Deep Learning
Summer semester ‘24

=

"H T . ..-___.: i "

*,‘

- Slide creditsslides in parts ada_p'fedtm_' :
- - gmahy T - e o “F

Fundamentals: Convolution

General mathematical formulation (continuous, 1-D)
oo

(f % g)(u) = /_OO fla)g(u — a)da aad i ZAN

Video by 3Bluel1Brown (I would not be able to
explain it better):

9(z) ~
= [5, 6,7, 8]

. Convolution
Convolution [f * g]()

(wonderful channel in general)

0:00-14:10:
Directly relevant for us, explains 1-D and 2-D a*b=[5,16,34,60,61, 52, 32] ~
convolution — _ .
P Pl 0 0:44/2300 - Where do convolutions show up? > T |8 (= O I3
14:10 — end:

Highlights connection between convolution and multiplication in the context of Fourier transforms
(Convolution theorem); while very (!) interesting since it also hints toward efficient implementations, this
aspect is not immediately relevant for us

https://www.youtube.com/watch?v=KuXjwB4LzSA

Convolution

is @ mathematical operation on two functions f, g that represents the
integral over the product of f and a shifted and reflected g:

o

(F £)(u) = / F(M)e(u—r)dr

— OO

3

https://commons.wikimedia.org/wiki/File:Convolution_Animation_(Gaussian).gif

Convolution & Cross-Correlation

Convolution

Convolution is a mathematical operation on two functions f, g that represents the
integral over the product of f and a shifted and reflected g:

(e = [(Oatu=ndr)

_
(Cross-Correlation

Cross-correlation is a mathematical operation on two functions f, g that
represents the integral over the product of f and a shifted g:

. (F % g)(u) = / A()elu+)dr)

— Cross-correlation is convolution with a flipped kernel g —and vice versa!

Discrete Convolution

is @ mathematical operation on two functions f, g that
represents the integral over the product of f and a shifted (and reflected) g:
o

(fxg)(w)=) f(r)g(u—1)

T—=—00

 Behaviour for functions with ?

()

- response only in T | 5 - [E e
B RRRE : : I

| T
(f=git)

e Can be extended to ; e

Convolution in the context of convolutional layers

Discrete 2-D convolution

(f xg)(u,v) = Z Z f(r,p)-glu—7,v—p)

T=—00 p=—00
For our purposes:

flu, v) represents the (pixel) value at position (u, v)

- fis (typically) defined by the input values, and has the size of the current feature map (MxN) for 2-D, and is
zero everywhere else

gl(u, v) represents the value of the filter kernel at a specific location
—> g is defined for a specific neighborhood (e.g., 3x3, 5x5 or 7x7) and zero everywhere else

—>The values ofgf (e.g., 9 parameters for a 3x3, 25 parameters for 5x5, etc.) can be set according to prior
knowledge or arned > learnable filters

— The output at (f*g) at position (u,v) is a sum of the values of f weighted by

(the tiny numbers
in the corner)

- They stay the
same as they move
over the different
pixel positions

Examples: Edge Filters (Sobel Filter)

p—

+1 +2 +1
0 0 0
-1 -2 -1

Original Image sobel_x filter sobel_y filter

S 1

o O O

+ + +
(N

p—

3000
1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

https://hubofco.de/machinelearning/2020/04/08/Egde-detection-in-open-cv/

Highlights horizontal edges Highlights vertical edges

Deep Learning
Summer semester ‘24

=

. > : ,}':. ’

*,‘

o S‘Ifde'.cfediﬁt'-"ﬁ[ides in parts ada_p'fedﬁto_' '
. el F - - .- o

Fahrplan

e Recap from last time: Optimization

e Convolutional neural networks
* Convolutional layers
* Pooling layers

 Neural Network Architectures

10

Note: Notation and matrix multiplication

For all cases:
e X = (x1,....x,)" €R"
e X' = (x1,...., %, 1)T € R"™! (Note: ’ is often dropped)
e yc R"™
Different notations, but equivalent:
e h(x|#) =c(xW +b) >W cR™":becR"™
e h(x|#) =c(Wx-+b)—>WecR"™"becR"

e h(x|0) = o(Wx') = W ¢ R™*(m+1)

11

Machine Learning Components

Any ML algorithm/approach has the following three components:

* Model

A set of functions among which we’re looking for the , best” one
H = {h(x]0)}q

* Objective
,Best“according to what?

— Objective J quantifies how good/bad a hypothesis / /0 is:
0* = argming J(h(x|©)) -> optimization problem

e Optimization algorithm
How do we get to an optimum? How do find optimal parameters?
— Gradient-based optimization

12

Gradient Descent

Gradient Descent —\

-

Gradient descent (sometimes also called steepest descent) is an iterative
algorithm for (continuous) optimization that finds a minimum of a convex (single)
differentiable function.

g J

* In each iteration GD moves the values of parameters 6 = {0, 0., ..., 0, } in the
direction opposite to the gradient in the current point

0l+1) = I — nV, AOK)

* V,f(0) —value of the gradient (a vector of same dimensionality as 0) of the

function fin the point 0
* 1 —learning rate, defines by how much to move the parameters in the direction

opposite of the gradient

13

is guaranteed to lead to a global
functions™

Objectives of DL models are

* No guarantee of minimum
 But we hope for a good enough
minimum, i.e., to find such values
for which Jis ,,small enough”
* Learning rate 1 is essential to control how
likely we ,,jump out” of local minima

only for

Backpropagation

e Loss function L is a complex composition of functions, i.e.,

0 0
50 = 3. LUavallav, 1 ay,(x16,)[8,)..)18,), v)

 Computing the closed form of the gradients for parameters in deeper
layers becomes cumbersome (& inefficient)

e Use of the “chain rule” to iteratively compute gradients through the
backward pass = backpropagation

dL JL OJlayy
00, , OJlay, 00, ,

15

Making it work for Deep Learning

* Automatic differentiation computes the gradients “as needed” during the
backward pass based on computational graph

* Backpropagation = reverse mode autodiff with a single target function

* Different variants:
e (Batch) gradient descent (GD):
full training dataset (bulky, bad hardware utilization)

e Stochastic gradient descent (SGD):
single sample (noisy, bad hardware utilization)

* Mini-batch gradient descent (?GD):
mini-batches (compromise, exploit hardware)

e Still ,,local optimization®
- risk of overfitting

- regularization strategies (e.g., norms, dropout) | — erronmannoms
to preve nt Overfitting ‘ ‘ Model Complexity

Underfitting

Fahrplan

e Recap from last time: Optimization

* Convolutional neural networks
* Convolutional layers
* Pooling layers

 Neural Network Architectures

17

Machine Learning Components — What are we looking at?

Any ML algorithm/approach has the following three components:

r
* Model
A set of functions among which we’re looking for the ,best” one
H = {h(x|B)}q
* Objective

,Best“ according to what?
— Objective J quantifies how good/bad a hypothesis h /0 is:
* = argmin, J(h(x|©)) —> optimization problem

e Optimization algorithm
How do we get to an optimum? How do find optimal parameters?
- Gradient-based optimization

18

Machine Learning Components

Any ML algorithm/approach has the following three components:

([)
* Model
A set of functions among which we’re looking for the ,best” one
9 H = {h(x|B)}q P

= The set of functions we select determines. . .
* ... which functions we can (easily*) learn
* ... what parameters we have to learn

— By selecting a specific set of functions, we introduce an inductive bias

* Remember UAT: We can (in theory!) learn arbitrary functions

19

 So far: - each input is connected to each node

* Very powerful: Can represent any kind of

e Matrix multiplication + activation function:

Hidden
layer

@

= o(Wx)

Hidden
layer

Okf

between inputs

20

Motivation — What we “have learned” so far

* So far: Fully connected layers - each input is connected to each node

* Very powerful: Can represent any kind of (linear) relationship between inputs

Matrix multiplication + activation function: z = o(Wx)

Input x: Vector of features, e.g., (length, circumference, color, ...)

BUT: A lot of machine learning deals with images / videos / sounds / text

Assume we have:
* Animage with size 512 x 512 pixels
* One hidden layer with 64 neurons
* (512%2+1) - 64 - ~16.8 million trainable weights for a single layer!

Kaiming He, Xiangyu Zhang, Shaoging Ren, et al. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet

Classification”. In: CoRR abs/1502.01852 (2015). arXiv: 1502.01852.
21

Motivation (cont.)

* So # parameters is a problem. Is there something else?
* Example: Classify between cat and dog

* Pixels are bad features!
* Highly correlated & redundant
* Scale-dependent
N CHNIWACIE

 Pixels are a bad representation™® from a
machine learning point of view

* Keep this aspect in mind for lecture L7: Transformers

Source: https://news.nationalgeographic.com 22

Motivation (cont.)

e Can we find a better representation?
* Observations:

* We have a certain degree of the locality in an image

e Recurrence: We can find the same “macro features” at
different locations

* Hierarchy of features:

e edges + corners - eyes

* eyes + nose + ears - face

e face + body + legs - animal
* Composition matters!

* |dea: Base neural architecture on these observations
- Inductive bias

— Learn better representation, then classify!

Source: https://news.nationalgeographic.com 23

Convolutional Neural Networks — Inductive Bias

* Local connectivity:

Filters with small receptive field:

e Recurrence & translational equivariance:

Use same filters over the whole input

* Hierarchy of filters working on different scales

* + |earning = Convolutional Neural Networks

|j |j — BICYCLE

" INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN COLUh:-IE-‘(r:TED SOFTMAX

FEATURE LEARNING CLASSIFICATION
Source: https://de.mathworks.com/discovery/convolutional-neural-network.html

Four essential building blocks:

e Convolutional layers:

 Activation function:

* Pooling layer: , Save parameters & compute

 Last layer: for classification .

Fahrplan

e Recap from last time: Optimization

* Convolutional neural networks
* Convolutional layers
* Pooling layers

 Neural Network Architectures

26

Convolution

is @ mathematical operation on two functions f, g that represents the
integral over the product of f and a shifted and reflected g:

o

(F £)(u) = / F(M)e(u—r)dr

— OO

27

https://commons.wikimedia.org/wiki/File:Convolution_Animation_(Gaussian).gif

Recap: Convolution

Convolution
Convolution is a mathematical operation on two functions f, g that represents the
integral over the product of f and a shifted (and reflected) g:

o

(F % £)(u) = / F(1)e(u—7)dr
_ o Y
-

Cross-Correlation

Cross-correlation is a mathematical operation on two functions f, g that
represents the integral over the product of f and a shifted g:

(Fe)) = [et)r

- — oo W,
— Cross-correlation is convolution with a flipped kernel g —and vice versa!

— Doesn’t matter (too much) for the implementation: weights are initialized
randomly anyway

28

Discrete Convolution

is @ mathematical operation on two functions f, g that
represents the integral over the product of f and a shifted (and reflected) g:
o

(fxg)(w)=) f(r)g(u—1)

T—=—00

 Behaviour for functions with ?

()

- response only in T | 5 - [E e
B RRRE : : I

| T
(f=git)

e Can be extended to ; e

29

 We the filter kernel over the input (weighted sum)
* Output:

* Convolutional layer typically contains

- multiple feature maps ()

2> cf“ ” e.g., Gabor filters

What is the typical for natural
images?

What does this mean for the of a

convolutional network?

Source: https://github.com/vdumoulin/conv_arithmetic

30

* Exploit by only connecting
pixels in a neighborhood

Except for local connections, each entry in Wis O
. : Filter of size3x3,5%x5,7x7, ...

* Features that are important at one location are likely
important anywhere in the image:
- Use the (tied weights, or

shared weights)
9

Source: https://github.com/vdumoulin/conv_arithmetic

31

* Convolutional filters of the input
* Edge / corner detection* or “enhancement”

Dot detector

* Image smoothing (low-pass filter)

. (with non-linearity) allows to extract

We select suitable, predefined filters manually (and this has
been done in traditional ML, see e.g.,),

: since it is difficult to (verbally,
mathematically) what the features are, we have seen that it is
more efficient to directly
and jointly (e.g.,)

Source: https://github.com/vdumoulin/conv_arithmetic

* Detection in this context means: high values in the resulting feature map 32

Forward Pass: Multi-channel convolution

* Input of size X x Y x S, where S is the number of input channels

e H filters with size M x N x S

— fully connected across channels

—= M x N describes receptive field

33

"’

%.44
BOOORY
%%%% N
B OOOOO Y
R OOOOOOY
OO0
RO
.%%%%%o 7 4
.% Y4
4
N\ . _\ .
0" 0"
0 N\ \ N 0 N\ O\
e e
oo G

""
‘ _\ .

AUIOSN

IS,

DRSS S A
KKK 774
!/ / 4
/[/ 4
[/ / 4

VO 774

(e
¢ /[/[4
¢ /

K

e Output dimensions: X x Y x H (with ‘same’ padding)

by 2 - |n/2]
pixels (n: kernel size)

* Necessary to pay attention to the

(usually zero padding):
- Input and output have the same size

- The output is smaller than the input

Source: https://github.com/vdumoulin/conv_arithmetic

34

Backward pass: Multi-channel convolution

e Convolution can be expressed as matrix multiplication with matrix W: using a
Toeplitz matrix

* We can use the same formulas as for the fully connected layer!

* Backward pass can also be expressed as convolutions / cross-correlation

Interesting (in-depth) derivation:
Convolutional Neural Network from Scratch | Mathematics & Python Code

https://www.youtube.com/watch?v=Lakz2MoHy60

35

https://www.youtube.com/watch?v=Lakz2MoHy6o

Convolutional Layers - What have we gained?

Reminder:
Fully connected layer with 64 neurons for 512% images (S = 1, e.g. grayscale):
~ 16.8 million trainable weights

For our conv layer:
* We also stack H = 64 filters to obtain a trainable filter bank
e We choose a 7x7 neighborhood / filter size
-2 (72+1)-64=3200
bias
And we have gained more:
* Independent of image size!

 Much more training data for one weight!

36

First conv layer, epoch 0

= 3 -E-'
EREA

mE maE EoEL LR
Pﬁ q - m

TLLIL
Fi I - =i

: Prof. Dr.-Ing. Marc Aubreville, IMI Group, TH Ingolstadt

Filters being learned over
the training iterations

kernels form edge &
color detectors over time

Looks different for
different datasets!

37

Additional variants: Strided Convolutions

* Instead of multiplying the filter at each pixel
position, we can skip some positions

e Stride s describes the offset
e Reduces the size of the output by a factor of s

* Mathematically: Convolution + subsampling

Source: https://en.wikipedia.org, Monty Python’s Flying Circus episode, Dinsdale

38

Source: https://github.com/vdumoulin/conv_arithmetic

39

convolution kernel:
Keep but certain pixels

: Wider receptive field with same # parameters/weights

What is the difference to ?

40

1 x 1 Convolution Concept

e So far: H filters with neighborhood with3x3,5x%x5,...and ‘depth’ S
* Filters are fully connected in ‘depth’ direction

* We can decrease the neighborhood to 1 x 1

* And just use the fully connected property in the depth dimension

> "

s, VRY S
N NP 8B N N 4
B S<x oL Nf N NS N7 S
NN el Y Yy S e,
NN N SISy,
TN Ny RE NF RS A
NN Ng RS
ANNNRN#ESsS W NN
AN T g Ny gl

DN

i.“’i ,

* Dimensionality reduction/expansion from S channels to H channels

* If we flatten (vectorize) the input, 1 x 1 convolutions are a fully connected layer!
41

1 x 1 Convolution Concept

* First described in “Network in Network” by Lin et al.
e 1 x 1 convolutions simply calculate inner products at each position

* Simple and efficient method to decrease the size of a network

* Learns dimensionality reduction, e.g., can reduce redundancy in your feature maps

* Similar idea / more flexible: N x N convolution

g

R
o
%

MMM

Q
%9,
%,

4
A
K

V (L L L LLY
A\ O\ N\ N\ N\ N

Q
VYl !/l LLLLY

SSwuuweel
== gl

VLI L LLLLY
[RE—— L

‘\\““"

R/ /] /
B/ / [[/
R [/ /
Y/ / /7 / /7 /7
V / [/ // /7 //
A\ N\ N\ O\ \ N\

Min Lin, Qiang Chen, and Shuicheng Yan. “Network In Network”. In: CoRR abs/1312.4400 (2013). arXiv: 1312.4400.

9
9
%
X

o

78
N
NN

[[/
W\

vy,
t /4

/[7
\ N

720
A\ \ \
N\

42

Further convolution strategies

* Depthwise separable convolutions YALL GIIT'!INY MORE OF THEM

* Grouped Convolutions -
* Deformable convolutions d v
e Sparse convolutions -;-_-v
=
 Spatially separable convolutions u
; N
../ N a o

GONVOLUTIONS?

43

|j |j — BICYCLE

" INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN COLUh:-IE-‘(r:TED SOFTMAX

FEATURE LEARNING CLASSIFICATION
Source: https://de.mathworks.com/discovery/convolutional-neural-network.html

Four essential building blocks:

e Convolutional layers:

 Activation function:

* Pooling layer: , Save parameters

 Last layer: for classification > maybe we can replace this? "

Fahrplan

e Recap from last time: Optimization

 Convolutional neural networks

* Convolutional layers
* Pooling layers

 Neural Network Architectures

45

ldea behind Pooling Layers

* Fuses information of input across spatial locations
* Decreases number of parameters*™
* Reduces computational costs and overfitting

* Assumptions / inductive bias:
* Features are hierarchically structured
e “Summaries” of regions are sensible
* Translational invariance
* Exact location of a feature is not important

* Not directly, rather for the final fully connected layer

46

Max Pooling — Forward Pass

* Propagate maximum value in a neighborhood to next layer
* Typical choices: 2 x 2 or 3 x 3 neighborhood
« “Stride” of pooling usually equals the neighborhood size

* Maximum propagation adds additional non-linearity

o
HE Dmm

2jojoj22
2]0j0]0]1

Max pooling concept. Note that usually a stride > 1 is used for pooling.

iy

Max Pooling — Backward Pass

TSAES ~THE WINNER
AP TAKESIT ALL™

- En hyllning till ABBA

* Only one value contributes to error
* Error is propagated only along the path of the maximum value

L]
» -«

48

Average Pooling

* Propagate average of the neighborhood

* Does not consistently perform better than max pooling, but has a
dense gradient

* Backward pass: Error is shared to equal parts

10
2j0joj2]2
2/0[0]0]1

Avg pooling concept. Note that usually a stride > 1 is used for pooling.

49

Additional Pooling Strategies

* Fractional max pooling
* L, pooling

* Stochastic pooling

e Spacial pyramid pooling
* Generalized pooling

e ...and of course strided convolution

50

|j |j — BICYCLE

" INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN COLUh:-IE-‘(r:TED SOFTMAX

FEATURE LEARNING CLASSIFICATION
Source: https://de.mathworks.com/discovery/convolutional-neural-network.html

Four essential building blocks:

e Convolutional layers:

 Activation function:

* Pooling layer: , Save parameters

 Last layer: for classification -

|j |j — BICYCLE

" INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY

CONNECTED SEEEIAN

FEATURE LEARNING CLASSIFICATION

Source: https://de.mathworks.com/discovery/convolutional-neural-network.html

Foeur-Three essential building blocks:
e Convolutional layers:

e Activation function:

* Pooling layer: , Save parameters

o lastlayer- forclassification > We replace this layer! e

Replacing the Fully Connected Layer

* Conv and pooling layers generate better representation
- better features

D — BICYCLE

* Fully connected layers for classification

FULLY
CONNECTED ——

* Equivalently: Use flatten & 1 x 1 convolution [Lin et al.]
or N x N convolution

* With global average pooling: Arbitrary input sizes
possible!

Source: Li et al. https://doi.org/10.1007/s11042-021-11435-5

Min Lin, Qiang Chen, and Shuicheng Yan. “Network In Network”. In: CoRR abs/1312.4400 (2013). arXiv: 1312.4400.

53

Fahrplan

e Recap from last time: Optimization

e Convolutional neural networks
* Convolutional layers
* Pooling layers

* Neural Network Architectures

54

Historical view on developments,
including potentially underestimated / undercited works

e Jurgen Schmidhuber, IDSIA Switzerland

* Very interesting read, very broad, including a historical view:
https://people.idsia.ch/~juergen/deep-learning-history.html

* On the following slides:
Focus on specific, frequently used concepts,
not on historical derivation & attribution

55

https://people.idsia.ch/%7Ejuergen/deep-learning-history.html

("¢’ Technique still used in recent architectures)

LeNet-5 (1998)

C3: f. maps 16@10x10

C1: feature maps S4:f. maps 16@5x5
6@28x28

S2: 1. maps C5: layer rg.
6@14x14 b I:Si layer (.;)(L)JTPUT

|
Full conAection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Key features
e Convolution for spatial features
(¢) Subsampling using average pooling
e Non-linearity: tanh
(¢) MLP as final classifier = Foundation for many other architectures

e Sequence: Convolution, pooling, non-linearity

Y LeCun, L Bottou, Y Bengio, et al. “Gradient-based Learning Applied to Document Recognition”. In: Proceedings of the IEEE 86.11 (Nov. 1998),

pp. 2278-2324. arXiv: 1102.0183. 56

Key features:

e 8 layer network

e QOverlapping (stride: 2, size: 3)
Use of to reduce training time Winner of the ImageNet 2012 challenge
(¢) Non-linearity: = Breakthrough of CNNs
(¢) Combat overfitting with and
e Learning: (0.9) + (L2) weight decay (5 - 10-5)

Alex Krizhevsky, llya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with Deep Convolutional Neural Networks”. In: Advances In
Neural Information Processing Systems 25. Curran Associates, Inc., 2012, pp. 1097-1105. arXiv: 1102.0183. 57

VGG Network
(Visual Geometry Group — University of Oxford)

Key features
(¢) Small kernel sizes in each convolution (3 x 3)

- Combination of multiple smaller kernels
emulate larger receptive fields

e 16/ 19 layers, max pooling between some
layers (stride: 2, size: 2)

/ D=4086 D=4096 D=1000

hard to train (ln praCtice: 324&-:-'34... 12112 o 56 .. b | .- FC FC + Softmax
pre-training with shallower netWOFkS) Source: https://www.slideshare.net/holbertonschool/deep-learning-class-2-by-louis-monier

= For a long time, one of the “go-to” baseline networks

—> still used for feature extraction / perceptual losses

Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Recognition”. In: International Conference
on Learning Representations (ICLR). San Diego, May 2015. arXiv: 1409.1556 58

Key features:

e Network design with in mind
- maximum 1.5 billion MAD (multiply-add) operations at inference time

. as final layer
(°) (only at training): error weighted by 0.3 added to global
(*)

(*)

C. Szegedy, Wei Liu, Yangqging Jia, et al. “Going deeper with convolutions”. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). June 2015, pp. 1-9.

(except for linear layer and auxiliary networks)

59

Inception Module in GooglLeNet

* Derived from Network-in-Network concept
concatenation
* Parallel filter combinations —y—
(split-transform-merge strategy) e P 4 =
. c c T il i i i
* |dea: Network decides needed filter size by '
itself 1x1 convolutions
* 1x 1 filters serve as “bottleneck layer” SIOTRE a0
* Representational power of large and dense
layers but with much lower computational
complexity

* Later GooglLeNets feature different variants
of inception modules

C. Szegedy, Wei Liu, Yangqging Jia, et al. “Going deeper with convolutions”. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). June 2015, pp. 1-9.

60

.IL
5
=

L]

)
&

In_
D

Z
|

E

SVMs

—1 Top-5 Error

2013
AlexNet Zeiler

e Depth

2014 2014 Human
VGG-19 GoogleNet

Source: image-net.org, Russakovsky et al. 2015

61

* Exponential feature reuse

g

Conv 3: Texture

22 paths

Conv 5: Object Parts

FS: Object

&

Classes

aqe1 Suraurp

21018 A12001F

62

* Problems with going deeper:

tend to have & S
higher : :
than shallower models £ S6-layer 2
- Not just caused by overfitting! : i
* Reasons: ! 2 iter.j (_’1&34)4 _ | ' 2 iter? (_'164)4
gradient problem Internal
- Use RelU (or successors) —> Batch normalization
- Proper initialization - ELU / SELU

. poor propagation of activations and gradients

63

)

Idea: Simplify “
* Non-residual nets: learn mapping

* Instead: learn mapping:

64

Deep Residual Networks (ResNets)

e Seminal paper:
He et al.: Deep Residual Learning for Image Recognition
* General form of the |-th residual unit:

Xi+1 = h(g(x/) + Hiza(x), Wit1)

Can also be multiple
* h, g: activation functions conv-layers

* H: non-residual path addition |

addition

Kaiming He, Xiangyu Zhang, Shaoging Ren, et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Las Vegas, June 2016, pp. 770-778. arXiv: 1512.03385.
65

Deep Residual Networks (ResNets)

e Seminal paper:
He et al.: Deep Residual Learning for
Image Recognition

e General form of the I-th residual unit:

X/+1 = h(g(x,) =+ H/+1(X/, W/+1)

* h, g: activation functions f

* H: non-residual path Can also be multiple
conv-layers

Kaiming He, Xiangyu Zhang, Shaoging Ren, et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Las Vegas, June 2016, pp. 770-778. arXiv: 1512.03385.

66

—

o

c:-’ ~
—
<]
=
-
Lib]

plain-18 ResNet-18
==plain-34 —ResNet-34|

20 30 A((1(30
iter. (le4) iter. (led)

—>Training / validation error of deeper nets is now lower!
- Extremely successful model family: ResNet18, ResNet50, ResNet152

Kaiming He, Xiangyu Zhang, Shaoging Ren, et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Las Vegas, June 2016, pp. 770-778. arXiv: 1512.03385.

67

>
—
O
el
e
LL
o
&
I_
©
Z
)]
(@)
4]
E

2011

SVMs

2012
AlexNet

2013
Zeiler

2014
GoogleNet

2015
ResNet

Human

68

Inception-v4

Inception-v3 ResNet-152

|ResNet-50 VGG-16 VGG-19

ResNet-101
. ResNet-34

ResNet-18
rey

GooglLeNet
ENet

o BN-NIN

)
o~
>
@]
]
f—-
>
o
|9}
(18]
-
o
o
}_

35M 65M 95M 125M 155M

BN-AlexNet
AlexNet

20 25
Operations [G-Ops]

Source: https://towardsdatascience.com/neural-network-architectures-156e5bad51ba (visited 2017/12/01),
s. also Canziani et al., 2016

69

Summary

Convolutional neural networks:

* Convolutional layers: Feature extraction

 Activation function: Nonlinearity

* Pooling layer: Compress and aggregate information, save parameters

o LastlayerFully-connected-forelassification 2 We can replace this layer!

Architectures:

* 1 x 1 filters to reduce parameters and add regularization
* Inception layers allow different filter sizes in parallel

* Residual connections as seminal contributions

* Rise of deeper models (from 5 layers to more than 1000)

70

Further Reading

Great visualization of different convolution strategies:

Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)

In-depth explanation of Gabor Filter Banks:

Interestingly, for medical imaging, early conv-layers do not converge to Gabor-like filters:
Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, Samy Bengio:
Transfusion: Understanding Transfer Learning for Medical Imaging
NeurlPS 2019,

Potentially interesting: Content-Adaptive Downsampling, e.g.,

Interesting observations: Striding and downsampling & upsampling can lead
to checkerboard artifacts:

71

https://github.com/vdumoulin/conv_arithmetic
https://arxiv.org/abs/1603.07285
https://gist.github.com/fvisin/165ca9935392fa9600a6c94664a01214
https://uol.de/mediphysik/downloads/gabor-filter-bank-features
https://arxiv.org/abs/1902.07208
https://ar5iv.labs.arxiv.org/html/2305.09504
https://distill.pub/2016/deconv-checkerboard

Deep Learning
Summer semester ‘24

	Foliennummer 1
	Fundamentals: Convolution
	Convolution
	Convolution & Cross-Correlation
	Discrete Convolution
	Convolution in the context of convolutional layers
	Example: Discrete convolution (without padding)
	Examples: Edge Filters (Sobel Filter)
	Foliennummer 9
	Fahrplan
	Note: Notation and matrix multiplication
	Machine Learning Components
	Gradient Descent
	Gradient-based Optimization
	Backpropagation
	Making it work for Deep Learning
	Fahrplan
	Machine Learning Components – What are we looking at?
	Machine Learning Components
	Motivation – What we “have learned” so far
	Motivation – What we “have learned” so far
	Motivation (cont.)
	Motivation (cont.)
	Convolutional Neural Networks – Inductive Bias
	Convolutional Neural Networks - Architecture
	Fahrplan
	Recap: Convolution
	Recap: Convolution
	Recap: Convolution
	Recap: (2-D) Convolution
	Convolutional Layer - Local Connectivity
	Why do we want to learn these convolutional weights?
	Forward Pass: Multi-channel convolution
	Padding
	Backward pass: Multi-channel convolution
	Convolutional Layers - What have we gained?
	So how do the filters look like during/after training?
	Additional variants: Strided Convolutions
	Additional variants: Strided Convolutions
	Additional variants: Dilated/Atrous Convolutions
	1 × 1 Convolution Concept
	1 × 1 Convolution Concept
	Further convolution strategies
	Convolutional Neural Networks - Architecture
	Fahrplan
	Idea behind Pooling Layers
	Max Pooling – Forward Pass
	Max Pooling – Backward Pass
	Average Pooling
	Additional Pooling Strategies
	Convolutional Neural Networks - Architecture
	Convolutional Neural Networks - Architecture
	Replacing the Fully Connected Layer
	Fahrplan
	Historical view on developments, �including potentially underestimated / undercited works
	LeNet-5 (1998)
	AlexNet (2012)
	VGG Network �(Visual Geometry Group – University of Oxford)
	GoogLeNet (Inception-v1)
	Inception Module in GoogLeNet
	Evolution of Depth
	Deeper Networks
	... why don’t we just stack more layers?
	(One) Solution: Residual Units
	Deep Residual Networks (ResNets)
	Deep Residual Networks (ResNets)
	Effect of residual units on training and testing
	The evolution of depth
	Top1 vs. Operations
	Summary
	Further Reading
	Foliennummer 72

