
Multilingual NLP

3. Training Neural Language Models

Prof. Dr. Goran Glavaš

Center for AI and Data Science (CAIDAS), Uni Würzburg

Image: Alexander Mikhalchyk

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

After this lecture, you’ll...

• Understand how neural LMs unify tackling of various NLP tasks

• Know the common building blocks of neural LMs

• Understand how we train deep NNs (i.e., optimize their parameters)

• Know what „dropout” is

Content

• Uniformity of NLP with Neural LMs

• Training Neural LMs
• Gradient Descent & Backpropagation

• Adaptive Optimization
• Momentum, AdaGrad, RMSProp, Adam

• Dropout

Recap: (Supervised) Machine Learning

(Supervised) machine learning always has three components:

1. A model h(x|θ): defines how the output is computed from input x
• In deep learning models are highly parametrized compositions of

non-linear functions (each individual function is a „layer”)
• θ – model’s parameters

Neural Language Modeling

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

Language Model. Journal of Machine Learning Research, 3, 1137-1155.

wm-n+1 wm-2

vm-2

wm-1

vm-n+1 vm-1 lookup into the
embedding matrix

W

• Input: concatenation of embeddings
of context words

x = vm-n+1⊕ ... vm-2 ⊕vm-1
• x is of length (n-1)d

.

Embedding layer
(input)

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Language Modeling

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

Language Model. Journal of Machine Learning Research, 3, 1137-1155.

wm-n+1 wm-2

vm-2

wm-1

vm-n+1 vm-1 lookup into the
embedding matrix

W

ෝy = W2 tanh(W1x + b1) + W3x + b2

• Layer #3: parallel linear up-projection of x into
a vector of length |V| (vocabulary size)
• x(3) = W3x
• This we will call „residual connection”

• W3 ∈ ℝ|V| x (n-1)d

• Finally, ෝy = x(1) + x(2) + x(3)

• Vector of |V| scores, one for each vocab. word
• These unnormalized scores are called logits

Encoder
(body)

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Language Modeling

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

Language Model. Journal of Machine Learning Research, 3, 1137-1155.

wm-n+1 wm-2

vm-2

wm-1

vm-n+1 vm-1 lookup into the
embedding matrix

W

ෝy = W2 tanh(W1x + b1) + W3x + b2

• ෝy ∈ ℝ|V| is a vector of logits

• But we need P(w | wm-n+1...wm-1) for each
word w from the vocabulary V

• Need to convert ෝy into a probability
distribution

• Softmax function:

ොyi →
𝑒
෡yi

σ
𝑗=1
|𝑉|

𝑒
෡yj

Classifier
(head)

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LMs

• All neural LMs have the same three main

components

1. Embedding layer („feet” of the model)

• Embedding matrix Wemb contains

embeddings for all terms from vocabulary V

• Input text is tokenized into tokens t1, ..., tT

• Embedding layer is simply a lookup into

Wemb, fetches embeddings t1, t2, ..., tT

Embedding layer (Wemb)

talk on mod ##els

Neural LMs

• All neural LMs have the same three main

components

2. Encoder (body of the model)

• Conceptually: just a parametrized function

• Reality: very complex and highly

parametrized function

• Composition of smaller (typically non-

linear) parametrized functions, called layers

Embedding layer (Wemb)

talk on mod ##els

...

Layer 1 (𝛉1)

Layer 2 (𝛉2)

Layer N (𝛉N)

...

Neural LMs

• All neural LMs have the same three main
components

2. Encoder (body of the model)

• t1
N, t2

N , ..., tT
N = enc(t1, t2, ..., tT | 𝛉enc)

• Encoder: a composition of layer functions

enc(t1, t2, ..., tT | 𝛉enc)

= layN(t1
N-1, t2

N-1, ..., tT
N-1 | 𝛉N)

= layN(layN-1(t1
N-2, t2

N-2, ..., tT
N-2 | 𝛉N-1) | 𝛉N)

= ...

= layN(layN-1(...(lay1(t1, t2, ..., tT | 𝛉1)...| 𝛉N-1) | 𝛉N)

Encoder parameters: 𝛉enc = {𝛉1, 𝛉2, … , 𝛉N−1, 𝛉N}

Embedding layer (Wemb)

talk on mod ##els

...

Layer 1 (𝛉1)

Layer 2 (𝛉2)

Layer N (𝛉N)

...

Neural LMs

• All neural LMs have the same three main
components

2. Encoder (body of the model)

• t1
N, t2

N , ..., tT
N = layN(layN-1(...(lay1(t1, t2, ..., tT | 𝛉1)...| 𝛉N-1) | 𝛉N)

• In most modern neural LMs, layers are identical

• Same parametrized function, layN = layN-1 = ... = lay1 = lay

• But each layer has its own set of parameters!

• Parameters, in principle, not shared across layers

• Encoder parameters: 𝛉enc = {𝛉1, 𝛉2, … , 𝛉N−1, 𝛉N}

• Each layer itself is again a composition of parametrized
functions, which we’d commonly call sublayers

Embedding layer (Wemb)

talk on mod ##els

...

Layer 1 (𝛉1)

Layer 2 (𝛉2)

Layer N (𝛉N)

...

Neural LMs

• All neural LMs have the same three main

components

3. Classifier (or regressor; head of the model)

• Its architecture depends on the concrete task for

which we’re training the neural LM model

• Typically has two sub-components

1. Pooling layer (or pooler) produces an aggregate

representation of the input

• Commonly a parameterless function (e.g., average)

x = agg(t1
N, t2

N , ..., tT
N)

• In token-level tasks, there’s typically no pooling

Embedding layer (Wemb)

talk on mod ##els

...

Layer 1 (𝛉1)

Layer 2 (𝛉2)

Layer N (𝛉N)

...

Pooler

Classifier/regressor

ෝy

Neural LMs
• All neural LMs have the same three main components

3. Classifier (or regressor; head of the model)

• Its architecture depends on the concrete task for

which we’re training the neural LM model

• Typically has two sub-components

2. Classification/regression model

• We usually don’t need many parameters in the classifier.

• Q: Why?

• A single-hidden-layer feed-forward neural network

ෝy = classifier(x | 𝛉cl) = W2 tanh(W1x + b1)

• Classifier’s parameters: 𝛉cl = { W1, b1, W2 }

• C = number of classes (in regression tasks, C=1), W2 ∈ℝ
h x C

Embedding layer (Wemb)

talk on mod ##els

...

Layer 1 (𝛉1)

Layer 2 (𝛉2)

Layer N (𝛉N)

...

Pooler

Classifier/regressor (𝛉cl)

ෝy

Recap: (Supervised) Machine Learning

(Supervised) machine learning always has three components:

1. (Neural LM) Model
• Embedding layer (feet) + Encoder (body) + Classifier (head)
• All model’s parameters:

𝛉 = {Wemb ,𝛉enc , 𝛉cl }

2. An objective function
• Depends on the nature of the classification/regression task

3. Optimization algorithm
• End-to-end training/optimization: we optimize all parameters 𝛉

during one (the same) training/optimization procedure

Uniforming NLP with Neural LMs

• (One of the) problem(s) of traditional NLP
• Different model for each task
• Task-specific features precomputed from the symbolic text input

• Neural LMs make NLP much more uniform
• Every NLP task benefits from semantic representations of input

(embedding layer)

• Every NLP task benefits from contextualization of token
embeddings against each other (encoder)

• Embedding layer & encoder: the same, regardless what the task is
• Classifier: depends on the task-type (but not concrete task itself)

Uniform NLP with Neural LMs

• The vast majority of NLP tasks fall into one of three categories
• Sequence classification
• Token classsification
• Text generation

• Notable exceptions (need task-specific heads)
• Syntactic parsing
• Coreference resolution

Sequence classification

• Sequence classification (or regression) denotes tasks in which a label (class or
score) is to be assigned to the whole input text

• Examples:
• Classifying product reviews for sentiment
• Topical classification of news stories
• Predicting semantic similarity for a pair of sentences/texts
• Natural language inference: predict if one sentence is logically entailed by the

other sentence

• We pool the encoded token representations and feed the aggregation into the
classifier/regressor
• Averaging is the most commonly used pooling function

x = agg(t1
N, t2

N , ..., tT
N)

=
1

𝑇
σ𝑖=1
𝑇 ti

N

ෝy = classifier(x|𝛉cl)

Token classification

• Token-level classification (or regression), also known as sequence labeling,
denotes tasks in which a label (class or score) is to be assigned to each input token

• Examples:
• Part-of-speech tagging
• Named entity recognition
• Any of the other IE tasks where we need to extract

the span of tokens that represent a concept instance

• No pooling, the encoded representation of each token
is directly fed to the classifier

ෝyi = classifier(ti
N |𝛉cl), i ∈ {1, ..., T}

Generation tasks

• Text generation denotes tasks in which the model (neural LM)
is to generate text starting from some given/preceding context

• Example tasks:
• Text summarization
• Machine translation
• Data-to-text generation
• Dialogue („Conversational AI”)

• Traditional neural generation:
• What we called „encoder” in generic neural LM, now

becomes a „decoder”
• Pooling across the representations of the context and

previously generated tokens

Generation tasks

• Text generation denotes tasks in which the model (neural LM) is to generate text starting from
some given/preceding context

• Example tasks:
• Text summarization, Machine translation, Data-to-text generation, Dialogue

• Modern neural generation:
• Powerful neural LMs: we don’t really

need a separate encoder of the context
• Context just fed as preceding tokens

• LLMs can semantically accurately
• encode long contexts
• (GPT-4o: 128K tokens)

• In generation tasks
commonly C = |V|
• „classes” are tokens from

the vocabulary

encoder / decoder

<s> der schnelle ...

classifier

the quick brown fox jumped

Content

• Uniformity of NLP with Neural LMs

• Training Neural LMs
• Gradient Descent & Backpropagation

• Adaptive Optimization
• Momentum, AdaGrad, RMSProp, Adam

• Dropout

Training Objectives

• Objective functions with neural LMs
• Loss functions that we’re trying to minimize

• Classification
• Binary cross-entropy (for one-class binary classification)
• Negative log-likelihood (or cross-entropy loss)

• Regression
• Mean Squared Error

Training Objectives

• x denotes the representation being classified
• Sequence or token encoding, output of the encoder
• Of hidden size dimension h

• Binary cross-entropy loss (for one-class binary classification)
• An instance being classified either belongs to the class of

interest (is c) or it doesn’t (not c)
• We only care about c, „not c” is not a „real” class

• E.g., spam detection – we care about recognizing spam

• The classifier is essentially logistic regression
• Prediction: ොy = σ(wTx + b); w ∈ ℝh b ∈ ℝ

= 1/(1 + e-(wTx + b))

• Loss: LBCE = -y ln ොy - (1- y) ln (1-ොy)

Training Objectives

• x denotes the representation being classified
• Sequence or token encoding, output of the encoder

• Negative log-likelihood (for multi-class classification)
• Aka (regular) cross entropy loss

• The classifier is essentially softmax regression

• Prediction: ෝy = softmax(Wx + b); W ∈ ℝCxh , b ∈ ℝC

• Loss: LNLL = -σ𝑖=1
𝐶 yi ln ොyi

• yi = c = 1 only for the index i that corresponds to the actual class c

of the example, all other yi ≠ c = 0
• So, LNLL = - ln ොyi = c

Training Objectives

• x denotes the representation being classified
• Sequence or token encoding, output of the encoder

• (Mean) Squared error (for regression)

• The „regressor” outputs a score

• Prediction: ොy = g(wTx + b); w ∈ ℝh , b ∈ ℝC

• g is the score normalization function, identity function
if no normalization

• Loss: LMSE = (y − ොy)2

Training Objectives

• Loss functions L defined for a single training example (x, y)
• But we normally do not train our neural LMs with individual examples

• Training dataset: D = {(xk, yk)}
𝑁
𝑘=1

• The actual loss that we minimize is an average over losses of
individual examples:

• LD = σ𝑘=1
𝑁 L(ෝyk , yk))

• ෝyk = model(xk|𝛉)

• Model training means solving the following

• ෡𝛉 = argmin𝛉 LD
• With model(x|𝛉) being a complex neural LM and D being a (very) large dataset,

this equation clearly has no closed-form solution

Optimization algorithm

• We resort to (typically unconstrainted) numerical optimization

• Concretely, optimization of deep NNs relies on gradient-based
optimization, i.e., variants of gradient descent

• Gradient descent – optimization algorithm that uses function
differentiation (w.r.t. parameters) to find the minimum of a function

Numerical optimization refers to optimizing real-valued functions
f(𝛉): ℝn

→ ℝ, 𝛉 = θ1, θ2, ..., θ𝑛 ∈ ℝ. This means finding values θ1, θ2, ..., θ𝑛
for which f obtains the minimal or maximal value.

Numerical Optimization

Optimization algorithm

• Our loss function LD needs to be differentiable w.r.t. all parameters
𝜽 = {θ1,θ2, ..., θ𝑛}

• If function is differentiable, then it is also continuous. Most continuous
functions used in NNs are differentiable.

A function of multiple parameters f(𝛉 = θ1, θ2, ..., θ𝑛) is differentiable if

its gradient ∇𝛉 f – a vector of partial derivatives ∇𝛉 f = [
∂𝑓
∂θ1

,
∂𝑓
∂θ2

, ...,
∂𝑓
∂θn

]

– exists for every point on the input domain that is ⊆ ℝn.

Gradient of a differentiable function

Gradient Descent

• Gradient descent is a method that moves the parameter values in
the direction opposite of the function’s gradient in the current point

• This is guaranteed to lead to a minimum only for convex
functions*

• Loss functions for tasks solved
with neural LMs are most certainly
not globally convex

Gradient Descent

Gradient descent (sometimes also called steepest descent) is an iterative
algorithm for (continuous) optimization that finds a minimum of a convex

(single) differentiable function.

Gradient Descent

• In each iteration GD moves the values of parameters 𝛉 = {θ1, θ2, ...,
θ𝑛} in the direction opposite to the gradient in the current point

𝛉(k+1) = 𝛉(k) – η∇𝛉 f(𝛉(k))

• ∇𝛉f(𝛉) – value of the gradient (a vector of same dimensionality as 𝛉)
of the function f in the point 𝛉

• η – learning rate, defines by how much to move the parameters in
the direction opposite of the gradient

Backpropagation

• To update some parameter θ𝑖 we need to compute in closed-form the

partial derivative of the loss LD w.r.t. θ𝑖 :
∂𝐿

𝐷

∂θi

• Our LD is a complex composition of non-linear parametrized functions
• Because it’s computed on the output of the model

• LD = σ𝑘=1
𝑁 L(ෝyk , yk))

= σ𝑘=1
𝑁 L(model(xk|𝛉), yk))

= σ𝑘=1
𝑁 L(layN(layN-1(...(lay1(x| 𝛉1)...| 𝛉N-1) | 𝛉N) , yk))

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533-536.

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation

LD = σ𝑘=1
𝑁 L(ෝyk , yk))

= σ𝑘=1
𝑁 L(model(xk|𝛉), yk))

= σ𝑘=1
𝑁 L(layN(layN-1(...(lay1(x| 𝛉1)...| 𝛉N-1) | 𝛉N) , yk))

• Let 𝛉ij denote the j-th parameter of the i-th layer of the model

• Computing
∂𝐿

𝐷

∂θ
𝑖
,
𝑗

in closed form for params 𝛉N,j of the last layer is easy

• But it gets progressively more cumbersome and difficult the „earlier”
(i.e., „deeper”) the layer of the parameter is

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533-536.

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation

• Computing
∂𝐿

𝐷

∂θ
in closed form gets progressively more cumbersome

and difficult the earlier the layer of the parameter is

• Backpropagation leverages the chain rule of differentiation to avoid
computation of closed-form gradients for „deeper” parameters
• Gradients of parameters from layer K are estimated from gradients

of parameters from layer K+1

∂𝐿𝐷
∂θ

𝑖𝑗

=
∂𝐿𝐷
∂𝐿

∂𝐿
∂𝑚𝑜𝑑𝑒𝑙

∂𝑚𝑜𝑑𝑒𝑙

∂𝑙𝑎𝑦
𝑁

∂𝑙𝑎𝑦𝑁

∂𝑙𝑎𝑦
𝑁−1

...
∂𝑙𝑎𝑦𝑖+1

∂𝑙𝑎𝑦
𝑖

∂𝑙𝑎𝑦𝑖

∂θ
𝑖𝑗

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533-536.

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533-536.

∂𝐿𝐷
∂θ

𝑖𝑗

=
∂𝐿𝐷
∂𝐿

∂𝐿
∂𝑚𝑜𝑑𝑒𝑙

∂𝑚𝑜𝑑𝑒𝑙

∂𝑙𝑎𝑦
𝑁

∂𝑙𝑎𝑦𝑁

∂𝑙𝑎𝑦
𝑁−1

...
∂𝑙𝑎𝑦𝑖+1

∂𝑙𝑎𝑦
𝑖

∂𝑙𝑎𝑦𝑖

∂θ
𝑖𝑗

• For the last layer:

•
∂𝐿𝐷
∂θ𝑁,𝑗

=
∂𝐿𝐷
∂𝐿

∂𝐿
∂𝑚𝑜𝑑𝑒𝑙

∂𝑚𝑜𝑑𝑒𝑙

∂𝑙𝑎𝑦𝑁

∂𝑙𝑎𝑦𝑁

∂θ𝑖,𝑗

δN

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533-536.

∂𝐿𝐷
∂θ

𝑖𝑗

=
∂𝐿𝐷
∂𝐿

∂𝐿
∂𝑚𝑜𝑑𝑒𝑙

∂𝑚𝑜𝑑𝑒𝑙

∂𝑙𝑎𝑦
𝑁

∂𝑙𝑎𝑦𝑁

∂𝑙𝑎𝑦
𝑁−1

...
∂𝑙𝑎𝑦𝑖+1

∂𝑙𝑎𝑦
𝑖

∂𝑙𝑎𝑦𝑖

∂θ
𝑖𝑗

• For layer N-1 (and then so on backwards for all layers):

•
∂𝐿𝐷

∂θ𝑁−1,𝑗
=

∂𝐿𝐷
∂𝐿

∂𝐿
∂𝑚𝑜𝑑𝑒𝑙

∂𝑚𝑜𝑑𝑒𝑙

∂𝑙𝑎𝑦𝑁

∂𝑙𝑎𝑦𝑁

∂𝑙𝑎𝑦𝑁−1

∂𝑙𝑎𝑦
𝑁
−
1

∂θ
𝑁
−
1
,
𝑗

δN

δN-1

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533-536.

∂𝐿𝐷
∂θ

𝑁−1
,
𝑗

= δN

∂𝑙𝑎𝑦𝑁

∂𝑙𝑎𝑦
𝑁−1

∂𝑙𝑎𝑦𝑁

∂θ
𝑁−1

,
𝑗

...

∂𝐿𝐷
∂θ𝑖𝑗

= δi+1

∂𝑙𝑎𝑦𝑖+1

∂𝑙𝑎𝑦𝑖

∂𝑙𝑎𝑦𝑖

∂θ𝑖𝑗
...

∂𝐿
𝐷

∂θ1𝑗
= δ2

∂𝑙𝑎𝑦
2

∂𝑙𝑎𝑦1

∂𝑙𝑎𝑦
1

∂θ1𝑗

• With backprop we avoid having to
explicitly compute gradient functions
for all layers/parameters

• But we have to compute gradients in
the inverse order of layers☺

• Gradient of a subsequent layer
needed for the computation of the
gradient of the preceding layer

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Stochastic gradient descent

• We never compute the exact gradient of the loss function on the whole

training set D = {(xk, yk)}
𝑁
𝑘=1

• Q: Why not?

• Conceptual reason: gradient descent is guaranteed to lead to the
closest local minimum (if η small enough)

• Practical reason: we cannot fit all training examples into memory
(GPU VRAM) at once

• Stochastic gradient descent (SGD) – compute the loss, gradients, and
update the parameters based on a single training instance
• Repeat for all training instances
• Order of instances random (hence the name stochastic)
• Many parameter updates – slow training

Mini-batch Gradient Descent

• Mini-batch GD: sweet spot between full GD and SGD
• We train in the so-called mini-batches of B examples (e.g., B = 32)
• Iteratively (mini-batch after mini-batch):

1. Select B training examples from the training set D
2. Compute the loss LB and gradient ∇𝛉LB(𝛉) based on B (using the

backpropagation algorithm)
3. Update the parameters 𝛉(t+1) = 𝛉(t) – η∇𝛉LB(𝛉(t))

• MBGD – more resilient to local minima than GD and faster than SGD

• Training epoch: model updated on all mini-batches B from D,
• Each training example part of exactly one mini-batch
• It is common to train neural LMs for multiple epochs

Mini-batch gradient descent

• Mini-batch GD: sweet spot between full GD and SGD
• We train in the so-called mini-batches of B examples (e.g., B = 32)

• MBSG – more resilient to local minima than GD and faster than SGD

Image from: https://sweta-nit.medium.com/batch-mini-
batch-and-stochastic-gradient-descent-e9bc4cacd461

https://sweta-nit.medium.com/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461
https://sweta-nit.medium.com/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461

Content

• Uniformity of NLP with Neural LMs

• Training Neural LMs
• Gradient Descent & Backpropagation

• Adaptive Optimization
• Momentum, AdaGrad, RMSProp, Adam

• Dropout

Adapted GD Algorithms

• Let t (time-step) be the counter of the updates to model’s parameters
• t = 1 → first update of parameters, based on gradient of first mini-batch

• Mini-batch GD: 𝛉(t+1) = 𝛉(t) – η(t)∇𝛉LB(𝛉(t))
• Update size determined with learning rate,
η(t), and the gradient ∇𝛉LB(𝛉(t))

• Problem in saddle points
• Gradient is zero or close to zero
• Learning effectively stops

Gradient Descent with Momentum

• To avoid this „stopping”, adaptations of GD keep information about the
momentum, i.e., previous sizes of parameter changes

• GD: change(t) = η(t)∇𝛉LB(𝛉(t)),
𝛉(t+1) = 𝛉(t) - change(t)

• GD with Momentum:
• change(t) = β * η(t)∇𝛉LB(𝛉(t)) + (1-β) * change(t-1)
• change(t-1) = β * η(t-1)∇𝛉LB(𝛉(t-1)) + (1-β) * change(t-2)
• ...
• change(t = 1) = η(1)∇𝛉LB(𝛉(0))

• Exponentially weighted averages of current and past updates
• β is the hyperparameter of the momentum algorithm

Adaptive Gradient (AdaGrad)

• GD makes the step of the same size η in all directions (for all parameters)
• But the gradient ∇𝛉LB(𝛉(t)) is not of the same size in all directions
• Optimum is not equally distant from the current point in all dimensions

• Q: A separate learning rate ηi for each parameter 𝛉i ?
• Not feasible for neural LMs (100M+ to 1T parameters)

• AdaGrad: adaptively scales the learning rate for each parameter – the
scaling factor is the sum of the sizes of the gradient squares across all
updates

• The size of the update to each parameter depends on the size of the
current gradient with respect to the sum of all gradients up to now

𝛉(t+1) = 𝛉(t) – η
∇

𝛉
LB(𝛉(t))

σ𝑖= 1
𝑡 ∇2

𝛉
LB(𝛉(i))

Root Mean Square Propagation (RMSProp)

• The sum of the squares of all previous gradients in AdaGrad quickly
becomes much larger than any current gradient
• Updates become small, and optimization slow

• RMSProp: introduces a decay on the sum of gradient squares
• g(t) = ∇𝛉LB(𝛉(t)) – gradient at time step t
• s(t) = sum of gradient squares with decay at time step t

• s(t) = β * s(t-1) + (1- β)*g2(t)
• s(1) = g2(1)

𝛉(t+1) = 𝛉(t) – η
g(t)

𝑠(𝑡)

Adaptive Moment Estimation (Adam)

• Adam combines momentum and RMSProp (squared momentum)
• Empirically shown to work very well in practice
• The most common choice for optimization of neural LMs (cited over 140K times!)

• g(t) = ∇𝛉LB(𝛉(t)) – gradient at time step t
• s1(t) = sum of past gradients with decay at time step t

• s1(t) = β1 * s1(t-1) + (1- β1)*g(t)
• s2(t) = sum of past gradient squares with decay at time step t

• s2(t) = β2 * s2(t-1) + (1- β2)*g2(t)
• s1(1) = g(1)
• s2(1) = g2(1)

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization.
International Conference on Learning Representations (ICLR).

𝛉(t+1) = 𝛉(t) – η
s
1
(t)

𝑠
2
(𝑡)

https://arxiv.org/pdf/1412.6980.pdf

Content

• Uniformity of NLP with Neural LMs

• Training Neural LMs
• Gradient Descent & Backpropagation

• Adaptive Optimization
• Momentum, AdaGrad, RMSProp, Adam

• Dropout

Dropout

• Motivation: the risk of model’s overfitting is related to the ratio of:
• Number of model’s parameters
• Number of training examples

• If the number of parameters is much larger than the number of training
examples, the model will likely overfit to the training data
• Will not generalize well

• Neural LMs have a lot of parameters

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The journal of
Machine Learning Research, 15(1), 1929-1958..

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Dropout

• Regularization by training multiple models (multiple instances of deep
NNs) and ensembling their predictions is effective
• But this is very computationally prohibitive!
• Especially if models are LLMs with billions of parameters ☺

• Dropout: a regularization method that simulates training many (slightly)
different models in a single training procedure
• By means of randomly dropping out ”neurons”
• Applied on per-layer basis, i.e., on the output of a layer

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The journal of
Machine Learning Research, 15(1), 1929-1958..

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Dropout

• Let x be any hidden representation, output of
any layer (e.g., in our neural LM)
• E.g., output of layer K

• Applying dropout on a layer means
• To modify its output(s) x so that each

element xi becomes replaced with x’i:

x’i = 0 with dropout probability p or
x’i = xi / (1-p) with the probability (1-p)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The journal of
Machine Learning Research, 15(1), 1929-1958..

...

Layer 1 (𝛉1)

Layer 2 (𝛉2)

Layer K (𝛉K)

...

x

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

The End

Image: Alexander Mikhalchyk

	Slide 1: Multilingual NLP
	Slide 2: After this lecture, you’ll...
	Slide 3: Content
	Slide 4: Recap: (Supervised) Machine Learning
	Slide 5: Neural Language Modeling
	Slide 6: Neural Language Modeling
	Slide 7: Neural Language Modeling
	Slide 8: Neural LMs
	Slide 9: Neural LMs
	Slide 10: Neural LMs
	Slide 11: Neural LMs
	Slide 12: Neural LMs
	Slide 13: Neural LMs
	Slide 14: Recap: (Supervised) Machine Learning
	Slide 15: Uniforming NLP with Neural LMs
	Slide 16: Uniform NLP with Neural LMs
	Slide 17: Sequence classification
	Slide 18: Token classification
	Slide 19: Generation tasks
	Slide 20: Generation tasks
	Slide 21: Content
	Slide 22: Training Objectives
	Slide 23: Training Objectives
	Slide 24: Training Objectives
	Slide 25: Training Objectives
	Slide 26: Training Objectives
	Slide 27: Optimization algorithm
	Slide 28: Optimization algorithm
	Slide 29: Gradient Descent
	Slide 30: Gradient Descent
	Slide 31: Backpropagation
	Slide 32: Backpropagation
	Slide 33: Backpropagation
	Slide 34: Backpropagation
	Slide 35: Backpropagation
	Slide 36: Backpropagation
	Slide 37: Stochastic gradient descent
	Slide 38: Mini-batch Gradient Descent
	Slide 39: Mini-batch gradient descent
	Slide 40: Content
	Slide 41: Adapted GD Algorithms
	Slide 42: Gradient Descent with Momentum
	Slide 43: Adaptive Gradient (AdaGrad)
	Slide 44: Root Mean Square Propagation (RMSProp)
	Slide 45: Adaptive Moment Estimation (Adam)
	Slide 46: Content
	Slide 47: Dropout
	Slide 48: Dropout
	Slide 49: Dropout
	Slide 50: The End

