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So far……..

• Insights into Deep Learning
• Optimization and Training
• Convolutional Neural networks

I. Convolutions
II. Padding
III. Stride
IV. Transposed Convolutions
V. Pooling Upsampling
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Content

 Insights into Generative Models
 Autoencoders

• Variational Autoencoders
 Generative Adversarial Networks
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Supervised vs Unsupervised Learning
Supervised Learning

 Data: (x,y)

 x is the data, y is the label

 Goal: Learn the mapping function X →Y                                          

 Examples: Classification, Object Detection

Unsupervised Learning

 Data: x

 Just data, without any labels!

  Goal: To learn some underlying structure of 
data

 Examples: Clustering (K-Means), 
dimensionality reduction (PCA), density 
estimation (understand distribution of 
data),etc.

Pic source: https://towardsdatascience.com/kernel-density-estimation-explained-step-by-step-7cc5b5bc4517Pic source: https://ambolt.io/en/image-classification-and-object-detection/

Core 
problem in 
unsupervised  
learning
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Generative vs. Discriminative Models

Generate data from the given data samples
Learn a model of the joint probability P(y, x)
Use Bayes’ Rule to calculate P(x|y) 
Build a model of each class; given example, return 

the model most likely to have generated that 
example by learning the probability distribution of 
data p(x)

Examples: Naïve Bayes, Gaussian Discriminant 
Analysis, Autoencoders, Diffusion Models.

Generative Discriminative
Classify data by finding the decision boundary
Model posterior probability P(y|x) directly
Find the exact function that minimizes 

classification errors on the training data  
without learning the probability distribution of 
data p(x)

Examples: Logistic regression, Support Vector 
Machines (SVMs), Decision Trees

Pic source: https://www.baeldung.com/cs/ml-generative-vs-discriminative

Our Target

Presenter Notes
Presentation Notes
Example from Ng notes:
Discriminative: “Consider a classification problem in which we want to learn to distinguish between elephants (y = 1) and dogs (y = 0), based on some features of an animal. Given a training set, an algorithm like logistic regression or the perceptron algorithm (basically) tries to find a straight line—that is, a decision boundary—that separates the elephants and dogs. Then, to classify a new animal as either an elephant or a dog, it checks on which side of the decision boundary it falls, and makes its prediction accordingly. “
Generative: “Here’s a different approach. First, looking at elephants, we can build a model of what elephants look like. Then, looking at dogs, we can build a separate model of what dogs look like. Finally, to classify a new animal, we can match the new animal against the elephant model, and match it against the dog model, to see whether the new animal looks more like the elephants or more like the dogs we had seen in the training set.” http://cs229.stanford.edu/notes/cs229-notes2.pdf

https://velog.io/@onground/EECS-498-007-598-005-%EA%B0%95%EC%9D%98%EC%A0%95%EB%A6%AC-19%EA%B0%95-Generative-Models-I
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 Given an image X, the 
discriminative models predict 
the label Y and can’t model 
P(X).

 They can’t sample from P(X) 
and can’t generate new 
images.

 Generative models can model 
P(X) and generate new 
images.

Generative vs. Discriminative Models

Pic source: https://www.baeldung.com/cs/ml-generative-vs-discriminative

Presenter Notes
Presentation Notes
https://www.researchgate.net/figure/An-illustration-of-the-difference-between-the-generative-and-discriminative-models-in_fig9_319093376
While the generative models learn the characteristics of each wine classes as it learns the input distribution, the discriminative models rather learn the decision boundary between wine classes. 
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Generative Models
Given training data, generate new samples from same distribution

Training data~pdata(x)         Generated samples~pmodel(x)

Want to: learn pmodel(x) similar to pdata(x)

 Addreses density estimation that is a core problem in unsupervised learning

  Implicit Density Estimation: learn model that can sample from pmodel(x) without explicitly 
defining it.

 Explicit Density Estimation: explicitly define and solve for pmodel(x)
source: Slide Adapted from Stanford Lecture on Generative Models 
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Taxonomy of generative models

 

Pic source: Ian Goodfellow, Tutorial on Generative Adversarial /networks, 2017
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Magic of Generative models
Image and Video Generation: They generate realistic sampled for content creation, virtual reality, 
artwork, super-resolution, colorization.

Text to Image Generation: They can generate human like text, making them useful for chatbots, 
language translation, and content generation.
Model physical world for simulation and planning (robotics and reinforcement learning 
applications)
Music Generation: They can compose original music, allowing for creation of new melodies and 
harmonies.
Many more….

[1] Gao, Sicheng, et al. "Implicit diffusion models for continuous super-resolution”CVPR. 2023.
[2] Zhu Junchen, et al. "Moviefactory: Automatic movie creation from text using large generative models for language and images." Proceedings of the 31st ACM. 2023

[1] [2]
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Content

 Insights into Generative Models
 Autoencoders

• Variational Autoencoders
 Generative Adversarial Networks
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Autoencoders 

An autoencoder is a feed-forward neural net whose job it is to 
take an input and reconstruct x’.

Encoder: z = f(x)

Decoder: x’=g(y) 
Basically, what is happening here, we train for x’=x.
AEs tries to learn an approximation of the identity by 

“Autoencoding”- encoding itself.

x

z=f(x)

x’

Latent space has dimension 
smaller than x to capture the 
important features.

Still we are unable to generate new 
images as we don’t know about 
the space of z .

How to make AEs a generative 
model?

Pic Source: https://www.compthree.com/blog/autoencoder/

Presenter Notes
Presentation Notes
We are compressing features, only trying to keep important ones
Next we are trying to reproduce that using only those important ones.
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• Variational Autoencoders
 Generative Adversarial Networks



Variational Autoencoders

 Traditional AEs compute a deterministic feature vector describing 
the attributes of input in the latent space.

 However, Variational Autoencoders an unsupervised approach uses 
a variational  outlook to learn the latent representation.

 Probalisitic spin on data will let us sample from the model to 
generate data.

 Thus allowing to model uncertainty in the input data

13



Variational Autoencoders: Statistical Motivation

 Assumption: Latent/hidden variable (z) that generates an observation x.
 Training a variational autoencoder: determining the distribution of z.

 Computing arbitrary p(x|z) for every z is usually intractable.
 Solution: In addition to the decoder network that is modelling p(x|z), also define an 

additional encoder tractable distribution q(z|x) that approximates the true 
distribution p(z|x).

14

z

x

Decoder Network

Sample from 
true prior z ~ 
p(z) (Simple 
Gaussian)

Sample from true 
conditional p(x|z) (More 
complex)

To learn the model parameters we need to 
maximize the likelihood of training data or 
the intractable density function, 

p x = �𝑝𝑝 𝑧𝑧 𝑝𝑝(𝑥𝑥|𝑧𝑧)

p(z|x) = ∫𝑝𝑝 𝑥𝑥 𝑧𝑧 𝑝𝑝(𝑧𝑧)/p(x)

*Autoencoding Variational Bayes (Kingma and Welling, 2013)
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log 𝑝𝑝 𝑥𝑥 = 𝐸𝐸𝑧𝑧~𝑞𝑞(𝑧𝑧|𝑥𝑥) [log 𝑝𝑝(𝑥𝑥)]
Using Baye’s rule and multiplying with constants we get,
                = 𝐸𝐸𝑧𝑧 log 𝑝𝑝 𝑥𝑥 𝑧𝑧  - 𝐷𝐷𝐾𝐾𝐾𝐾 𝑞𝑞 𝑧𝑧 𝑥𝑥 ||𝑝𝑝(𝑧𝑧)  + 𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄 𝑧𝑧 𝑥𝑥 ||𝑝𝑝 𝑧𝑧 𝑥𝑥 )

This data 
likelihood needs 
to be maximized

Decoder network gives 
pθ(x|z), can
compute estimate of this 
term through
Sampling and reconstruct 
the input data

This KL term (between
Gaussians for encoder and z
prior) has nice closed-form
Solution and thus the 
encoder 
make posterior distribution 
close to prior.

p(z|x) intractable can’t 
compute this KL
term :( But the KL
divergence always >= 0.

Tractable lower bound that we 
can compute the gradient of 

Variational Autoencoders: Statistical Motivation

*Autoencoding Variational Bayes (Kingma and Welling, 2013)

Presenter Notes
Presentation Notes
p
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Variational Autoencoders: Statistical Motivation
 P(z) often assumed to be a Gaussian distribution.

 Determining q(z|x) boils down to estimating µ and σ

 Use neural networks for computing q (z|x) and p(x|z)

x

Input Data

µz|x �
𝑧𝑧|𝑥𝑥

Encoder Network q(z|x)

z

µx|z
�

𝑥𝑥|𝑧𝑧

x’

Decoder Network p(x|z)

Sample z from  z|x ~N (µz|x,∑𝑧𝑧|𝑥𝑥)

𝐸𝐸𝑧𝑧 log𝑝𝑝 𝑥𝑥 𝑧𝑧  - 𝐷𝐷𝐾𝐾𝐾𝐾 𝑞𝑞 𝑧𝑧 𝑥𝑥 ||𝑝𝑝(𝑧𝑧)

Make posterior distribution close to prior

Maximizing the likelihood lower 
bound 

Loss function =

*Autoencoding Variational Bayes (Kingma and Welling, 2013)

Presenter Notes
Presentation Notes
p
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Variational autoencoders as generative models

• New data can be generated by sampling from the distributions in the 
latent space i.e. reconstructed by the decoder.

• Can encode different levels of variations.
• Example: smoothly varying of head pose and smile.
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Samples from a VAE trained on MNIST Samples from a VAE trained on a faces dataset
*Autoencoding Variational Bayes (Kingma and Welling, 2013)
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Variational Autoencoders: Summary

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound
    Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks
     Cons:
 Samples blurrier and lower quality compared to state-of-the-art (GANs)
      Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.
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Generative Adversarial Networks Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Networks

Generative models which 
generate data similar to 
the training data. E.g. 
Variational Autoencoders 
(VAE)

GANs are made up of 
two competing 
networks (adversaries) 
that are trying to beat 
each other.

Neural Networks

Problem: Want to sample from 
complex, high-dimensional training 
distribution. No direct way to do 
this!

Solution: Sample from a simple 
distribution we can easily sample 
from, e.g. random noise. Pic Source: https://blog.stackademic.com/generative-adversarial-networks-gans-and-their-applications-8df022b39939
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thispersondoesnotexist.com
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GANs Architecture

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

• Z is some random noise (Gaussian/Uniform).
• Z can be thought as the latent representation of the image.

z G(z)

D(x)

x

D(G(z))

G

D

http://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016
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Training Discriminator

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

http://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016
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Training Generator

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

http://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016
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Training GANS: Two-Player Game

 Discriminator Network:  trying to distinguish between real and fake 
images

 Generator Network: trying to fool the discriminator by generating real 
looking images

 Minmax objective function:

Generator 
objective

Discriminator 
objective

 Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) 
and

 D(G(z)) is close to 0 (fake)
 Generator (θg) wants to minimize objective such that D(G(z)) is close to 1

Discriminator output for real data x

Discriminator output for generated fake data 
D(G(z))
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Training GANS: Two-Player Game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2. Gradient descent on generator

2. Gradient ascent on generator, higher gradient signals 
for bad samples work better

Gradient signal 
dominated by region 
where sample is really 
good

But gradient in this 
region is flat

-log D(G(z))
High gradient signal

Low gradient signal
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GAN Training Algorithm

Discriminator 
updates

Generator 
updates
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Conditional GANs
• Problem: Generator creates a “fake” generic image : is not specific for a
certain condition/characteristic
• Example: text to image generation – image should depend on the text
• Idea: Provide additional vector y to networks to encode conditioning.

Generated samples conditioned on one label

Mehdi Mirza and Simon Osindero. “Conditional Generative Adversarial Nets”. In: CoRR abs/1411.1784 (2014). arXiv: 1411.1784.
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Conditional GANs

• Generator G receives the latent vector z and a conditioning vector y
• Discriminator D receives x and also y

• The objective function of a two-player minimax game changes to:

Mehdi Mirza and Simon Osindero. “Conditional Generative Adversarial Nets”. In: CoRR abs/1411.1784 (2014). arXiv: 1411.1784.
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Example: Conditional GANs for Face Generation

• Add conditional feature (e.g., smiling, gender, old age, ...)
• Generator/Discriminator learn to operate in modes:
• Generator learns to generate a face with a certain attribute
• Discriminator learns to decide whether the face contains attribute

Mehdi Mirza and Simon Osindero. “Conditional Generative Adversarial Nets”. In: CoRR abs/1411.1784 (2014). arXiv: 1411.1784.

Old Age

Old Age                          
+   
Smiling
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Cycle Consistent GANs
•  Image to Image GAN should generate plausible results w.r.t. input
•  Paired data difficult/impossible to obtain
•  Cycle consistency loss: Couple GAN with trainable inverse mapping F such that

F(G(x)) ≈ x and G(F(y)) ≈ y

Jun-Yan Zhu et al. “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”. In: CoRR abs/1703.10593 (2017). arXiv: 1703.10593.
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Cycle Consistent GANs

Two discriminators DY and DX
  Cycle consistency loss for two generators G, F

Total Loss
:



3333Goodfellow, Ian. "NIPS 2016 Tutorial:  Generative Adversarial Networks." arXiv preprint arXiv:1701.00160 (2016).

Problems with GANs

 Probability Distribution is Implicit
 Not straightforward to compute P(X).
 Thus Vanilla GANs are only good for

Sampling/Generation.

 Training is Hard
 Non-Convergence
 Mode-Collapse
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Training Problems

• Non-Convergence
• Mode-Collapse
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Training Problems

• GANs instead involve two (or more) players
• Discriminator is trying to maximize its reward.
• Generator is trying to minimize Discriminator’s reward.

min max𝑉𝑉 𝐷𝐷,𝐺𝐺
𝐺𝐺 𝐷𝐷

• SGD was not designed to find the Nash equilibrium of a game.
• Problem: We might not converge to the Nash equilibrium at all.

𝐺𝐺

• Deep Learning models (in general) involve a single player
• The player tries to maximize its reward (minimize its loss).
• Use SGD (with Backpropagation) to find the optimal parameters.
• SGD has convergence guarantees (under certain conditions).
• Problem: With non-convexity, we might converge to local optima.

min 𝐿𝐿 𝐺𝐺

Salimans, Tim, et al. "Improved techniques for training gans." Advances in Neural Information Processing Systems. 2016.
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Non-Convergence
min max 𝑉𝑉 𝑥𝑥,𝑦𝑦
𝑥𝑥 𝑦𝑦

Let 𝑉𝑉 𝑥𝑥, 𝑦𝑦 = 𝑥𝑥𝑦𝑦

• State 1:

• State 2:

• State 3:

• State 4 :

• State 5: == State 1

x > 0 y > 0 V > 0 Increase y Decrease x

Decrease y Decrease x

Decrease y Increase x

Increase y Increase x

Increase y Decrease x

x < 0 y > 0 V < 0

x < 0 y < 0 V > 0

x > 0 y < 0 V < 0

x > 0 y > 0 V > 0
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Problems with GANs

• Non-Convergence
• Mode-Collapse



3838

Mode-Collapse
• Generator fails to output diverse samples

Target

Metz, Luke, et al. "Unrolled Generative Adversarial Networks." arXiv preprint arXiv:1611.02163 (2016).

Expected

Output
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Some Solutions

 Mini-Batch GANs
 Supervision with labels

 Some recent attempts :-
 Unrolled GANs
 W-GANs
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Basic (Heuristic) Solutions

• Mini-Batch GANs
• Supervision with labels



4141Salimans, Tim, et al. "Improved techniques for training gans." Advances in Neural Information Processing Systems. 2016.

How to reward sample diversity?
 At Mode Collapse,
 Generator produces good samples, but a very few of them.
 Thus, Discriminator can’t tag them as fake.

 To address this problem,
 Let the Discriminator know about this edge-case.

 More formally,
 Let the Discriminator look at the entire batch instead of single examples
 If there is lack of diversity, it will mark the examples as fake

 Thus,
 Generator will be forced to produce diverse samples.



4242Salimans, Tim, et al. "Improved techniques for training gans." Advances in Neural Information Processing Systems. 2016.

Mini-Batch GANs

 Extract features that capture diversity in the mini-batch
 For e.g. L2 norm of the difference between all pairs from the batch

 Feed those features to the discriminator along with the image

 Feature values will differ b/w diverse and non-diverse batches
 Thus, Discriminator will rely on those features for classification

 This in turn,
 Will force the Generator to match those feature values with the real data
 Will generate diverse batches
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Basic (Heuristic) Solutions

• Mini-Batch GANs
• Supervision with labels
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Supervision with Labels

• Label information of the real data might help

• Empirically generates much better samples

D
Real

Fake
D Human

Fake

Car

Dog

Salimans, Tim, et al. "Improved techniques for training gans." Advances in Neural Information Processing Systems. 2016.
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Image-to-Image Translation

Figure 1 in the original paper.

Isola, P.,Zhu, J. Y., Zhou, T., & Efros, A. A. “Image-to-image translation with conditional adversarial networks”. arXiv preprint arXiv:1611.07004. (2016).

Link to an interactive demo of this paper
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Text-to-Image Synthesis

Figure 1 in the original paper.

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. “Generative adversarial text to image synthesis”. ICML (2016).

Motivation

Given a text description, generate 
images closely associated.

Uses a conditional GAN with the 
generator and discriminator being 
condition on “dense” text 
embedding.
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Face Aging with Conditional GANs

Antipov, G., Baccouche, M., & Dugelay, J. L. (2017). “Face Aging With Conditional Generative Adversarial Networks”. arXiv preprint arXiv:1702.01983.

• Differentiating Feature: Uses an Identity Preservation Optimization using an 
auxiliary network to get a better approximation of the latent code (z*) for an  
input image.

• Latent code is then conditioned on a discrete (one-hot) embedding of age 
categories.
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Face Aging with Conditional GANs

Figure 3 in the original paper.

Antipov, G., Baccouche, M., & Dugelay, J. L. (2017). “Face Aging With Conditional Generative Adversarial Networks”. arXiv preprint arXiv:1702.01983.
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Image Super Resolution

Image Superresolution:

Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." CVPR 2017
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Summary of GANs

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player 

game

Pros:
 - Beautiful, state-of-the-art samples!
Cons:

 - Trickier / more unstable to train
 - Can’t solve inference queries such as p(x), p(z|x)
Active areas of research:

 - Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
 - Conditional GANs, GANs for all kinds of applications



5151

Acknowledgements

There are lots of excellent references on GANs :
https://cs236g.stanford.edu/ 
 Sebastian Nowozin's presentation at MLSS 2018.
 NIPS 2016 tutorial on GANs by Ian Goodfellow.
by Alex Irpan.

https://cs236g.stanford.edu/
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Coming up…

• Recurrent Neural Networks
• Transformers and Self Attention
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