
Exkurs: Fundamentals of Convolutions

Deep Learning
Summer semester ‘24

Slide credit: Slides in parts adapted from the lecture at the PRL @ FAU Erlangen-Nürnberg (K. Breininger, T. Würfl, A. Maier, V. Christlein).

2

Fundamentals: Convolution

General mathematical formulation (continuous, 1-D)

Video by 3Blue1Brown (I would not be able to
explain it better):
https://www.youtube.com/watch?v=KuXjwB4LzSA
(wonderful channel in general)

0:00 – 14:10:
Directly relevant for us, explains 1-D and 2-D
convolution
14:10 – end:
Highlights connection between convolution and multiplication in the context of Fourier transforms
(Convolution theorem); while very (!) interesting since it also hints toward efficient implementations, this
aspect is not immediately relevant for us

https://www.youtube.com/watch?v=KuXjwB4LzSA

3

Convolution

Inductiveload, Public domain, via Wikimedia Commons

Convolution is a mathematical operation on two functions f, g that represents the
integral over the product of f and a shifted and reflected g:

Convolution

https://commons.wikimedia.org/wiki/File:Convolution_Animation_(Gaussian).gif

4

Convolution & Cross-Correlation

Convolution is a mathematical operation on two functions f, g that represents the
integral over the product of f and a shifted and reflected g:

Convolution

Cross-correlation is a mathematical operation on two functions f, g that
represents the integral over the product of f and a shifted g:

Cross-Correlation

 Cross-correlation is convolution with a flipped kernel g – and vice versa!

5

Discrete Convolution

• Behaviour for functions with finite support?
 response only in non-zero parts

• Can be extended to 2-D, 3-D, …

Discrete convolution is a mathematical operation on two functions f, g that
represents the integral over the product of f and a shifted (and reflected) g:

Discrete Convolution

6

Convolution in the context of convolutional layers

Discrete 2-D convolution

For our purposes:
f(u, v) represents the (pixel) value at position (u, v)
 f is (typically) defined by the input values, and has the size of the current feature map (MxN) for 2-D, and is
zero everywhere else

g(u, v) represents the value of the filter kernel at a specific location
g is defined for a specific neighborhood (e.g., 3x3, 5x5 or 7x7) and zero everywhere else

The values of g (e.g., 9 parameters for a 3x3, 25 parameters for 5x5, etc.) can be set according to prior
knowledge or learned  learnable filters

The output at (f*g) at position (u,v) is a sum of the values of f weighted by

7

Example: Discrete convolution (without padding)
f(u, v) : input

(f*g)(u, v) : output

g(u, v) : kernel
(the tiny numbers
in the corner)
 They stay the
same as they move
over the different
pixel positions

8

Examples: Edge Filters (Sobel Filter)

https://hubofco.de/machinelearning/2020/04/08/Egde-detection-in-open-cv/

−1 0 +1
−2 0 +2
−1 0 +1

+1 +2 +1
0 0 0
−1 −2 −1

Highlights horizontal edges Highlights vertical edges

4. Convolutional Neural Networks

Deep Learning
Summer semester ‘24

Slide credit: Slides in parts adapted from the lecture at the PRL @ FAU Erlangen-Nürnberg (K. Breininger, T. Würfl, A. Maier, V. Christlein).

10

Fahrplan

• Recap from last time: Optimization
• Convolutional neural networks

• Convolutional layers
• Pooling layers

• Neural Network Architectures

11

Note: Notation and matrix multiplication

12

Machine Learning Components

Any ML algorithm/approach has the following three components:
• Model

A set of functions among which we’re looking for the „best” one
H = {h(x|θ)}θ

• Objective
„Best“ according to what?
 Objective J quantifies how good/bad a hypothesis h / θ is:
θ* = argminθ J(h(x|θ))  optimization problem

• Optimization algorithm
How do we get to an optimum? How do find optimal parameters?
 Gradient-based optimization

13

Gradient descent (sometimes also called steepest descent) is an iterative
algorithm for (continuous) optimization that finds a minimum of a convex (single)

differentiable function.

Gradient Descent

• In each iteration GD moves the values of parameters 𝛉𝛉 = {θ1, θ2, ..., θ𝑛𝑛} in the
direction opposite to the gradient in the current point

𝛉𝛉(k+1) = 𝛉𝛉(k) – η∇𝛉𝛉 f(𝛉𝛉(k))
• ∇𝛉𝛉f(𝛉𝛉) – value of the gradient (a vector of same dimensionality as 𝛉𝛉) of the

function f in the point 𝛉𝛉
• η – learning rate, defines by how much to move the parameters in the direction

opposite of the gradient

Gradient Descent

14

• Gradient descent is guaranteed to lead to a global minimum only for convex
functions*

• Objectives of DL models are never globally convex

• No guarantee of „global” minimum
• But we hope for a good enough

„local” minimum, i.e., to find such values 𝛉𝛉
for which J is „small enough”

• Learning rate η is essential to control how
likely we „jump out“ of local minima

Gradient-based Optimization

15

Backpropagation

• Loss function L is a complex composition of functions, i.e.,
∂𝑱𝑱
∂𝜽𝜽i

= ∂
∂𝜽𝜽i

L(layn(layn−1(...(lay1(x|θ1)|θ2)...)|θn), y)

• Computing the closed form of the gradients for parameters in deeper
layers becomes cumbersome (& inefficient)

• Use of the “chain rule” to iteratively compute gradients through the
backward pass  backpropagation

𝜕𝜕𝐿𝐿
𝜕𝜕𝜽𝜽𝑛𝑛−1

=
𝜕𝜕𝐿𝐿

𝜕𝜕lay𝑛𝑛
𝜕𝜕lay𝑛𝑛
𝜕𝜕𝜽𝜽𝑛𝑛−1

16

Making it work for Deep Learning

• Automatic differentiation computes the gradients “as needed” during the
backward pass based on computational graph

• Backpropagation = reverse mode autodiff with a single target function
• Different variants:

• (Batch) gradient descent (GD):
full training dataset (bulky, bad hardware utilization)

• Stochastic gradient descent (SGD):
single sample (noisy, bad hardware utilization)

• Mini-batch gradient descent (?GD):
mini-batches (compromise, exploit hardware)

• Still „local optimization“
 risk of overfitting
 regularization strategies (e.g., norms, dropout)

to prevent overfitting

17

Fahrplan

• Recap from last time: Optimization
• Convolutional neural networks

• Convolutional layers
• Pooling layers

• Neural Network Architectures

18

Machine Learning Components – What are we looking at?

Any ML algorithm/approach has the following three components:

• Model
A set of functions among which we’re looking for the „best” one
H = {h(x|θ)}θ

• Objective
„Best“ according to what?
 Objective J quantifies how good/bad a hypothesis h / θ is:
θ* = argminθ J(h(x|θ))  optimization problem

• Optimization algorithm
How do we get to an optimum? How do find optimal parameters?
 Gradient-based optimization

19

Machine Learning Components

Any ML algorithm/approach has the following three components:

• Model
A set of functions among which we’re looking for the „best” one
H = {h(x|θ)}θ

 The set of functions we select determines . . .
• . . . which functions we can (easily*) learn
• . . . what parameters we have to learn

 By selecting a specific set of functions, we introduce an inductive bias

* Remember UAT: We can (in theory!) learn arbitrary functions

20

Motivation – What we “have learned” so far

• So far: Fully connected layers - each input is connected to each node
• Very powerful: Can represent any kind of (linear) relationship between inputs
• Matrix multiplication + activation function: z = σ(Wx)

21

Motivation – What we “have learned” so far

• So far: Fully connected layers - each input is connected to each node
• Very powerful: Can represent any kind of (linear) relationship between inputs
• Matrix multiplication + activation function: z = σ(Wx)
• Input x: Vector of features, e.g., (length, circumference, color, …)

• BUT: A lot of machine learning deals with images / videos / sounds / text
• Assume we have:

• An image with size 512 × 512 pixels
• One hidden layer with 64 neurons
• (512² + 1) · 64  ~16.8 million trainable weights for a single layer!

Kaiming He, Xiangyu Zhang, Shaoqing Ren, et al. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification”. In: CoRR abs/1502.01852 (2015). arXiv: 1502.01852.

22

Motivation (cont.)

• So # parameters is a problem. Is there something else?
• Example: Classify between cat and dog
• Pixels are bad features!

• Highly correlated & redundant
• Scale-dependent
• Intensity variations
• ...

• Pixels are a bad representation* from a
machine learning point of view

Source: https://news.nationalgeographic.com
* Keep this aspect in mind for lecture L7: Transformers

23

Motivation (cont.)

• Can we find a better representation?
• Observations:

• We have a certain degree of the locality in an image
• Recurrence: We can find the same “macro features” at

different locations
• Hierarchy of features:

• edges + corners → eyes
• eyes + nose + ears → face
• face + body + legs → animal

• Composition matters!

• Idea: Base neural architecture on these observations
 Inductive bias
 Learn better representation, then classify!

Source: https://news.nationalgeographic.com

24

Convolutional Neural Networks – Inductive Bias

• Local connectivity:
Filters with small receptive field:

• Recurrence & translational equivariance:
Use same filters over the whole input

• Hierarchy of filters working on different scales

• + learning = Convolutional Neural Networks

25

Convolutional Neural Networks - Architecture

Source: https://de.mathworks.com/discovery/convolutional-neural-network.html

Four essential building blocks:
• Convolutional layers: Feature extraction
• Activation function: Nonlinearity
• Pooling layer: Compress and aggregate information, save parameters & compute
• Last layer: Fully-connected for classification

26

Fahrplan

• Recap from last time: Optimization
• Convolutional neural networks

• Convolutional layers
• Pooling layers

• Neural Network Architectures

27

Recap: Convolution

Inductiveload, Public domain, via Wikimedia Commons

Convolution is a mathematical operation on two functions f, g that represents the
integral over the product of f and a shifted and reflected g:

Convolution

https://commons.wikimedia.org/wiki/File:Convolution_Animation_(Gaussian).gif

28

Recap: Convolution

Convolution is a mathematical operation on two functions f, g that represents the
integral over the product of f and a shifted (and reflected) g:

Convolution

Cross-correlation is a mathematical operation on two functions f, g that
represents the integral over the product of f and a shifted g:

Cross-Correlation

 Cross-correlation is convolution with a flipped kernel g – and vice versa!
 Doesn’t matter (too much) for the implementation: weights are initialized

randomly anyway

29

Recap: Convolution

• Behaviour for functions with finite support?
 response only in non-zero parts

• Can be extended to 2-D, 3-D, …

Discrete convolution is a mathematical operation on two functions f, g that
represents the integral over the product of f and a shifted (and reflected) g:

Discrete Convolution

30

Recap: (2-D) Convolution

• We move the filter kernel over the input (weighted sum)
• Output: Feature / activation map
• Convolutional layer typically contains multiple filter

kernels with different weights:
multiple feature maps (channels)
 c.f. “filter banks”, e.g., Gabor filters

• Q for you:
What is the typical # input channels for natural
images?
What does this mean for the first layer of a
convolutional network?

Source: https://github.com/vdumoulin/conv_arithmetic

31

Convolutional Layer - Local Connectivity

• Exploit spacial structure by only connecting
pixels in a neighborhood

• Can be expressed as fully connected layer:
Except for local connections, each entry in W is 0

• Effective weights: Filter of size 3 × 3, 5 × 5, 7 × 7, . . .
• Features that are important at one location are likely

important anywhere in the image:
 Use the same weights all over (tied weights, or
shared weights)
 Translational equivarance

 Convolution with trainable filters
Source: https://github.com/vdumoulin/conv_arithmetic

32

Why do we want to learn these convolutional weights?

• Convolutional filters transform the representation of the input
• Edge / corner detection* or “enhancement”
• Dot detector
• Image smoothing (low-pass filter)
• . . .

• Concatenation of filters (with non-linearity) allows to extract
complex features

We could select suitable, predefined filters manually (and this has
been done in traditional ML, see e.g., Gabor filters),

BUT: since it is difficult to identify and describe (verbally,
mathematically) what the best features are, we have seen that it is
more efficient to learn filter weights (=filter parameters) directly
and jointly (e.g., across network layers)

Source: https://github.com/vdumoulin/conv_arithmetic

* Detection in this context means: high values in the resulting feature map

33

Forward Pass: Multi-channel convolution

• Input of size X × Y × S, where S is the number of input channels
• H filters with size M × N × S

→ fully connected across channels
M × N describes receptive field

• Output dimensions: X × Y × H (with ‘same’ padding)

34

Padding

• Convolution reduces image size by 2 ∙ ⌊n/2⌋
pixels (n: kernel size)

• Necessary to pay attention to the borders:
• ‘Same’ padding (usually zero padding):
 Input and output have the same size

• ‘Valid’/no padding:
 The output is smaller than the input

Source: https://github.com/vdumoulin/conv_arithmetic

35

Backward pass: Multi-channel convolution

• Convolution can be expressed as matrix multiplication with matrix W: using a
Toeplitz matrix

• We can use the same formulas as for the fully connected layer!
• Backward pass can also be expressed as convolutions / cross-correlation

Interesting (in-depth) derivation:
Convolutional Neural Network from Scratch | Mathematics & Python Code
https://www.youtube.com/watch?v=Lakz2MoHy6o

https://www.youtube.com/watch?v=Lakz2MoHy6o

36

Convolutional Layers - What have we gained?

Reminder:
Fully connected layer with 64 neurons for 512² images (S = 1, e.g. grayscale):
~ 16.8 million trainable weights
For our conv layer:
• We also stack H = 64 filters to obtain a trainable filter bank
• We choose a 7x7 neighborhood / filter size
 (7² + 1) ∙ 64 = 3200

And we have gained more:
• Independent of image size!
• Much more training data for one weight!

bias

37

So how do the filters look like during/after training?

Shown here:
Filters being learned over
the training iterations

Random initialization
kernels form edge &
color detectors over time
as they are trained

Important:
Looks different for
different datasets!

Video credit: Prof. Dr.-Ing. Marc Aubreville, IMI Group, TH Ingolstadt

38

Additional variants: Strided Convolutions

• Instead of multiplying the filter at each pixel
position, we can skip some positions

• Stride s describes the offset
• Reduces the size of the output by a factor of s
• Mathematically: Convolution + subsampling

Source: https://en.wikipedia.org, Monty Python’s Flying Circus episode, Dinsdale

39

Additional variants: Strided Convolutions

Source: https://github.com/vdumoulin/conv_arithmetic

40

Additional variants: Dilated/Atrous Convolutions

• Dilate convolution kernel:
Keep # filter weights but skip certain pixels

• Goal: Wider receptive field with same # parameters/weights
• Q for you:

What is the difference to subsampling?

41

1 × 1 Convolution Concept

• So far: H filters with neighborhood with 3 × 3, 5 × 5, . . . and ‘depth’ S
• Filters are fully connected in ‘depth’ direction
• We can decrease the neighborhood to 1 × 1
• And just use the fully connected property in the depth dimension

• Dimensionality reduction/expansion from S channels to H channels
• If we flatten (vectorize) the input, 1 × 1 convolutions are a fully connected layer!

42

1 × 1 Convolution Concept

• First described in “Network in Network” by Lin et al.
• 1 × 1 convolutions simply calculate inner products at each position
• Simple and efficient method to decrease the size of a network
• Learns dimensionality reduction, e.g., can reduce redundancy in your feature maps
• Similar idea / more flexible: N × N convolution

Min Lin, Qiang Chen, and Shuicheng Yan. “Network In Network”. In: CoRR abs/1312.4400 (2013). arXiv: 1312.4400.

43

Further convolution strategies

• Depthwise separable convolutions
• Grouped Convolutions
• Deformable convolutions
• Sparse convolutions
• Spatially separable convolutions

44

Convolutional Neural Networks - Architecture

Source: https://de.mathworks.com/discovery/convolutional-neural-network.html

Four essential building blocks:
• Convolutional layers: Feature extraction
• Activation function: Nonlinearity
• Pooling layer: Compress and aggregate information, save parameters
• Last layer: Fully-connected for classificationmaybe we can replace this?

45

Fahrplan

• Recap from last time: Optimization
• Convolutional neural networks

• Convolutional layers
• Pooling layers

• Neural Network Architectures

46

Idea behind Pooling Layers

• Fuses information of input across spatial locations
• Decreases number of parameters*
• Reduces computational costs and overfitting
• Assumptions / inductive bias:

• Features are hierarchically structured
• “Summaries” of regions are sensible
• Translational invariance
• Exact location of a feature is not important

* Not directly, rather for the final fully connected layer

47

Max Pooling – Forward Pass

• Propagate maximum value in a neighborhood to next layer
• Typical choices: 2 × 2 or 3 × 3 neighborhood
• “Stride” of pooling usually equals the neighborhood size
• Maximum propagation adds additional non-linearity

Max pooling concept. Note that usually a stride > 1 is used for pooling.

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3 .0

2 .0

3 .0

3 .0

3 .0

3 .0

3 .0

48

Max Pooling – Backward Pass

• Only one value contributes to error
• Error is propagated only along the path of the maximum value

49

Average Pooling

• Propagate average of the neighborhood
• Does not consistently perform better than max pooling, but has a

dense gradient
• Backward pass: Error is shared to equal parts

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.67

0.78

1.22

1.33

1.78

1.67 1.67

Avg pooling concept. Note that usually a stride > 1 is used for pooling.

50

Additional Pooling Strategies

• Fractional max pooling
• Lp pooling
• Stochastic pooling
• Spacial pyramid pooling
• Generalized pooling
• . . .
• . . . and of course strided convolution

51

Convolutional Neural Networks - Architecture

Source: https://de.mathworks.com/discovery/convolutional-neural-network.html

Four essential building blocks:
• Convolutional layers: Feature extraction
• Activation function: Nonlinearity
• Pooling layer: Compress and aggregate information, save parameters
• Last layer: Fully-connected for classification

52

Convolutional Neural Networks - Architecture

Source: https://de.mathworks.com/discovery/convolutional-neural-network.html

Four Three essential building blocks:
• Convolutional layers: Feature extraction
• Activation function: Nonlinearity
• Pooling layer: Compress and aggregate information, save parameters
• Last layer: Fully-connected for classificationWe can replace this layer!

53

Replacing the Fully Connected Layer

• Conv and pooling layers generate better representation
 better features

• Fully connected layers for classification
• Equivalently: Use flatten & 1 × 1 convolution [Lin et al.]

or N × N convolution
• With global average pooling: Arbitrary input sizes

possible!

Source: Li et al. https://doi.org/10.1007/s11042-021-11435-5

Min Lin, Qiang Chen, and Shuicheng Yan. “Network In Network”. In: CoRR abs/1312.4400 (2013). arXiv: 1312.4400.

54

Fahrplan

• Recap from last time: Optimization
• Convolutional neural networks

• Convolutional layers
• Pooling layers

• Neural Network Architectures

55

Historical view on developments,
including potentially underestimated / undercited works

• Jürgen Schmidhuber, IDSIA Switzerland
• Very interesting read, very broad, including a historical view:

https://people.idsia.ch/~juergen/deep-learning-history.html

• On the following slides:
Focus on specific, frequently used concepts,
not on historical derivation & attribution

https://people.idsia.ch/%7Ejuergen/deep-learning-history.html

56

LeNet-5 (1998)

Key features
(•) Convolution for spatial features
(•) Subsampling using average pooling
(•) Non-linearity: tanh
(•) MLP as final classifier
(•) Sequence: Convolution, pooling, non-linearity

Y LeCun, L Bottou, Y Bengio, et al. “Gradient-based Learning Applied to Document Recognition”. In: Proceedings of the IEEE 86.11 (Nov. 1998),
pp. 2278–2324. arXiv: 1102.0183.

(’•’ Technique still used in recent architectures)

⇒ Foundation for many other architectures

57

AlexNet (2012)

Key features:
(•) 8 layer network

(•) Overlapping max pooling (stride: 2, size: 3)
(•) Use of GPU(s) to reduce training time
(•) Non-linearity: ReLU

(•) Combat overfitting with dropout and data augmentation
(•) Learning: mini-batch SGD w. momentum (0.9) + (L2) weight decay (5 · 10−5)
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with Deep Convolutional Neural Networks”. In: Advances In
Neural Information Processing Systems 25. Curran Associates, Inc., 2012, pp. 1097–1105. arXiv: 1102.0183.

Winner of the ImageNet 2012 challenge
⇒ Breakthrough of CNNs

58

VGG Network
(Visual Geometry Group – University of Oxford)

Key features
(•) Small kernel sizes in each convolution (3 × 3)

 Combination of multiple smaller kernels
emulate larger receptive fields

(•) 16 / 19 layers, max pooling between some
layers (stride: 2, size: 2)

(− hard to train (in practice:
pre-training with shallower networks)

⇒ For a long time, one of the “go-to” baseline networks

 still used for feature extraction / perceptual losses

Source: https://www.slideshare.net/holbertonschool/deep-learning-class-2-by-louis-monier

Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Recognition”. In: International Conference
on Learning Representations (ICLR). San Diego, May 2015. arXiv: 1409.1556

59

GoogLeNet (Inception-v1)

Key features:
(•) Network design with embedded hardware in mind
maximum 1.5 billion MAD (multiply-add) operations at inference time

(•) 22 layers + global average pooling as final layer
(•) Auxiliary classifiers (only at training): error weighted by 0.3 added to global
(•))No fully connected layers (except for linear layer and auxiliary networks)
(•) Inception modules

C. Szegedy, Wei Liu, Yangqing Jia, et al. “Going deeper with convolutions”. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). June 2015, pp. 1–9.

60

Inception Module in GoogLeNet

• Derived from Network-in-Network concept
• Parallel filter combinations

(split-transform-merge strategy)

• Idea: Network decides needed filter size by
itself

• 1 × 1 filters serve as “bottleneck layer”
• Representational power of large and dense

layers but with much lower computational
complexity

• Later GoogLeNets feature different variants
of inception modules

C. Szegedy, Wei Liu, Yangqing Jia, et al. “Going deeper with convolutions”. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). June 2015, pp. 1–9.

61

Evolution of Depth

Source: image-net.org, Russakovsky et al. 2015

62

Deeper Networks

• Exponential feature reuse

• Increasingly abstract features

Source: http://vision03.csail.mit.edu/cnn_art/index.html

63

... why don’t we just stack more layers?

• Problems with going deeper:
Deeper models tend to have
higher training & test error
than shallower models
 Not just caused by overfitting!
• Reasons:

• Degradation problem: poor propagation of activations and gradients

Vanishing gradient problem
 Use ReLU (or successors)
 Proper initialization

Internal co-variate shift
 Batch normalization
 ELU / SELU

64

(One) Solution: Residual Units

Idea: Simplify “identity solution”
• Non-residual nets: learn mapping F(x)
• Instead: learn residual mapping:

H(x) = F(x) − x ⇔ F(x) = H(x) + x

65

Deep Residual Networks (ResNets)

• Seminal paper:
He et al.: Deep Residual Learning for Image Recognition

• General form of the l-th residual unit:

• h, g: activation functions
• H: non-residual path

Kaiming He, Xiangyu Zhang, Shaoqing Ren, et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Las Vegas, June 2016, pp. 770–778. arXiv: 1512.03385.

Can also be multiple
conv-layers

66

Deep Residual Networks (ResNets)

• Seminal paper:
He et al.: Deep Residual Learning for
Image Recognition

• General form of the l-th residual unit:

• h, g: activation functions
• H: non-residual path

Kaiming He, Xiangyu Zhang, Shaoqing Ren, et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Las Vegas, June 2016, pp. 770–778. arXiv: 1512.03385.

Can also be multiple
conv-layers

67

Effect of residual units on training and testing

Training / validation error of deeper nets is now lower!
Extremely successful model family: ResNet18, ResNet50, ResNet152
Kaiming He, Xiangyu Zhang, Shaoqing Ren, et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Las Vegas, June 2016, pp. 770–778. arXiv: 1512.03385.

68

The evolution of depth

69

Top1 vs. Operations

Source: https://towardsdatascience.com/neural-network-architectures-156e5bad51ba (visited 2017/12/01),
s. also Canziani et al., 2016

70

Summary

Convolutional neural networks:
• Convolutional layers: Feature extraction
• Activation function: Nonlinearity
• Pooling layer: Compress and aggregate information, save parameters
• Last layer: Fully-connected for classificationWe can replace this layer!

Architectures:
• 1 × 1 filters to reduce parameters and add regularization
• Inception layers allow different filter sizes in parallel
• Residual connections as seminal contributions
• Rise of deeper models (from 5 layers to more than 1000)

71

Further Reading

Great visualization of different convolution strategies: https://github.com/vdumoulin/conv_arithmetic

Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)

In-depth explanation of Gabor Filter Banks: https://uol.de/mediphysik/downloads/gabor-filter-bank-features

Interestingly, for medical imaging, early conv-layers do not converge to Gabor-like filters:
Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, Samy Bengio:
Transfusion: Understanding Transfer Learning for Medical Imaging
NeurIPS 2019, https://arxiv.org/abs/1902.07208

Potentially interesting: Content-Adaptive Downsampling, e.g., https://ar5iv.labs.arxiv.org/html/2305.09504

Interesting observations: Striding and downsampling & upsampling can lead
to checkerboard artifacts: https://distill.pub/2016/deconv-checkerboard

https://github.com/vdumoulin/conv_arithmetic
https://arxiv.org/abs/1603.07285
https://gist.github.com/fvisin/165ca9935392fa9600a6c94664a01214
https://uol.de/mediphysik/downloads/gabor-filter-bank-features
https://arxiv.org/abs/1902.07208
https://ar5iv.labs.arxiv.org/html/2305.09504
https://distill.pub/2016/deconv-checkerboard

4. Convolutional Neural Networks

Deep Learning
Summer semester ‘24

	Foliennummer 1
	Fundamentals: Convolution
	Convolution
	Convolution & Cross-Correlation
	Discrete Convolution
	Convolution in the context of convolutional layers
	Example: Discrete convolution (without padding)
	Examples: Edge Filters (Sobel Filter)
	Foliennummer 9
	Fahrplan
	Note: Notation and matrix multiplication
	Machine Learning Components
	Gradient Descent
	Gradient-based Optimization
	Backpropagation
	Making it work for Deep Learning
	Fahrplan
	Machine Learning Components – What are we looking at?
	Machine Learning Components
	Motivation – What we “have learned” so far
	Motivation – What we “have learned” so far
	Motivation (cont.)
	Motivation (cont.)
	Convolutional Neural Networks – Inductive Bias
	Convolutional Neural Networks - Architecture
	Fahrplan
	Recap: Convolution
	Recap: Convolution
	Recap: Convolution
	Recap: (2-D) Convolution
	Convolutional Layer - Local Connectivity
	Why do we want to learn these convolutional weights?
	Forward Pass: Multi-channel convolution
	Padding
	Backward pass: Multi-channel convolution
	Convolutional Layers - What have we gained?
	So how do the filters look like during/after training?
	Additional variants: Strided Convolutions
	Additional variants: Strided Convolutions
	Additional variants: Dilated/Atrous Convolutions
	1 × 1 Convolution Concept
	1 × 1 Convolution Concept
	Further convolution strategies
	Convolutional Neural Networks - Architecture
	Fahrplan
	Idea behind Pooling Layers
	Max Pooling – Forward Pass
	Max Pooling – Backward Pass
	Average Pooling
	Additional Pooling Strategies
	Convolutional Neural Networks - Architecture
	Convolutional Neural Networks - Architecture
	Replacing the Fully Connected Layer
	Fahrplan
	Historical view on developments, �including potentially underestimated / undercited works
	LeNet-5 (1998)
	AlexNet (2012)
	VGG Network �(Visual Geometry Group – University of Oxford)
	GoogLeNet (Inception-v1)
	Inception Module in GoogLeNet
	Evolution of Depth
	Deeper Networks
	... why don’t we just stack more layers?
	(One) Solution: Residual Units
	Deep Residual Networks (ResNets)
	Deep Residual Networks (ResNets)
	Effect of residual units on training and testing
	The evolution of depth
	Top1 vs. Operations
	Summary
	Further Reading
	Foliennummer 72

