

Emulating Amiibos
in Software

tales from
reverse engineering

Nintendo’s controller protocol

Paul Weiß – 13.12.2023

What this talk is not
Amiibo = NTAG215 +
data

9ct/pc

Way cheaper, easier
and less interesting

Where I stole most of this
https://github.com/dekuNukem/Nintendo_Switch_Reverse_Engineering

https://github.com/mart1nro/joycontrol

https://github.com/CTCaer/jc_toolkit

https://github.com/Brikwerk/nxbt

https://github.com/dekuNukem/Nintendo_Switch_Reverse_Engineering
https://github.com/mart1nro/joycontrol
https://github.com/CTCaer/jc_toolkit
https://github.com/Brikwerk/nxbt

Kinds of Controllers
Joycon (R)Joycon (L) Procon

Protocol identical for all of them

No clue what happens when you request
IR or NFC from a left Joycon

Input “Modes”

Input “Modes”

Human Interface
Device

Input “Modes”

Human Interface
Device

MicroController[Unit]

Input “Modes”

Human Interface
Device

MicroController[Unit]

NFC + IR

Input “Modes”

Human Interface
Device

0x2F
Pure HID

MicroController[Unit]

NFC + IR

Input “Modes”

Human Interface
Device

0x2F
Pure HID

0x30
Nintendo HID

More buttons,
Gyro, fixed rate

MicroController[Unit]

NFC + IR

Input “Modes”

Human Interface
Device

0x2F
Pure HID

0x30
Nintendo HID

More buttons,
Gyro, fixed rate

MicroController[Unit]

NFC + IR

0x31
Nintendo HID

+ 313 byte
data

Input “Modes”

Human Interface
Device

0x2F
Pure HID

0x30
Nintendo HID

More buttons,
Gyro, fixed rate

MicroController[Unit]

NFC + IR

0x31
Nintendo HID

+ 313 byte
data

Input “Modes”

Human Interface
Device

0x2F
Pure HID

0x30
Nintendo HID

More buttons,
Gyro, fixed rate

MicroController[Unit]

NFC + IR

0x31
Nintendo HID

+ 313 byte
data

0x21
Commands and

replies

Visualizing this Bit-Mess
I need to visualize this

LUA API

NO
DOC

Compiling
Wireshark

C API

Buggy
Dev Mode

4000 lines of C

Visualizing this Bit-Mess
I need to visualize this

LUA API

NO
DOC

Compiling
Wireshark

C API

Buggy
Dev Mode

4000 lines of C

Visualizing this Bit-Mess
I need to visualize this

LUA API

NO
DOC

Compiling
Wireshark

C API

Buggy
Dev Mode

4000 lines of C

Visualizing this Bit-Mess
I need to visualize this

LUA API

NO
DOC

Compiling
Wireshark

C API

Buggy
Dev Mode

4000 lines of C

Visualizing this Bit-Mess
I need to visualize this

LUA API

NO
DOC

Compiling
Wireshark

C API

Buggy
Dev Mode

4000 lines of C

Visualizing this Bit-Mess
I need to visualize this

LUA API

NO
DOC

Compiling
Wireshark

C API

Buggy
Dev Mode

4000 lines of C

Importing Bluetooth logs
Import
broken

Weird
undocumented

format

Only IP
Stack

More C
APIs

Code older
than me

People send you terminal logs

Log EVERYTHING (and into file)

< 0.0014 0500608cb100608cb1
> 0.0156 0518638cf118638cf13010000000000000000000000000000 0 0 0 0 0 0 0 0 0

Importing Bluetooth logs
Import
broken

Weird
undocumented

format

Only IP
Stack

More C
APIs

Code older
than me

People send you terminal logs

Log EVERYTHING (and into file)

< 0.0014 0500608cb100608cb1
> 0.0156 0518638cf118638cf13010000000000000000000000000000 0 0 0 0 0 0 0 0 0

Importing is still a pain, because:

Importing Bluetooth logs
Import
broken

Weird
undocumented

format

Only IP
Stack

More C
APIs

Code older
than me

People send you terminal logs

Log EVERYTHING (and into file)

< 0.0014 0500608cb100608cb1
> 0.0156 0518638cf118638cf13010000000000000000000000000000 0 0 0 0 0 0 0 0 0

Importing is still a pain, because:

● Bluetooth is connection based

Importing Bluetooth logs
Import
broken

Weird
undocumented

format

Only IP
Stack

More C
APIs

Code older
than me

People send you terminal logs

Log EVERYTHING (and into file)

< 0.0014 0500608cb100608cb1
> 0.0156 0518638cf118638cf13010000000000000000000000000000 0 0 0 0 0 0 0 0 0

Importing is still a pain, because:

● Bluetooth is connection based
● See left

The actual Protocol
On paper very simple Request – Reply system

BUT:

L2CAP
which we paid for

The actual Protocol
On paper very simple Request – Reply system

BUT:

L2CAP
which we paid for

Implementing TCP
on a fixed rate channel

The actual Protocol

Using Python scripts to run Man in the Middle
attack on Bluetooth connections works kinda

The actual Protocol

Using Python scripts to run Man in the Middle
attack on Bluetooth connections works kinda

=> seq_no, ack_seq_no, continuation_flag

The actual Protocol

Using Python scripts to run Man in the Middle
attack on Bluetooth connections works kinda

Implementing the emulator in Python not so
much, because testing is a pain

=> seq_no, ack_seq_no, continuation_flag

The actual Protocol

Using Python scripts to run Man in the Middle
attack on Bluetooth connections works kinda

Implementing the emulator in Python not so
much, because testing is a pain

=> seq_no, ack_seq_no, continuation_flag

Also bugs in python’s Bluetooth sockets, I didn’t
want to compile that too

Does it work?

Does it work?
Depends on your definition

Does it work?
Depends on your definition
● Yes, you can use it to emulate amiibos fully

Does it work?
Depends on your definition
● Yes, you can use it to emulate amiibos fully

● Yes, you have to restart the entire thing after
writing an amiibo

Does it work?
Depends on your definition
● Yes, you can use it to emulate amiibos fully

● Yes, you have to restart the entire thing after
writing an amiibo

● Yes, you can use this to crash the switch, linux
kernel 6.?+ and btstack

Does it work?
Depends on your definition
● Yes, you can use it to emulate amiibos fully

● Yes, you have to restart the entire thing after
writing an amiibo

● Yes, you can use this to crash the switch, linux
kernel 6.?+ and btstack

● Yes, this breaks your bluetooth stack in ways
you haven’t seen before

Thanks for your Attention
The parts I didn’t steal

https://github.com/Poohl/joycontrol

https://gist.github.com/Poohl/e0f254b3e02051b18c7e9f4f032883be

https://github.com/Poohl/joycontrol-pico

https://github.com/Poohl/joycontrol
https://gist.github.com/Poohl/e0f254b3e02051b18c7e9f4f032883be
https://github.com/Poohl/joycontrol-pico

	Slide: 1
	Slide: 2
	Slide: 3
	Slide: 4
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 5 (4)
	Slide: 5 (5)
	Slide: 5 (6)
	Slide: 5 (7)
	Slide: 5 (8)
	Slide: 5 (9)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 6 (5)
	Slide: 6 (6)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 8
	Slide: 9
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 10 (3)
	Slide: 10 (4)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 11 (4)
	Slide: 11 (5)
	Slide: 11 (6)
	Slide: 12

