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What this talk is not
Amiibo = NTAG215 + 
data

9ct/pc

Way cheaper, easier 
and less interesting



  

Where I stole most of this
https://github.com/dekuNukem/Nintendo_Switch_Reverse_Engineering

https://github.com/mart1nro/joycontrol

https://github.com/CTCaer/jc_toolkit

https://github.com/Brikwerk/nxbt

https://github.com/dekuNukem/Nintendo_Switch_Reverse_Engineering
https://github.com/mart1nro/joycontrol
https://github.com/CTCaer/jc_toolkit
https://github.com/Brikwerk/nxbt


  

Kinds of Controllers
Joycon (R)Joycon (L) Procon

Protocol identical for all of them

No clue what happens when you request 
IR or NFC from a left Joycon
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Input “Modes”

Human Interface 
Device

0x2F
Pure HID

0x30
Nintendo HID

More buttons,
Gyro, fixed rate

MicroController[Unit]

NFC + IR

0x31
Nintendo HID 

+ 313 byte 
data

0x21
Commands and 

replies
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Dev Mode

4000 lines of C



  

Visualizing this Bit-Mess
I need to visualize this

LUA API

NO
DOC

Compiling
Wireshark

C API

Buggy
Dev Mode

4000 lines of C



  

Visualizing this Bit-Mess
I need to visualize this

LUA API

NO
DOC

Compiling
Wireshark

C API

Buggy
Dev Mode

4000 lines of C



  

Visualizing this Bit-Mess
I need to visualize this

LUA API

NO
DOC

Compiling
Wireshark

C API

Buggy
Dev Mode

4000 lines of C



  

Visualizing this Bit-Mess
I need to visualize this

LUA API

NO
DOC

Compiling
Wireshark

C API

Buggy
Dev Mode

4000 lines of C



  

Visualizing this Bit-Mess
I need to visualize this

LUA API

NO
DOC

Compiling
Wireshark

C API

Buggy
Dev Mode

4000 lines of C



  

Importing Bluetooth logs
Import
broken

Weird
undocumented

format

Only IP
Stack

More C
APIs

Code older
than me

People send you terminal logs

Log EVERYTHING (and into file)
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Importing Bluetooth logs
Import
broken

Weird
undocumented

format

Only IP
Stack

More C
APIs

Code older
than me

People send you terminal logs

Log EVERYTHING (and into file)

< 0.0014 0500608cb100608cb1
> 0.0156 0518638cf118638cf13010000000000000000000000000000 0 0 0 0 0 0 0 0 0

Importing is still a pain, because:

● Bluetooth is connection based
● See left
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The actual Protocol
On paper very simple Request – Reply system

BUT:

L2CAP
which we paid for

Implementing TCP
on a fixed rate channel
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The actual Protocol

Using Python scripts to run Man in the Middle 
attack on Bluetooth connections works kinda

Implementing the emulator in Python not so 
much, because testing is a pain

=> seq_no, ack_seq_no, continuation_flag

Also bugs in python’s Bluetooth sockets, I didn’t 
want to compile that too
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Does it work?
Depends on your definition
● Yes, you can use it to emulate amiibos fully

● Yes, you have to restart the entire thing after 
writing an amiibo

● Yes, you can use this to crash the switch, linux 
kernel 6.?+ and btstack

● Yes, this breaks your bluetooth stack in ways 
you haven’t seen before



  

Thanks for your Attention
The parts I didn’t steal

https://github.com/Poohl/joycontrol

https://gist.github.com/Poohl/e0f254b3e02051b18c7e9f4f032883be

https://github.com/Poohl/joycontrol-pico

https://github.com/Poohl/joycontrol
https://gist.github.com/Poohl/e0f254b3e02051b18c7e9f4f032883be
https://github.com/Poohl/joycontrol-pico
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