
6. Recurrent Neural Networks

Deep Learning
Summer semester ‘24

Text analysis &
Knowledge Graphs

Digital Humanities

Structured Knowledge (KG)

Social-Media-Analysis

Recommender
systems

Product recommendations

Supporting medical diagnosis

User analysis and modelling

Environmental
Data Science

Climate models

Analysis of bee behavior

Estimation of air quality

AI-Security &
Fraud Detection

Fraud detection in ERP systems

Explainable AI

Detection of hacker attacks

Data Science Research at
Chair of Computer Science

Deep Learning Deep Learning for
Dynamical Systems

Recommendation
and Security

Knowledge Enriched
Natural Language

Processing

3

Content of this Chapter

1. Recurrent Neural Networks in Theory

1. Vanilla RNNs

2. Backpropagation Through Time (BPTT)

3. The Long Term: LSTMs and Friends

2. Sequence to Sequence

3. Attention

4

• Vanilla RNNs
• Backpropagation Through Time (BPTT)
• LSTM and friends

5.1 Recurrent Neural Networks in Theory

5

Character-based Text Generation

• Idea:
• Given a sequence of characters 𝑑 = 𝑑!, 𝑑", … , 𝑑# of length n. Learn a model 𝑀 that

predicts the next character in the sequence, 𝑑#$!
• Example:

„The Dursleys had everything they wanted, ...“
• M(„T“) = „h“
• M(„Th“) = „e“
• M(„The Dursleys ha“) = „d“

Train as a classification problem with samples 𝑑!, 𝑑", … , 𝑑% , 𝑑%$!

How can we process sequences?

6

Character-based Text Generation (FCN)

• Remember a fully connected (FCN) layer is defined as:
𝑦 = 𝑓 𝑊𝑥 + 𝑏

• The layer takes only one input 𝑥, but we have a sequence of characters!

• Possible Solutions:
• Concatenate the individual character vectors: x = 𝑐𝑜𝑛𝑐𝑎𝑡 𝑑!, 𝑑", … , 𝑑%

• We already saw that this leads to large weight matrices!
• Furthermore, we can not process sequences of arbitrary length L

• Average over the individual character vectors: x = !
%
∑!&'&% 	𝑑'

• Input vector can be kept small
• Sequences of arbitrary length are possible
• All structure is lost L

• ...?

à How to preserve structure, yet process sequences of arbitrary length?

7

Overview: Types of Neural Networks for all Purposes

Fully Connected
Network

Network mapping a
sequence to one output

Network returning an
output after each timestep

of a sequence

Recurrent Neural Networks

8

Character-based Text Generation: From FCN to RNN

𝑑!

FCN

𝑦!

𝑦! = 𝑓 𝑊𝑑! + 𝑏

𝑑"

FCN

𝑦"

𝑑(

FCN

𝑦(

𝑦" = 𝑓 𝑊𝑑" + 𝑏
𝑦(= 𝑓 𝑊𝑑(+ 𝑏

• Every character is considered
individually.

• How do we preserve information
about prior characters?

à Add connections between the
networks!

9

Character-based Text Generation: From FCN to RNN

𝑑!

RNN ℎ! = 𝜎) 𝑊)𝑑! + 𝑈)ℎ*

𝑑"

RNN

𝑑(

RNN

𝑦(

ℎ*

Idea
• add a state ℎ that is carried between

inputs.
• Update state with current input
• extract output y from current state ℎ
• Share the weights between the

timesteps!

ℎ" = 𝜎) 𝑊)𝑑" + 𝑈)ℎ!

ℎ(= 𝜎) 𝑊)𝑑(+ 𝑈)ℎ"

ℎ! ℎ" ℎ(

𝑦(= 𝜎+ 𝑊+ℎ(+ 𝑏+
This view is called an unrolled
RNN

10

Vanilla RNN

ℎ,-!

𝑦,

𝑓!"" 𝑥#, ℎ#$%

0.05
1.93

...
0.17

𝑥,

0.81
0.07

...
0.54

ℎ, = 𝑓.// 𝑥, , ℎ,-! = 𝜎) 𝑊)𝑥, + 𝑈)ℎ,-! + 𝑏)

• 𝑊): maps input 𝑥, into internal state space
• 𝑈) : extracts relevant information from prior
 state ℎ,-!
• 𝑏) 	: bias. As usual, can be omitted using the bias trick
• 𝜎) : internal activation function

• Learnable parameters: 𝑊), 𝑈), 𝑊+, 𝑏), 𝑏+
• Initial state ℎ* is commonly initialized as 0-

vector

𝑦, = 𝑓01, ℎ, = 	𝜎+ 𝑊+ℎ, + 𝑏+

• 𝑊+ : maps state ℎ, into output space
• 𝑏+ : bias
• 𝜎+ : output activation function
 Basically a fully connected layer

RNN Cell

L., Elman Jeffrey: Finding Structure in Time. In: Cognitive Science, 14 (1990), Nr. 2, S. 179-211

12

Training Recurrent Neural Networks

• How do we learn the parameters of the RNN?

à Let‘s apply Backpropagation on the unrolled network!
• Similar for all types mentioned above
• Focus on many-to-one for „handy“ gradients

13

Backpropagation Through Time

14

Unrolling the RNN over Time

• Remember: An unrolled RNN is basically a feedforward network with some additional
properties:
• State ℎ, accumulates information about the sequence
• All weights are shared between timesteps/layers

• Errors are backpropagated through ℎ! over all 𝑡 steps of the sequence.

à How does the gradient actually flow through an RNN cell?

𝑓!"" 𝑥%, ℎ&

𝑥!

ℎ* 𝑓!"" 𝑥', ℎ(

𝑥(

𝑓!"" 𝑥(, ℎ%

𝑥"

ℎ! ℎ" ...

𝑦(

ℎ(

15

𝑓!"" 𝑥(, ℎ%

A look at the computational graph...

𝑓!"" 𝑥%, ℎ&

𝑥!

ℎ*

𝑥"

ℎ!
𝑓!"" 𝑥', ℎ(

𝑥(

ℎ"

𝑊)

𝑈)

ℎ!

𝑥"

∗

∗

+ 𝜎)

ℎ, = 𝑓.// 𝑥, , ℎ,-! =
𝜎) 𝑊)𝑥, + 𝑈)ℎ,-!

16

... and the gradient flow

𝑓!"" 𝑥#, ℎ#$%

𝑥,

ℎ,-!
ℎ,

𝑊)

𝑈)

ℎ,-!

𝑥,

∗

∗

+ 𝜎)
𝜕𝐿
𝜕ℎ#

𝜕𝐿
𝜕𝑐#

= 𝜎′(c))
𝜕𝐿
𝜕ℎ#

𝑎,

𝑏,

𝑐,𝜕𝐿
𝜕𝑐#

𝜕𝐿
𝜕𝑐#

	U*+

𝜕𝐿
𝜕ℎ#$%

= 𝜎′(𝑐#)
𝜕𝐿
𝜕ℎ#

	U*+

ℎ, = 𝑓.// 𝑥, , ℎ,-! =
𝜎) 𝑊)𝑥, + 𝑈)ℎ,-!

This is the gradient
through one timestep!

17

Going Deeper

Adding a second timestep
works just the same:

18

And for a Full Network

• BPTT over a network with
• one RNN cell, unrolled over three timesteps
• one fully connected layer
• and a loss function at the end

• Now let‘s put this together on the next slide.
It will only hurt a bit

rnn1 rnn2 rnn3 ! W! 𝜎

l

x, h0 x2, h1 x3, h2 h3 d

e

𝜕𝐿
𝜕ℎ!

=

𝜎′(𝑐!)
𝜕𝐿
𝜕ℎ"

𝑈#$

𝜕𝐿
𝜕ℎ"

=

𝜎′(𝑐")
𝜕𝐿
𝜕ℎ%

𝑈#$

𝜕𝐿
𝜕ℎ%

=

𝜎′(𝑐%)
𝜕𝐿
𝜕ℎ&

𝑈#$

𝜕𝐿
𝜕ℎ&

=

𝜕𝐿
𝜕𝑑

𝑊"
$

𝜕𝐿
𝜕𝑑

=

𝜎′(𝑑)
𝜕𝐿
𝜕𝑒 𝜕𝐿

𝜕𝑒

𝐿

19

Backpropagation Through Time

∂L

∂h0

= σ
′(c0)

∂L

∂h1

U
T
h

= σ
′(c0)σ

′(c1)
∂L

∂h2

U
T
h U

T
h

= σ
′(c0)σ

′(c1)σ
′(c2)

∂L

∂h3

U
T
h U

T
h U

T
h

= σ
′(x)σ′(c1)σ

′(c2)
∂L

∂d
W

T
1 U

T
h U

T
h U

T
h

= σ
′(c0)σ

′(c1)σ
′(c2)σ

′(d)
∂L

∂e
W

T
1 U

T
h U

T
h U

T
h

à Matrix 𝑈01 appears once per timestep!

rnn1 rnn2 rnn3 ! W! 𝜎

l

x, h0 x2, h1 x3, h2 h3 d

e

𝜕𝐿
𝜕ℎ!

=

𝜎′(𝑐!)
𝜕𝐿
𝜕ℎ"

𝑈#$

𝜕𝐿
𝜕ℎ"

=

𝜎′(𝑐")
𝜕𝐿
𝜕ℎ%

𝑈#$

𝜕𝐿
𝜕ℎ%

=

𝜎′(𝑐%)
𝜕𝐿
𝜕ℎ&

𝑈#$

𝜕𝐿
𝜕ℎ&

=

𝜕𝐿
𝜕𝑑

𝑊"
$

𝜕𝐿
𝜕𝑑

=

𝜎′(𝑑)
𝜕𝐿
𝜕𝑒 𝜕𝐿

𝜕𝑒

𝐿

20

Exploding and Vanishing Gradients

• Common problem in RNNs: vanishing or exploding gradients

• Why?
à After backpropagation over 𝑘 timesteps, the gradient contains 𝑈"#

$
. This either gets very

large or very small!
(Similar to the scalar case, where 𝑥2 → ∞ for 𝑥 > 1 and 𝑥2 → 0 for 𝑥 < 1)

Vanishing Gradient: Gradients from early timesteps get very small, having
 almost no influence on the update
Exploding Gradient: Gradients from early timesteps get very large, causing
 the optimiser to overshoot its goal

22

Combatting Exploding Gradients: Gradient Clipping

• Simple and effective remedy for exploding gradients:
Gradient Clipping
• During training, if a gradient gets larger than a predefined threshold, clip it to the threshold.

• Slightly more sophisticated alternative:
Gradient Rescaling
• Instead of clipping, rescale the gradients using

their norm. By Warren Long [CC BY 2.0
(https://creativecommons.org/licenses/by/2.0)],
via Wikimedia Commons

23

Modifications of the Vanilla RNN

• Instead of Gradient Clipping/Rescaling, why not modify the RNN itself?

àHochreiter and Schmidhuber (1997) did just that!
àLong Short Term Memory (LSTM) is a variant of RNNs that can better model long-term

dependencies

23Hochreiter, S. & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9, 1735—1780.

LSTM and Friends

25

Long- Short Term Memory (LSTM)

ℎ,-!

𝑦,

𝑓!"" 𝑥#, ℎ#$%

0.05
1.93

...
0.17

𝑥,

0.81
0.07

...
0.54

RNN Cell

ℎ,-!

𝑦,

???

0.05
1.93

...
0.17

𝑥,

0.81
0.07

...
0.54

LSTM
Cell

Idea:
Change the RNN cell
(equations) in such a way
that the gradients do not
vanish.

The following slides contain illustrations taken from Christopher Olah‘s Blog:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

26

Recall Vanilla RNN

ℎ9 = 𝜎: 𝑊:𝑥9 + 𝑈:ℎ9;<

RNN cell
boundary

neural
network layer

Note that ℎ,-!is transformed
into ℎ,!

27

LSTM — Principles

• State changes are incremental: 𝑐!%& = 𝑐! + ∆𝑐!%&
• Contrast to Vanilla RNNs: Vanilla state change is a transformation/matrix multiplication!

• State updates are selective
• We only want to write things to the state that help us

• State access is selective
• We need a way to select the most relevant knowledge from the state

• Information can be deleted from the state
• Some information may become out-dated and must make way for more important stuff

Each type of selectivity is modeled as a „gate“

28

LSTM — Gates

𝑔(ℎ,-!, 𝑥,) = 𝜎 𝑊𝑥, + 𝑈ℎ,-! + 𝑏

• Gates are modeled as layers similar to the Vanilla RNN
• They depend on the current input 𝑥, and the last shadow state ℎ,-!

• We will see that the LSTM cell carries two states
1) the state (or memory) 𝑐,
2) the shadow state ℎ,

• All gates have the following form:

Sigmoid activation function forces values in range [0, 1]

Interpretation (depending on the specific gate):
• 1 – keep all information, or read/write all information
• 0 – forget all information, or read/write none of that

information

29

LSTM — Overview

𝑐,-! 𝑐,

ℎ,-! ℎ,

cell state (𝑐,) is
updated

through gates

forget gate

input/write gate

output gate

component-wise
operations

+x

30

LSTM — Memory state

• The state or memory 𝑐,-! is
never transformed by matrix
multiplication

• Both interactions are carried out
component-wise

31

LSTM — Forget gate

𝑓, = 𝜎 𝑊2𝑥, + 𝑈2ℎ,-! + 𝑏2

• The forget gate determines which information is outdated and can
be discarded

• The update of the cell state 𝑐3 is done by component-wise
multiplication, resulting in a scaling of the previous state

32

LSTM — Input gate

𝑖, = 𝜎 𝑊'𝑥, + 𝑈'ℎ,-! + 𝑏'
A𝑐, = 𝑡𝑎𝑛ℎ 𝑊3𝑥, + 𝑈3ℎ,-! + 𝑏3

• A𝑐, consists of candidate values for updating the memory state
• tanh is used instead of sigmoid, since it produces values in [-1, 1]
• remember that we want to model incremental state changes, the

value range enables us to add (> 0) or remove (< 0) information
• 𝑖, is called the input gate and produces scaling factors (or weights) for the

candidate values

33

LSTM — Memory state update

𝑐, = 𝑓, ∘ 𝐶,-! + 𝑖, ∘ �̃�, 	

• The new memory state is computed by:
• scaling the former memory state and thus „forgetting“ unnecessary

information (forget gate)
• adding information from the scaled candidate values (input/write

gate)

Component-wise
multiplication

34

LSTM — Output gate

𝑜, = 𝜎 𝑊0𝑥, + 𝑈0ℎ,-! + 𝑏0
 ℎ, = 𝑜, ∘ 𝑡𝑎𝑛ℎ 𝑐,

• the final step is to decide what the output should be, this is controlled by
the output gate 𝑜,

35

Final Comparison

ℎ, = 𝜎) 𝑊)𝑥, + 𝑈)ℎ,-! + 𝑏)

Vanilla RNN

tanh = 𝜎)

𝑓, = 𝜎 𝑊2𝑥, + 𝑈2ℎ,-! + 𝑏2
 𝑖, = 𝜎 𝑊'𝑥, + 𝑈'ℎ,-! + 𝑏'
 𝑜, = 𝜎 𝑊0𝑥, + 𝑈0ℎ,-! + 𝑏0
 𝑐, = 𝑓, ∘ 𝑐,-! + 𝑖, ∘ 𝑡𝑎𝑛ℎ 𝑊3𝑥, + 𝑈3ℎ,-! + 𝑏3
 ℎ, = 𝑜, ∘ 𝑡𝑎𝑛ℎ 𝑐,

LSTM

36

Gated Recurrent Unit (GRU)

• GRU is a popular (and simpler) alternative cell
• merges input and forget gates
• uses only one state instead of two

𝑧, = 𝜎 𝑊4𝑥, + 𝑈4ℎ,-! + 𝑏4
 𝑟, = 𝜎(𝑊5𝑥, + 𝑈5ℎ,-! + 𝑏5)
 Mℎ, = tanh 𝑊)𝑥, + 𝑈) 𝑟, ∘ ℎ,-! + 𝑏)
 ℎ, = 1 − 𝑧, ∘ ℎ,-! +𝑧, ∘ Mℎ,

Practical Considerations

39

Backpropagation Through a Long Time

• Note that BPTT can get quite computationally expensive
• Especially, when the sequences get very long

àIn practice, BPTT is usually not done over the full sequence, but only over a part à
Truncated BPTT

40

Truncated BPTT I

• Backpropagating over the whole sequence is often not computationally
feasible
• Naive solution:

Split the sequence into chunks of 𝑘 steps and treat every chunk as an
individual training instance.
• Drawback:

This prevents the RNN from learning long-range dependencies that span
more than 𝑘 steps.

Sutskever, Ilya: Training recurrent neural networks. In: University of Toronto, Toronto, Ont., Canada (2013)

chunk size: k = 4

41

Truncated BPTT II

There is a different variant that preserves the state:

for 𝑡 from 1 to 𝑇 do
 ℎ3 	= 	 𝑓455 𝑥3, ℎ367
 𝑦3 = 𝑓893(ℎ3)

 if 𝑡 divides 𝑘7 then
 Run BPTT on the chunk from 𝑡 down to 𝑡 − 𝑘:

T – length of the sequence
t – current step
𝑘! – controls how often BPTT occurs
𝑘" – controls how many steps are
included in BPTT

T=12
𝑘! = 4
𝑘" = 3

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8
... and so on!

Sutskever, Ilya: Training recurrent neural networks. In: University of Toronto, Toronto, Ont., Canada (2013)

42

Truncated BPTT

• Note: The variants from the two previous slides only work with many-to-many networks!
• Why?
 à Need to calculate a loss at least every 𝑘 or 𝑘& steps!

• What can we do for many-to-one tasks?
 à Calculate the forward pass
 over the full sequence,
 then do backpropagation
 for 𝑘' steps

43

RNNs and BPTT in PyTorch

• PyTorch provides nn.RNN, nn.LSTM, and nn.GRU modules
• They return the output and hidden state for each timestep
• Backpropagate through all timesteps as you know it
• Truncated BPTT can be implemented by hand à not easy
• Truncated BPTT is also implemented in PyTorch Ignite à easy

Recurrent Neural Networks in Practice -
RNNs for Text Generation

44

45

RNNs for Text Generation

• Text Generation = Given some training corpus, create new text that is „similar“ to the corpus

• Well-suited task for RNNs:
• Internal State encodes the text so far
• Output layer predicts the next token

• Possible at different levels:
• Word level
• Character level
• Phoneme level
• …

46

RNNs for Text Generation

• Popular blog post: „The Unreasonable Effectiveness of Recurrent Neural Networks” (Andrej
Karpathy)

• Train a character-level RNN on different corpora
• Generate new text
• Investigate what is going on!

• Look at different RNN cells
• Play around with hyperparameters

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Clown
: Com

e, si
r, I

will
make

did

behol
d you

r wor
ship.

VIOLA
: I'l

l dri
nk it

.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Shakespeare!

\begin{proof}
We may assume that \mathcal{I} is an abelian sheaf on
\mathcal{C}.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$
is an injective and let $\mathfrak q$ be an abelian sheaf on X.
Let \mathcal{F} be a fibered complex. Let \mathcal{F} be a
category.
\begin{enumerate}
\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}
Let \mathcal{F} be an abelian quasi-coherent sheaf on
\mathcal{C}.
Let \mathcal{F} be a coherent \mathcal{O}_X-module. Then
\mathcal{F} is an abelian catenary over \mathcal{C}.
\item The following are equivalent
\begin{enumerate}
\item \mathcal{F} is an \mathcal{O}_X-module.
\end{lemma}

Algebraic Geometry!

Some errors:
• Opens proof, closes lemma
• Opens enumerate, doesn‘t close it
à Fix these manually!

Algebraic Geometry!

J

50

• Sequence-to-Sequence Models
• From RNN to Seq2Seq
• Seq2Seq model (Encoder/Decoder)
• Enhancements

5.2 Sequence-to-Sequence

Motivation for Sequence to Sequence
models - Machine Translation

52

Machine Translation

• Task in Machine Translation (MT):
• Given a piece of text in a source language…
• … translate the text to a different target language

Pedo mellon a minno!Sindarin:

Say friend and enter!English:

Image: Ted Nasmith

53

Neural Machine Translation

• How to build a neural network for Machine Translation?
àRNNs seem like a natural choice

• Sequences as input and sequences as output
• But: some problems that we need to address to get better translations!

• Implicit model for alignment

• Performance deteriorates for long sentences

• …

àUse Sequence to Sequence models with some further tweaks!

Aragorn Arathornion Edhelharn, aran Gondor ar Hir i Mbair Annui, anglennatha I
Varanduiniant erin dolothen Ethuil, egor ben genediad Drannail erin Gwirith edwen

Mae govannen, mellon nin!Sindarin:

Hello, my friend!English:

Aragorn, Arathorn’s son, Elfstone, King of Gondor and Lord of the Westlands
……….?!?

Sequence to Sequence models
(Seq2Seq)

55

Recap types of RNN

Fully Connected
Network

Network mapping a
sequence to one output

Network returning an
output after each timestep

of a sequence

Recurrent Neural Networks

Seq2Seq

56

Single RNN

Emma wird Bananen kaufen.

Emma will buy bananas

Idea:
Use the RNN output at
every timestep to predict
the translated word.

Problem:
The word order differs between translated
sentences.

In the above case, the model can‘t know
whether Emma is going to eat, peel or buy the
banana!

eat? peel? buy?

57

Single RNN

Emma läuft neben Paul

Emma walks next to Paul

Idea:
Use the RNN output at
every timestep to predict
the translated word.

Problem:
Usually input and target sentence do not have
the same number of words.

We can not accommodate source and target
sentences of different lengths with a single RNN!

58

From RNN to Seq2Seq

• Clearly, a simple RNN is not sufficient!
• How can we tweak the model to overcome these problems?

Challenges:
1.Handle input and target sequences of different lengths

ØUse two distinct RNNs:
ØAn encoder network maps the input to an internal representation ℎ
ØA decoder network generates a target sequence from ℎ

2.Generate target sequence based on the full input sequence
ØEncoder reads the entire sentence before passing it to the decoder

59

Encoder — Decoder Model

• High level visualisation of an Encoder-Decoder architecture:

• Now let‘s look at the details!

Representation

Emma läuft neben Paul

Emma walks next to Paul

Encoder

Decoder

60

Encoder — Decoder: RNN

Emma läuft neben Paul

<begin> walks next toEmma <end>

initial state
sequence
representation:
final hidden
state of the
encoder

Encoder RNN

Decoder RNN

start token

end token

previous output is taken as
 input for the next step

Paul

Color code for this lecture:
Encoder – Representation – Decoder

61

Encoder — Decoder Loss

• To train the model, we need to define a loss function
• Since we have multiple outputs, we need to aggregate the loss somehow

• Idea: Use the probability the model assigns to the entire target sentence!
à Probability of the target sentence 𝑦&, … , 𝑦) :

𝑃 𝑦&, … , 𝑦) =	2
*+&

)

𝑝*[𝑦*]

Probability of target word 𝑦' at
timestep 𝑖 according to the decoder

62

Enc-Dec Loss

<begin> will buy bananas

RNN
Cell

Emma <end>

Input sequence
representation

RNN
Cell

RNN
Cell

RNN
Cell

RNN
Cell

softmax softmax softmax softmax softmax

Output 𝑝9:
probability

distribution over
target words

correct target
words

𝑝% 𝑝(𝑝' 𝑝: 𝑝;

Probability of the target sentence according to the decoder:

𝑃 𝑦!, … , 𝑦# = 	T
'6!

#

𝑝'[𝑦']

A good model should assign a high probability to the target translation!

This gives us the loss function:

𝐿 = − log 𝑃 𝑦!, … , 𝑦# = − logT
'6!

#

𝑝'[𝑦'] = −\
'6!

#

log 𝑝'[𝑦']

Encoder

63

Improving Seq2Seq Models

• That‘s basically all we need!
• We can now train Sequence to Sequence models with an Encoder-Decoder architecture

• Let‘s look at some optimisations to improve our results

No backprop today L

But you‘re welcome to do it yourself!

64

Seq2Seq: Teacher Forcing

<begin> writes a letterEmma to

walks next to Paul <end>

Paul

Emma

prediction errors propagate L

Prediction errors propagate as input for the next decoding step!
This can slow down training or could even lead to a diverging model.

Remember: We use the output from the previous step as input to the next step.

65

Seq2Seq: Teacher Forcing

Teacher Forcing:
During training, we already know the correct target words!
à Feed those to the decoder instead of the previous prediction

<begin> writes a letterEmma to

walks next to Paul <end>

Paul

EmmaTarget translation

66

Seq2Seq: Teacher Forcing

• Problem of Teacher Forcing:
• During training, previous “output” is always correct
à Model relies too much on it!

• During prediction, the network can not handle wrong inputs

<begin> writes a letterEmma to

walks next to Paul <end>

Paul

Emma

Start training with teacher forcing, then switch to supplying
the real outputs.

67

Seq2Seq: Improved Sampling

• Remember:
• Decoder returns a (local) probability distribution over target words at each timestep
• We want to find the most likely sequence globally

• So far, we just selected the most likely word
à Greedy Search
• Alternative: Consider multiple options and decide later
à Beam Search

73

Enhancing the Model

• Encoder – Decoder is a very general and flexible model
• We can change individual parts separately to tune the model for a task.

à Let‘s take a look at some improvements!

74

Enhancement: BiRNN Encoder

Problem:
Long sequences can cause the sequence representation to lose information
about the first steps.
Solution:
Additionally feed the reverse input sequence into a separate RNN and
concatenate the output.

Emma läuft neben Paul

EmmaläuftnebenPaul

concat

75

5.3 Model Attention

• Idea
• Modelling
• Evaluation

76

Enhancement: Attention!

Emma läuft neben Paul

<begin> walks next toEmma <end>Paul

All information about the input sequence
needs to be encoded into a single vector.
This causes an information bottleneck.
Especially for long sequences!

Our model so far

Mechanism to solve this: Attention

77

Attention: Idea

Animation from: https://github.com/google/seq2seq

78

Attention: Idea

• Not just the last Encoder hidden state à save all Encoder hidden states
• For every decoding step, find a weighting of the Encoder hidden states

depending on the Decoder hidden state
• Calculate a weighted sum of Encoder hidden states and use it in the Decoder

àEncoder can capture per-step information; no need to squeeze everything
into one hidden state

àDecoder can pay attention to the important Encoder hidden states

79

Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ" ℎ% ℎ& ℎ'

𝑥" 𝑥% 𝑥& 𝑥'

Encoder

Save all Encoder hidden states
when encoding the input sequence

80

Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

𝑦%

FFN

Encoder Decoder

Normally, h4 would be used as s0.
We won‘t do this using attention.

81

Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠&

𝑦%

𝑒" 𝑒% 𝑒& 𝑒'

Instead, we use the current Decoder
state and calculate the dot product
between it and the Encoder hidden
states.

FFN

Encoder Decoder

82

Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠&

𝑦%

𝑒" 𝑒% 𝑒& 𝑒'

softmax

𝛼" 𝛼% 𝛼& 𝛼'

Using a Softmax activation across all
hidden states, we get attention weights

current
decoder
state

FFN

Encoder Decoder

83

Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠&

𝑦%

𝑒" 𝑒% 𝑒& 𝑒'

softmax

𝛼" 𝛼% 𝛼& 𝛼'

𝑐& =>
9=%

:

𝛼9ℎ9

These weights are then
used to calculate a
weighted sum of the
Encoder hidden states,
called the context vector
for the current step

attention weights

current
decoder
state

FFN

Encoder Decoder

84

Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠&

𝑦%

𝑒" 𝑒% 𝑒& 𝑒'

softmax

𝛼" 𝛼% 𝛼& 𝛼'

𝑐& =>
9=%

:

𝛼9ℎ9

context vectorattention weights

current
decoder
state

FFN

Encoder Decoder

Use the context vector as another
input to the Neural Network that
calculates the output from the
Decoder hidden state.

85

Attention

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠&

𝑦%

𝑒" 𝑒% 𝑒& 𝑒'

softmax

𝛼" 𝛼% 𝛼& 𝛼'

𝑐& =>
9=%

:

𝛼9ℎ9

context vectorattention weights

current
decoder
state

FFN

Encoder Decoder

86

Attention

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠%

𝑦%

𝑠%

𝑒" 𝑒% 𝑒& 𝑒'

softmax

𝛼" 𝛼% 𝛼& 𝛼'

𝑐% =>
9=%

:

𝛼9ℎ9

context vectorattention weights

current
decoder
state

FFN

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

DecoderEncoder

Repeat this process
with every Decoder
hidden state.

87

Attention

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠%

𝑦%

𝑠%

𝑦(

𝑒" 𝑒% 𝑒& 𝑒'

softmax

𝛼" 𝛼% 𝛼& 𝛼'

𝑐% =>
9=%

:

𝛼9ℎ9

context vectorattention weights

current
decoder
state

FFN FFN

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

DecoderEncoder

88

Attention

ℎ" ℎ% ℎ& ℎ'

<begin>

𝑥" 𝑥% 𝑥& 𝑥'

𝑠&

⊗ ⊗ ⊗ ⊗𝑠(

𝑦%

𝑠%

𝑦(

𝑠(

𝑒" 𝑒% 𝑒& 𝑒'

softmax

𝛼" 𝛼% 𝛼& 𝛼'

𝑐(=>
9=%

:

𝛼9ℎ9

context vectorattention weights
𝑦'

current
decoder
state

FFN FFN FFN

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation.

DecoderEncoder

89

Attention

• A context vector 𝑐* is computed as a weighted sum over 𝑘 encoder states at every decoding
step 𝑖:

c, =8
-+&

$

𝛼*-ℎ-

• Where 𝛼*- is a scalar weighting factor computed as:

𝛼*- =
exp 𝑒*-

∑.+&$ exp(𝑒*.)
• And 𝑒*- is an alignment model:

𝑒*- = 𝑎 𝑠*/&, ℎ-

where 𝑎 can be any transformation (e.g. a dot product)

90

Attention

• Allows the model to distribute information across encoder states and extract only necessary
bits at every decoder step.
• The attention weights can be visualized to allow insights into the models behaviour.

91

Visualising Attention

Here some words are in a
different order.

The plotted weights show
how the attention shifts
accordingly.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate.

92

Was that useful?

• We now know a lot about techniques for machine translation
• We also know many „improvements“ over the vanilla model

• But are they really useful?
How well do our models perform?

à We need some way to measure translation quality!

93

Evaluating Machine Translation — BLEU

• Papineni et al, 2002: Bilingual evaluation understudy (BLEU)

• In practice: Use Fourgram Precision
• Use lots of target translations

• Do not evaluate single sentences!
BLEU only works well for large corpora

à Now how well does the Attention model perform?

94

Attention: Results (Translation / Bahdanau et. al.)

All models are trained to translate sentences of length 30/50

• RNNsearch-k is an attention model trained on sentences of length k
• RNNenc-k is a normal seq2seq model trained on sentences of length k

Bahdanau,A D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate.

