
Multilingual NLP

4. Attention & Transformer

Prof. Dr. Goran Glavaš

Center for AI and Data Science (CAIDAS), Uni Würzburg

Image: Alexander Mikhalchyk

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

After this lecture, you’ll...

• Understand the concept of attention in NNs

• Know the exact building blocks of the Transformer architecture

• Understand the pre-training–fine-tuning paradigm

Content

• Attention mechanism

• Transformer – dissected
• Positional Embeddings
• Multi-Head Self-Attention

• Pretraining + fine-tuning

Origins of Attention

• Before the Transformer was introduced (in 2017, 2018), recurrent nets were
SotA for language understanding and generation

• E.g., a bidirectional LSTM for sequence classification tasks

Origins of Attention

• Before the Transformer was introduced (in 2017, 2018), recurrent nets were
SotA for language understanding and generation

• E.g., RNN-based sequence-to-sequence models

Image from: https://jalammar.github.io/visualizing-neural-machine-translation-
mechanics-of-seq2seq-models-with-attention/

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Origins of Attention

• Problems with RNNs stem from their
sequential nature

• Tokens last processed contribute more
to the final representation

• Difficult to combine representations of
distant tokens (aka long dependencies)

• Tokens not given equal chance to
contribute to the sequence
representation

Image from: https://jalammar.github.io/visualizing-neural-machine-
translation-mechanics-of-seq2seq-models-with-attention/

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Origins of Attention

• Enter attention: representation of the
sequence as a weighted average of token
representations

• Weights are produced by a
parametrized (i.e., trainable) attention
function

• With RNNs, token representations are
the hidden state of the RNN after
processing of the token

Origins of Attention

• Enter attention: representation of the sequence as a weighted average of token
representations

• In sequence-to-sequence (encoder-decoder) for generative tasks

• At each decoding step, we re-compute the average of the encoded tokens
• The hidden representation of the decoder is the „query” for the attention

mechanism over encoded tokens

Image from: https://jalammar.github.io/visualizing-neural-machine-
translation-mechanics-of-seq2seq-models-with-attention/

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Attention Mechanism

• Given a set of objects (e.g., tokens in text), the attention
mechanism computes a weighted average of value vectors

• The weights are based on the similarity between the
respective key vectors of those same objects with the query

• Query vector represent the context with respect to which we
want to aggregate object representations

Attention Mechanism

• Let t1, t2, ..., tN be a set of tokens over which we’re „attending”

• Let k1, k2, ..., kN ∈ ℝk and v1, v2, ..., vN ∈ ℝv be the key and value
vectors of those tokens, respectively
• k is the length of key vectors
• v is the length of value vectors

• Let q ∈ ℝq be the query vector
• In most cases, the query vector must be of same length as key

vectors of tokens, q = k

Attention Mechanism

• The attention mechanism is then defined with by:

• The scoring function s(q, k), which produces a (single scalar) score
that indicates the compatibility of a key k with the query q

• The output of the attention mechanism is the weighted sum of
value vectors, with corresponding scores as weights:

σ𝒊=𝟏
𝑵 𝑠(𝐪, 𝐤i) ∗ vi

Attention Mechanism

• Commonly used attention types (before Transformer):

1. Additive attention (parametrized scoring function):

s(q, k) = va tanh(Wa (k ⊕ q))

• k and q may be of different length, ⊕ denotes concatenation
• Wa ∈ ℝh x (K+Q) and va ∈ ℝh: trainable params of the „attention layer”

σ𝒊=𝟏
𝑵 𝑠(𝐪, 𝐤i) ∗ vi

Attention Mechanism

• Commonly used attention types used (before Transformer):

2. Dot-product attention (non-parametrized scoring function)

s(q, k) = kTq

• Raw (unnormalized) score for a key is a simple dot-product with the query
• Raw scores across keys are normalized with softmax:

s(q, k) →
𝑒s(q, ki)

σ𝑗=1
𝑁 𝑒s(q, kj)

σ𝒊=𝟏
𝑵 𝑠(𝐪, 𝐤i) ∗ vi

Attention Mechanism

• Q: But where are keys, values, and queries coming from?
• For each token we typically have only one vector
• Token’s embedding or RNN’s state after processing that token

• Attention is a general mechanism, can be applied in various settings
• We decide how to obtain keys, values, and queries in concrete use cases

• Use case #1: sequence classification with RNNs
• Keys and values same vectors, one for hidden

state of the RNN at each time step

ki = vi = si
RNN

• No context: q can be any fixed vector
(e.g., a vector of 1s), or a trainable vector;

Attention Mechanism

• Attention is a general mechanism, can be applied in various settings
• We decide how to obtain keys, values, and queries in concrete use

cases and scenarios

• Use case #2: seq-to-seq generation (with RNNs)
• Keys and values the same vectors, one for

hidden state of encoder RNN
at each time step

ki = vi = si
Encoder

• Query q: hidden state of the decoder
• I.e., context is the representation of the text

generated so far

Content

• Attention mechanism

• Transformer – dissected
• Positional Embeddings
• Multi-Head Self-Attention

• Pretraining + fine-tuning

Is Attention All We Need?

• So far, we applied attention over keys/values that come from a
recurrent encoder

• RNNs are slow to train
• „Backpropagation through time”
• Computation over tokens sequential

• Research question that changed NLP and enabled LLMs:
• Is recurrence actually necessary?
• What happens if we just apply attention on top of token

embeddings?

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &

Polosukhin, I. (2017). Attention is all you need. Advances in neural information

processing systems (NeurIPS).

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Transformer (Encoder-Decoder)

• Enter Transformer: a sequence-to-
sequence architecture without
recurrence, based „only” on the
attention mechanism

• Is attention is all we need?

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &

Polosukhin, I. (2017). Attention is all you need. Advances in neural information

processing systems (NeurIPS).

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Transformer (Encoder-Decoder)

• Transformer as proposed by Vaswani et al. is an
encoder-decoder model
• Introduced for machine translation

• Two types of attention

1. Self-attention: only in encoder
• Keys, Values, and Queries all derived from

token representations in encoder layers

2. Cross-attention: keys and values from encoder
representations + previous tokens in decoder
• q: from representations of decoder tokens

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &

Polosukhin, I. (2017). Attention is all you need. Advances in neural information

processing systems (NeurIPS).

Encoder
Decoder

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Transformer (Encoder-Decoder)

• Transformer as proposed by Vaswani et al. is an
encoder-decoder model
• Introduced for machine translation

• Two types of attention

1. Self-attention: only in encoder
• Keys, Values, and Queries all derived from token

representations in encoder layers

2. Cross-attention: keys & values from enc.
representations + previous tokens in decoder
• q: from representations of decoder tokens

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &

Polosukhin, I. (2017). Attention is all you need. Advances in neural information

processing systems (NeurIPS).

Encoder
Decoder

Today

L9: NMT

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Transformer

• Transformer as proposed by Vaswani et al. is an encoder-decoder model

• Most NLP tasks are not generation tasks*
* Most recently, with LLMs, many non-generation tasks have been successfully re-
cast as generation tasks (L11: Prompting & LLMs)

• Most models used today are single-stack transformers
• Encoder models (trained with masked LM-ing)
• Decoder models (trained with autoregressive LM-ing)

• Devlin et al.’s BERT uses the encoder-only Transformer
• This is the Transformer we’ll primarily dissect in this lecture

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. In Proceedings of

NAACL-HLT (pp. 4171-4186).

https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf

Transformer

• Transformer as encoder
• Embedding layer

• (sub)word embeddings
• Positional embeddings

• NL identical Transformer layers
• Multi-head self-attention sublayer
• Residual connection
• Layer normalization
• Feed-forward sublayer

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019).

BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. In Proceedings of NAACL-HLT

(pp. 4171-4186).

Embedding layer
(Wemb)

t1 t2
... tN

Multi-head
self-attention

Positional
encoding

+ + + +

Residual &
Layer Norm.

Feed-forward

Residual &
Layer Norm.

x NL

https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf

Content

• Attention mechanism

• Transformer – dissected
• Positional Embeddings
• Multi-Head Self-Attention

• Pretraining + fine-tuning

Positional Embeddings

• Recurrent networks implicitly retain
the information about the word order

• At the core of the Transformer
encoder is the so-called multi-head
self-attention
• But attention is just an aggregation over a

set of vectors
• Retains no order information

• Fix: positional embeddings that
explicitly encode token positions in
the sequence

Embedding layer
(Wemb)

t1 t2
... tN

Multi-head
self-attention

Positional
encoding

+ + + +

Residual &
Layer Norm.

Feed-forward

Residual &
Layer Norm.

x NL

Positional Embeddings

• Vaswani et al. propose fixed relative positional embeddings
• Positional embeddings added to (sub)word embeddings → same dim. d

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &

Polosukhin, I. (2017). Attention is all you need. Advances in neural information

processing systems (NeurIPS).

• Maximal sequence length: N
• Position in the sequence: pos, in {0, 1, 2, ..., N-1)

• For each position/index in the pos.
embedding, a different function
generating the score
• Indices: 2i (or 2i+1)

for 0 ≤ i < d/2

Embedding layer
(Wemb)

t1 t2
... tN

Positional
encoding

+ ++ + + +

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Positional Embeddings

• Let n be an arbitrary scalar, a hyperparameter for positional embeddings
• Vaswani et al. set n = 10000

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &

Polosukhin, I. (2017). Attention is all you need. Advances in neural information

processing systems (NeurIPS).

• The value of the positional embedding for token position pos and
embedding index 2i (or 2i+1) is given as follows:

PE(pos, 2i) = sin(
pos

𝑛2𝑖/𝑑
)

PE(pos, 2i+1) = cos(
pos

𝑛2𝑖/𝑑
)

Embedding layer
(Wemb)

t1 t2
... tN

Positional
encoding

+ ++ + + +

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Sines and Cosines?!

Image from: https://machinelearningmastery.com/a-gentle-introduction-to-positional-
encoding-in-transformer-models-part-1/

https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/
https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/

Sines and Cosines?!

• Q: Why sines and cosines?!
• Cyclical, encode well relative values in the argument range [0, 2π]
• We can make the range of the repetition (wavelength) arbitrarily long
• Values always in the [-1, 1] range

PE(pos, 2i) = sin(
pos

𝑛2𝑖/𝑑
); PE(pos, 2i+1) = cos(

pos

𝑛2𝑖/𝑑
)

• c = 1/ 𝑛2𝑖/𝑑; wavelength → 2π/c = 2π ∗ 𝑛2𝑖/𝑑

• The bigger the index i, the bigger the wavelength (wider cycle)

• For i = 0 (ind. 0 and 1) → PE(pos, 0) = sin(pos); PE(pos, 1) = cos(pos)

• For i = 1 (ind. 2 and 3) → PE(pos, 2) = sin(
pos

𝑛2/𝑑
); PE(pos, 3) = cos(

pos

𝑛2/𝑑
)

...

• For i = d/2 (index d, assume d even) → PE(pos, d) = sin(
pos

𝑛
)

Sines and Cosines?!

• For different indices of the positional embedding vectors, position-dependent
values are computed with sin/cos of different wavelengths

• From wavelength of 2π (for i = 0) to wavelength of n * 2π (for i = d/2)

• Store pos. embeddings in
a matrix WPE∈ ℝN x d

• Each row corresponds to
one position (from 1 to N)

• We can visualize WPE –
example with d = 128, N =
50, and n = 10000

Image from: https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Positional Embeddings

• In BERT, Devlin et al. resort to fully
trainable positional embeddings

• I.e., WPE∈ ℝN x d another parameter
matrix, along with Wemb ∈ ℝ|V| x d

• WPE optimized with all other
parameters of the whole neural LM

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-

HLT (pp. 4171-4186).

Embedding layer
(Wemb)

t1 t2
... tN

WPE

+ ++ + + +

https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf

Positional Embeddings

• Which is better?
• Fully trainable PEs or
• Fixed relative PEs?

• The answer is not straightforward,
seems to depend on the type of task

• Sequence classification: trainable PEs
• Token classification / span extraction:

fixed relative PEs

Wang, B., Shang, L., Lioma, C., Jiang, X., Yang, H., Liu, Q., & Simonsen, J. G.

(2021). On Position Embeddings in BERT. In International Conference on Learning

Representations (ICLR).

Embedding layer
(Wemb)

t1 t2
... tN

WPE

+ ++ + + +

VS.

https://openreview.net/pdf?id=onxoVA9FxMw

Content

• Attention mechanism

• Transformer – dissected
• Positional Embeddings
• Multi-Head Self-Attention

• Pretraining + fine-tuning

Multi-Head Attention

• Self-attention in Transformer: each token is
„attending” over all tokens (including itself)

• Each token ti (i = 1, ..., N) has an associated
• Key vector ki

• Value vector vi

• Query vector qi

• One self-attention mechanism is called an
attention head
• Multi-head attention: multiple

self-attention mechanisms
Embedding layer

(Wemb)

t1 t2
... tN

Multi-head
self-attention

Positional
encoding

+ + + +

Residual &
Layer Norm.

Feed-forward

Residual &
Layer Norm.

x NL

Self-Attention (Attention Head)

• Self-attention: each token is „attending” over all tokens

• Each token ti (i = 1, ..., N) has an associated
• Key vector ki, value vector vi, and query vector qi

• Let xi be the embedding of ti

• I.e., sum of subword emb. and PE
• Q: how do we obtain three different vectors (ki, vi, and qi) from xi?
• Introduce trainable parameters that project xi into different vectors

• Stack embeddings of tokens (x1, x2, ..., xN) into a matrix X ∈ ℝN x d

• In later transformer layers, X is not the matrix of embeddings from the
embedding layer but is the the output of the previous layer

Self-Attention (Attention Head)

• Self-attention: Introduce trainable
parameters that project X into matrices
K, V, and Q

• Query matrix: Q = X WQ, WQ ∈ ℝd x k

• Key matrix: K = X WK, WK ∈ ℝd x k

• Value matrix: V = X WV, WV ∈ ℝd x v

• Q ∈ ℝN x k, K ∈ ℝN x k, and V ∈ ℝN x v

• Query, key, and value vectors are not
necessarily of same length d as input emb.

• Q and K are of the same dimensionality Image from: https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Self-Attention (Attention Head)

• Query matrix: Q = X WQ, WQ ∈ ℝd x k

• Key matrix: K = X WK, WK ∈ ℝd x k

• Value matrix: V = X WV, WV ∈ ℝd x v

• Output of the Transformer’s self-attention is computed as:

Z = softmax(
QKT

𝑘
)V ; Z ∈ ℝN x v

Image from: https://jalammar.github.io/illustrated-transformer/

• The matrix QKT ∈ ℝN x N is called an
attention matrix
• Often used for interpretability, how much

each token attends over each other token

• softmax is applied row-wise on
QKT

𝑘

• Q: Why normalization with 𝑘?

k

https://jalammar.github.io/illustrated-transformer/

Multi-Head Attention

• Simply multiple attention heads, independent of each other
• Just operate on the same input X
• H attention heads

1st attention head:
• Q1 = X W1

Q; K1 = X W1
K; V1 = X W1

V;

• Z1 = softmax(
Q1K1

T

𝑘
)V1

...

H-th attention head
• QH = X WH

Q; Ki = X WH
K; Vi = X WH

V;

• ZH = softmax(
QHKH

T

𝑘
)VH

Multi-Head Attention

• Simply multiple attention heads, independent of each other
• Just operate on the same input X
• H attention heads

• Output of the multi-head attention layer is then a downprojection of the
concatenation of the outputs of each head (i.e., each self-attention)

mh-att(X | 𝛉MHA) = (Z1⊕ Z2 ⊕ ... ⊕ZH-1⊕ZH) WO

• Concatenation (Z1⊕ Z2 ⊕ ... ⊕ZH-1⊕ZH) has dimensions N x (v.H)
• Desdiderata (because of multiple identical layers): output of multi-head attention

has the same dimensionality as input: mh-att(X) ∈ ℝN x d

• This mandates that the parameter matrix WO has dimensions (v.H) x d

• All parameters of one MHA (sub)layer: 𝛉MHA = {W1
Q, W1

K, W1
V, ..., WH

Q, WH
K, WH

V, WO}

Multi-Head Attention – Visual Summary

• In the example below: 8 attention heads (indexed 0 to 7)

Image from: https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Feed-Forward Layer

• Output of the multi-head attention layer is again
a matrix of dimensions N x d
• I.e., one d-dim. vector for each token

• Each token vector x is then independently
transformed through the following FFN:

FFN(x | 𝛉ffn) = ReLU(xW1 + b1)W2 + b2

• ReLU(x) = max(0, x)
• Common activation function

• Trainable parameters: 𝛉ffn = {W1, b1, W2, b2 }
• W1 ∈ ℝd x f, b1 ∈ ℝf

• W2 ∈ ℝf x d, b1 ∈ ℝd

• Vaswani et al. set f = 4d

Embedding layer
(Wemb)

t1 t2
... tN

Multi-head
self-attention

Positional
encoding

+ + + +

Residual &
Layer Norm.

Feed-forward

Residual &
Layer Norm.

x NL

Residuals

• Transformer layer has two main sublayers
• Multi-head attention layer
• Feed-forward layer

• Both those layers (i.e., param. functions)
have a residual connection around them

• Residual (around a layer) – layer input
added to its output

res(layer, X) = X + layer(X | 𝛉layer) Embedding layer
(Wemb)

t1 t2
... tN

Multi-head
self-attention

Positional
encoding

+ + + +

Residual &
Layer Norm.

Feed-forward

Residual &
Layer Norm.

x NL

Layer Normalization

• After the residual summation, the final output
is subdued to layer normalization

layer_norm(X’ = X + layer(X | 𝛉layer))

• Layer normalization normalizes the values in
each of the row-vectors x in the input
• Input is a matrix of dimensions N x d
• Let x ∈ ℝd be any of the row-vectors of that matrix

• We z-normalize values in x = [x1, x2, ..., xd]

• xi →
xi− µ

σ

• µ as mean and σ as st. deviation on x

Embedding layer
(Wemb)

t1 t2
... tN

Multi-head
self-attention

Positional
encoding

+ + + +

Residual &
Layer Norm.

Feed-forward

Residual &
Layer Norm.

x NL

Layer Normalization

• We z-normalize (or standardize) values in x

• xi →
xi− µ

σ

• This centers the values in x around the mean
of 0, with the st. deviation of 1

• X’’ = matrix with N z-normalized vectors of length d
• The final layer normalized output is given with

γ * X’’ + β

• Where γ and β ∈ ℝd are trainable parameters
of layer attention
• γ element-wise multiplies each row of X’’
• β is then added to each of the rows Embedding layer

(Wemb)

t1 t2
... tN

Multi-head
self-attention

Positional
encoding

+ + + +

Residual &
Layer Norm.

Feed-forward

Residual &
Layer Norm.

x NL

https://www.statology.org/z-score-normalization/
https://en.wikipedia.org/wiki/Standard_score

Layer Normalization

• X’’ = matrix with N z-normalized vectors of length d
• The final layer normalized output is given with

• γ * X’’ + β, with γ and β ∈ ℝd are trainable parameters
of the layer normalization „layer”
• γ element-wise multiplies each row of X’’
• β is then added to each of the rows

• Layer-normalization stabilizes training
• All instances across all mini-batches

normalized the same way

• Q: But why do we need γ and β?
• Normalization to N(0, 1) may be too

restrictive, some layers may need
„more expressive” distributions

Embedding layer
(Wemb)

t1 t2
... tN

Multi-head
self-attention

Positional
encoding

+ + + +

Residual &
Layer Norm.

Feed-forward

Residual &
Layer Norm.

x NL

Content

• Attention mechanism

• Transformer – dissected
• Positional Embeddings
• Multi-Head Self-Attention

• Pretraining + fine-tuning

Pretraining Transformers

• Pretrain – fine-tune paradigm: the idea that we can
(1) pretrain the parameters of the encoder 𝛉ENC via some self-supervised training

objective on large corpus and then

(2) further update (i.e., fine-tune) encoder’s parameters 𝛉ENC while training for a
concrete task – in this second step, we add task-specific classifier/regressor
(head) on top of the encoder (body)

• BERT: pretraining—fine-tuning with a Transformer as the encoder
• BERT not a first attempt at pretraining an encoder

• But first where the encoder is a Transformer

• ULMFit (Howard & Ruder, 2018), ELMo (Peters et al., 2018)

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. In Proceedings of

NAACL-HLT (pp. 4171-4186).

https://arxiv.org/pdf/1801.06146.pdf
https://aclanthology.org/N18-1202.pdf
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf

Pretraining Transformers

• Pretrain – fine-tune paradigm
(1) Pretrain (self-supervised objective)
(2) Fine-tune (on annotated task data)

• Q: What is a suitable self-supervised
objective for pretraining?

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. In Proceedings of

NAACL-HLT (pp. 4171-4186).

Image from Devlin et al.

https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf

Pretraining Transformers

• Q: What is a suitable self-supervised
objective for pretraining?

• Devlin et al. use two pretraining objectives
1. Masked LM-ing (MLM)
2. Next Sentence Prediction (NSP)

• Special input: pairs of sentences with
special (artificial) tokens

[CLS] t1
1 t2

1 ... tN
1 [SEP] t1

2 t2
2 ... tM

2 [SEP]

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. In Proceedings of

NAACL-HLT (pp. 4171-4186).

Image from Devlin et al.

https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf

Pretraining Transformers

• Input: [CLS] t1
1 t2

1 ... tN
1 [SEP] t1

2 t2
2 ... tM

2 [SEP]
• [CLS] – sequence start token
• [SEP] – separator token

• The two sentences may or may not be
adjacent in the training corpus

• Some percentage of (real) tokens masked out
– replaced with the [MASK] token

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. In Proceedings of

NAACL-HLT (pp. 4171-4186).

Image from Devlin et al.

https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf

Pretraining Transformers

• BERT’s pretraining objectives
1. Masked LM-ing (MLM)
2. Next Sentence Prediction (NSP)

• MLM: predict the original token for each
masked position (in either sentence)

• Standard LM-ing classification head +
negative log-likelihood loss

• x ∈ ℝd = Transformer’s output vector for some
masked token [MASK]

ෝy = softmax(x Wlm), Wlm ∈ ℝd x |V|

L(x, y |θenc , Wlm) = -σ𝑖=1
|𝑉|

yi ln(ොyi)

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. In Proceedings of

NAACL-HLT (pp. 4171-4186).

Image from Devlin et al.

https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf

Pretraining Transformers

• BERT’s pretraining objectives
1. Masked LM-ing (MLM)
2. Next Sentence Prediction (NSP)

• NSP: Predict if the two sentences were
adjacent in the corpus or not

• Standard binary classification head + binary
cross-entropy loss

• Q: why NSP? For text-pair tasks (QA, NLI)

• RoBERTa: same Transformer pretrained on more
data and only with MLM – better performance

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. In Proceedings of

NAACL-HLT (pp. 4171-4186).

Image from Devlin et al.

https://arxiv.org/pdf/1907.11692.pdf
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf

Fine-Tuning Transformers

• Pretrain – fine-tune paradigm
(1) Pretrain (self-supervised objective)
(2) Fine-tune (on annotated task data)

• Q: How do we fine-tune BERT’s
Transformer for a concrete task?

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. In Proceedings of

NAACL-HLT (pp. 4171-4186).

Image from Devlin et al.

https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf

Fine-Tuning Transformers

• Sequence classification (or regression)
denotes tasks in which a label (class or score)
is to be assigned to the whole input

• xCLS∈ ℝd the representation of the
sequence start token [CLS] output of the
last Transformer layer

• xCLS represents the encoding of the whole
sequence, and goes into the classifier

ෝy = classifier(xCLS|𝛉cl)

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. In Proceedings of

NAACL-HLT (pp. 4171-4186).

Image from Devlin et al.

https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf

Fine-Tuning Transformers

• Token classification (or regression) denotes
tasks in which a label (class or score) is to be
assigned to the whole input

• x∈ ℝd the representation of a token (to be
classified), output of the Transformer layer

• x is the contextualized embedding of the
token, and goes into the classifier

ෝy = classifier(x|𝛉cl)

• Q: what if we’re classifying word-level
tokens (but have a subword tokenizer)?

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. In Proceedings of

NAACL-HLT (pp. 4171-4186).

(Transformer)

https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf

The End

Image: Alexander Mikhalchyk

	Slide 1: Multilingual NLP
	Slide 2: After this lecture, you’ll...
	Slide 3: Content
	Slide 4: Origins of Attention
	Slide 5: Origins of Attention
	Slide 6: Origins of Attention
	Slide 7: Origins of Attention
	Slide 8: Origins of Attention
	Slide 9: Attention Mechanism
	Slide 10: Attention Mechanism
	Slide 11: Attention Mechanism
	Slide 12: Attention Mechanism
	Slide 13: Attention Mechanism
	Slide 14: Attention Mechanism
	Slide 15: Attention Mechanism
	Slide 16: Content
	Slide 17: Is Attention All We Need?
	Slide 18: Transformer (Encoder-Decoder)
	Slide 19: Transformer (Encoder-Decoder)
	Slide 20: Transformer (Encoder-Decoder)
	Slide 21: Transformer
	Slide 22: Transformer
	Slide 23: Content
	Slide 24: Positional Embeddings
	Slide 25: Positional Embeddings
	Slide 26: Positional Embeddings
	Slide 27: Sines and Cosines?!
	Slide 28: Sines and Cosines?!
	Slide 29: Sines and Cosines?!
	Slide 30: Positional Embeddings
	Slide 31: Positional Embeddings
	Slide 32: Content
	Slide 33: Multi-Head Attention
	Slide 34: Self-Attention (Attention Head)
	Slide 35: Self-Attention (Attention Head)
	Slide 36: Self-Attention (Attention Head)
	Slide 37: Multi-Head Attention
	Slide 38: Multi-Head Attention
	Slide 39: Multi-Head Attention – Visual Summary
	Slide 40: Feed-Forward Layer
	Slide 41: Residuals
	Slide 42: Layer Normalization
	Slide 43: Layer Normalization
	Slide 44: Layer Normalization
	Slide 45: Content
	Slide 46: Pretraining Transformers
	Slide 47: Pretraining Transformers
	Slide 48: Pretraining Transformers
	Slide 49: Pretraining Transformers
	Slide 50: Pretraining Transformers
	Slide 51: Pretraining Transformers
	Slide 52: Fine-Tuning Transformers
	Slide 53: Fine-Tuning Transformers
	Slide 54: Fine-Tuning Transformers
	Slide 55: The End

