candidate values (input/write 

gate)

Component-wise 
multiplication
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LSTM — Output gate

𝑜, = 𝜎 𝑊0𝑥, + 𝑈0ℎ,-! + 𝑏0
 ℎ, = 𝑜, ∘ 𝑡𝑎𝑛ℎ 𝑐,

• the final step is to decide what the output should be, this is controlled by 
the output gate 𝑜,



35

Final Comparison

ℎ, = 𝜎) 𝑊)𝑥, + 𝑈)ℎ,-! + 𝑏)  

Vanilla RNN

tanh = 𝜎)

𝑓, = 𝜎 𝑊2𝑥, + 𝑈2ℎ,-! + 𝑏2
 𝑖, = 𝜎 𝑊'𝑥, + 𝑈'ℎ,-! + 𝑏'
 𝑜, = 𝜎 𝑊0𝑥, + 𝑈0ℎ,-! + 𝑏0
 𝑐, = 𝑓, ∘ 𝑐,-! + 𝑖, ∘ 𝑡𝑎𝑛ℎ 𝑊3𝑥, + 𝑈3ℎ,-! + 𝑏3
 ℎ, = 𝑜, ∘ 𝑡𝑎𝑛ℎ 𝑐,

LSTM
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Gated Recurrent Unit (GRU)

• GRU is a popular (and simpler) alternative cell
• merges input and forget gates
• uses only one state instead of two

𝑧, = 𝜎 𝑊4𝑥, + 𝑈4ℎ,-! + 𝑏4
 𝑟, = 𝜎(𝑊5𝑥, + 𝑈5ℎ,-! + 𝑏5)
 Mℎ, = tanh 𝑊)𝑥, + 𝑈) 𝑟, ∘ ℎ,-! + 𝑏)
 ℎ, = 1 − 𝑧, ∘ ℎ,-! +𝑧, ∘ Mℎ,



Practical Considerations
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Backpropagation Through a Long Time

• Note that BPTT can get quite computationally expensive
• Especially, when the sequences get very long

àIn practice, BPTT is usually not done over the full sequence, but only over a part à
Truncated BPTT
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Truncated BPTT I

• Backpropagating over the whole sequence is often not computationally 
feasible
• Naive solution:

Split the sequence into chunks of 𝑘 steps and treat every chunk as an 
individual training instance.
• Drawback:

This prevents the RNN from learning long-range dependencies that span 
more than 𝑘 steps. 

Sutskever, Ilya: Training recurrent neural networks. In: University of Toronto, Toronto, Ont., Canada (2013)

chunk size:  k = 4
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Truncated BPTT II

There is a different variant that preserves the state:

for 𝑡 from 1 to 𝑇 do
    ℎ3 	= 	 𝑓455 𝑥3, ℎ367
    𝑦3 = 𝑓893(ℎ3)

    if 𝑡 divides 𝑘7 then
         Run BPTT on the chunk from 𝑡 down to 𝑡 − 𝑘:

T – length of the sequence
t – current step
𝑘!  – controls how often BPTT occurs
𝑘" – controls how many steps are 
included in BPTT

T=12
𝑘! = 4
𝑘" = 3

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8
... and so on!

Sutskever, Ilya: Training recurrent neural networks. In: University of Toronto, Toronto, Ont., Canada (2013)



42

Truncated BPTT

• Note: The variants from the two previous slides only work with many-to-many networks!
• Why?
 à Need to calculate a loss at least every 𝑘 or 𝑘& steps!

• What can we do for many-to-one tasks?
 à Calculate the forward pass
  over the full sequence,
  then do backpropagation
  for 𝑘' steps
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RNNs and BPTT in PyTorch

• PyTorch provides nn.RNN, nn.LSTM, and nn.GRU modules
• They return the output and hidden state for each timestep
• Backpropagate through all timesteps as you know it
• Truncated BPTT can be implemented by hand à not easy
• Truncated BPTT is also implemented in PyTorch Ignite à easy



Recurrent Neural Networks in Practice -
RNNs for Text Generation

44
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RNNs for Text Generation

• Text Generation = Given some training corpus, create new text that is „similar“ to the corpus

• Well-suited task for RNNs:
• Internal State encodes the text so far
• Output layer predicts the next token

• Possible at different levels:
• Word level
• Character level
• Phoneme level
• …
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RNNs for Text Generation

• Popular blog post: „The Unreasonable Effectiveness of Recurrent Neural Networks” (Andrej 
Karpathy)

• Train a character-level RNN on different corpora
• Generate new text
• Investigate what is going on!

• Look at different RNN cells
• Play around with hyperparameters

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Clown
: Com

e, si
r, I 

will 
make 

did 

behol
d you

r wor
ship.

VIOLA
: I'l

l dri
nk it

.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Shakespeare!



\begin{proof}
We may assume that $\mathcal{I}$ is an abelian sheaf on 
$\mathcal{C}$.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$
is an injective and let $\mathfrak q$ be an abelian sheaf on $X$.
Let $\mathcal{F}$ be a fibered complex. Let $\mathcal{F}$ be a 
category.
\begin{enumerate}
\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}
Let $\mathcal{F}$ be an abelian quasi-coherent sheaf on 
$\mathcal{C}$.
Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Then
$\mathcal{F}$ is an abelian catenary over $\mathcal{C}$.
\item The following are equivalent
\begin{enumerate}
\item $\mathcal{F}$ is an $\mathcal{O}_X$-module.
\end{lemma}

Algebraic Geometry!

Some errors:
• Opens proof, closes lemma
• Opens enumerate, doesn‘t close it
à Fix these manually!



Algebraic Geometry!

J
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• Sequence-to-Sequence Models
• From RNN to Seq2Seq
• Seq2Seq model (Encoder/Decoder)
• Enhancements

5.2 Sequence-to-Sequence



Motivation for Sequence to Sequence 
models - Machine Translation
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Machine Translation

• Task in Machine Translation (MT):
• Given a piece of text in a source language…
• … translate the text to a different target language

Pedo mellon a minno!Sindarin: 

Say friend and enter!English: 

Image: Ted Nasmith
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Neural Machine Translation

• How to build a neural network for Machine Translation?
àRNNs seem like a natural choice

• Sequences as input and sequences as output
• But: some problems that we need to address to get better translations!

• Implicit model for alignment

• Performance deteriorates for long sentences

• …

àUse Sequence to Sequence models with some further tweaks!

Aragorn Arathornion Edhelharn, aran Gondor ar Hir i Mbair Annui, anglennatha I 
Varanduiniant erin dolothen Ethuil, egor ben genediad Drannail erin Gwirith edwen

Mae govannen, mellon nin!Sindarin: 

Hello, my friend!English: 

Aragorn, Arathorn’s son, Elfstone, King of Gondor and Lord of the Westlands
……….?!?



Sequence to Sequence models
(Seq2Seq)
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Recap types of RNN

Fully Connected
Network

Network mapping a
sequence to one output

Network returning an
output after each timestep

of a sequence

Recurrent Neural Networks

Seq2Seq
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Single RNN

Emma wird Bananen kaufen.

Emma will buy bananas

Idea:
Use the RNN output at 
every timestep to predict 
the translated word.

Problem:
The word order differs between translated 
sentences.

In the above case, the model can‘t know 
whether Emma is going to eat, peel or buy the 
banana!

eat? peel? buy?
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Single RNN

Emma läuft neben Paul

Emma walks next to Paul

Idea:
Use the RNN output at 
every timestep to predict 
the translated word.

Problem:
Usually input and target sentence do not have 
the same number of words.

We can not accommodate source and target 
sentences of different lengths with a single RNN!
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From RNN to Seq2Seq

• Clearly, a simple RNN is not sufficient!
• How can we tweak the model to overcome these problems?

Challenges:
1.Handle input and target sequences of different lengths

ØUse two distinct RNNs:
ØAn encoder network maps the input to an internal representation ℎ
ØA decoder network generates a target sequence from ℎ

2.Generate target sequence based on the full input sequence
ØEncoder reads the entire sentence before passing it to the decoder
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Encoder — Decoder Model

• High level visualisation of an Encoder-Decoder architecture:

• Now let‘s look at the details! 

Representation

Emma läuft neben Paul

Emma walks next to Paul

Encoder

Decoder
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Encoder — Decoder: RNN

Emma läuft neben Paul

<begin> walks next toEmma <end>

initial state
sequence 
representation:
final hidden 
state of the 
encoder

Encoder RNN

Decoder RNN

start token

end token

previous output is taken as
 input for the next step

Paul

Color code for this lecture: 
Encoder – Representation – Decoder 
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Encoder — Decoder Loss

• To train the model, we need to define a loss function
• Since we have multiple outputs, we need to aggregate the loss somehow

• Idea: Use the probability the model assigns to the entire target sentence!
à Probability of the target sentence 𝑦&, … , 𝑦) :

𝑃 𝑦&, … , 𝑦) =	2
*+&

)

𝑝*[𝑦*]

Probability of target word 𝑦' at 
timestep 𝑖 according to the decoder
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Enc-Dec Loss

<begin> will buy bananas

RNN 
Cell

Emma <end>

Input sequence 
representation

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

softmax softmax softmax softmax softmax

Output 𝑝9: 
probability 

distribution over 
target words

correct target 
words

𝑝% 𝑝( 𝑝' 𝑝: 𝑝;

Probability of the target sentence according to the decoder:

𝑃 𝑦!, … , 𝑦# = 	T
'6!

#

𝑝'[𝑦']

A good model should assign a high probability to the target translation!

This gives us the loss function:

𝐿 = − log 𝑃 𝑦!, … , 𝑦# = − logT
'6!

#

𝑝'[𝑦'] = −\
'6!

#

log 𝑝'[𝑦']

Encoder
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Improving Seq2Seq Models

• That‘s basically all we need!
• We can now train Sequence to Sequence models with an Encoder-Decoder architecture

• Let‘s look at some optimisations to improve our results

No backprop today L

But you‘re welcome to do it yourself!
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Seq2Seq: Teacher Forcing

<begin> writes a letterEmma to

walks next to Paul <end>

Paul

Emma

prediction errors propagate L

Prediction errors propagate as input for the next decoding step!
This can slow down training or could even lead to a diverging model.

Remember: We use the output from the previous step as input to the next step.
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Seq2Seq: Teacher Forcing

Teacher Forcing:
During training, we already know the correct target words!
à Feed those to the decoder instead of the previous prediction

<begin> writes a letterEmma to

walks next to Paul <end>

Paul

EmmaTarget translation
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Seq2Seq: Teacher Forcing

• Problem of Teacher Forcing:
• During training, previous “output” is always correct
à Model relies too much on it!

• During prediction, the network can not handle wrong inputs

<begin> writes a letterEmma to

walks next to Paul <end>

Paul

Emma

Start training with teacher forcing, then switch to supplying 
the real outputs.
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Seq2Seq: Improved Sampling

• Remember:
• Decoder returns a (local) probability distribution over target words at each timestep
• We want to find the most likely sequence globally

• So far, we just selected the most likely word
à Greedy Search
• Alternative: Consider multiple options and decide later
à Beam Search
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Enhancing the Model

• Encoder – Decoder is a very general and flexible model
• We can change individual parts separately to tune the model for a task.

à Let‘s take a look at some improvements!
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Enhancement: BiRNN Encoder

Problem:
Long sequences can cause the sequence representation to lose information 
about the first steps.
Solution:
Additionally feed the reverse input sequence into a separate RNN and 
concatenate the output.

Emma läuft neben Paul

EmmaläuftnebenPaul

concat
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5.3 Model Attention

• Idea
• Modelling 
• Evaluation
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Enhancement: Attention!

Emma läuft neben Paul

<begin> walks next toEmma <end>Paul

All information about the input sequence 
needs to be encoded into a single vector.
This causes an information bottleneck. 
Especially for long sequences!

Our model so far

Mechanism to solve this: Attention
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Attention: Idea

Animation from: https://github.com/google/seq2seq



78

Attention: Idea

• Not just the last Encoder hidden state à save all Encoder hidden states
• For every decoding step, find a weighting of the Encoder hidden states 

depending on the Decoder hidden state
• Calculate a weighted sum of Encoder hidden states and use it in the Decoder

àEncoder can capture per-step information; no need to squeeze everything 
into one hidden state

àDecoder can pay attention to the important Encoder hidden states
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Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ" ℎ% ℎ& ℎ'

𝑥" 𝑥% 𝑥& 𝑥'

Encoder

Save all Encoder hidden states
when encoding the input sequence
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Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

𝑦%

FFN

Encoder Decoder

Normally, h4 would be used as s0.
We won‘t do this using attention.
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Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠&

𝑦%

𝑒" 𝑒% 𝑒& 𝑒'

Instead, we use the current Decoder 
state and calculate the dot product 
between it and the Encoder hidden 
states.

FFN

Encoder Decoder
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Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠&

𝑦%

𝑒" 𝑒% 𝑒& 𝑒'

softmax

𝛼" 𝛼% 𝛼& 𝛼'

Using a Softmax activation across all 
hidden states, we get attention weights

current 
decoder 
state

FFN

Encoder Decoder



83

Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠&

𝑦%

𝑒" 𝑒% 𝑒& 𝑒'

softmax

𝛼" 𝛼% 𝛼& 𝛼'

𝑐& =>
9=%

:

𝛼9ℎ9

These weights are then 
used to calculate a 
weighted sum of the 
Encoder hidden states, 
called the context vector 
for the current step

attention weights

current 
decoder 
state

FFN

Encoder Decoder
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Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠&

𝑦%

𝑒" 𝑒% 𝑒& 𝑒'

softmax

𝛼" 𝛼% 𝛼& 𝛼'

𝑐& =>
9=%

:

𝛼9ℎ9

context vectorattention weights

current 
decoder 
state

FFN

Encoder Decoder

Use the context vector as another 
input to the Neural Network that 
calculates the output from the 
Decoder hidden state.
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Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠&

𝑦%

𝑒" 𝑒% 𝑒& 𝑒'

softmax

𝛼" 𝛼% 𝛼& 𝛼'

𝑐& =>
9=%

:

𝛼9ℎ9

context vectorattention weights

current 
decoder 
state

FFN

Encoder Decoder
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Attention

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠%

𝑦%

𝑠%

𝑒" 𝑒% 𝑒& 𝑒'

softmax

𝛼" 𝛼% 𝛼& 𝛼'

𝑐% =>
9=%

:

𝛼9ℎ9

context vectorattention weights

current 
decoder 
state

FFN

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

DecoderEncoder

Repeat this process 
with every Decoder 
hidden state.
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Attention

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠%

𝑦%

𝑠%

𝑦(

𝑒" 𝑒% 𝑒& 𝑒'

softmax

𝛼" 𝛼% 𝛼& 𝛼'

𝑐% =>
9=%

:

𝛼9ℎ9

context vectorattention weights

current 
decoder 
state

FFN FFN

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

DecoderEncoder
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Attention

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠(

𝑦%

𝑠%

𝑦(

𝑠(

𝑒" 𝑒% 𝑒& 𝑒'

softmax

𝛼" 𝛼% 𝛼& 𝛼'

𝑐( =>
9=%

:

𝛼9ℎ9

context vectorattention weights
𝑦'

current 
decoder 
state

FFN FFN FFN

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

DecoderEncoder
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Attention

• A context vector 𝑐* is computed as a weighted sum over 𝑘 encoder states at every decoding 
step 𝑖:

c, =8
-+&

$

𝛼*-ℎ-

• Where 𝛼*- is a scalar weighting factor computed as:

𝛼*- =
exp 𝑒*-

∑.+&$ exp(𝑒*.)
• And 𝑒*- is an alignment model:

𝑒*- = 𝑎 𝑠*/&, ℎ-

where 𝑎 can be any transformation (e.g. a dot product)
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Attention

• Allows the model to distribute information across encoder states and extract only necessary 
bits at every decoder step.
• The attention weights can be visualized to allow insights into the models behaviour.
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Visualising Attention

Here some words are in a 
different order.
 
The plotted weights show 
how the attention shifts 
accordingly.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate.
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Was that useful?

• We now know a lot about techniques for machine translation
• We also know many „improvements“ over the vanilla model

• But are they really useful?
How well do our models perform?

à We need some way to measure translation quality!
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Evaluating Machine Translation — BLEU

• Papineni et al, 2002: Bilingual evaluation understudy (BLEU)

• In practice: Use Fourgram Precision
• Use lots of target translations

• Do not evaluate single sentences!
BLEU only works well for large corpora

à Now how well does the Attention model perform?
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Attention: Results (Translation / Bahdanau et. al.)

All models are trained to translate sentences of length 30/50

• RNNsearch-k is an attention model trained on sentences of length k
• RNNenc-k is a normal seq2seq model trained on sentences of length k

Bahdanau,A D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate.


