Machine Learning Components

- Any ML algorithm/approach has to have the following three components:
- Model
- Objective
- Optimization algorithm

Machine Learning Components

- Any ML algorithm/approach has three components:

1. Model

- A set of functions among which we're looking for the „best" one

$$
H=\{h(x \mid \theta)\}_{\theta}
$$

- Hypothesis $h=$ a concrete function obtained for some concrete values of θ
- Model = set of hypotheses

Machine Learning Components

- Any ML algorithm/approach has three components:

2. Objective

- We're looking from the best hypothesis h in the model $H=\{h(x \mid \theta)\}_{\theta}$
- Q: But „best" according to what?
- Objective J is a function that quantifies how good/bad a hypothesis h is
- Usually J is a „loss function" that we're minimizing
- We're looking for h (that is, values of parameters θ) that maximize or minimize the objective J

$$
\begin{gathered}
h^{*}=\operatorname{argmin}_{h \in H} J(h(x \mid \theta)) \\
\theta^{*}=\operatorname{argmin}_{\theta} J(h(x \mid \theta))
\end{gathered}
$$

- ML thus amounts to solving optimization problems

Machine Learning Components

- Any ML algorithm/approach has three components:

3. Optimization algorithm

- An exact algorithm that we use to solve the optimization problem

$$
\theta^{*}=\operatorname{argmin}_{\theta} J(h(x \mid \theta))
$$

- Selection/type of the optimization algorithm depends on the two functions - the model H and the objective J

Optimization of a DL model

- $D=\left\{\boldsymbol{X}^{(\mathrm{i})}, \mathrm{y}^{(\mathrm{i})}\right\}_{\mathrm{i}=\{1, \ldots, \mathrm{~B}\}} \rightarrow$ training dataset
- We rarely/never optimize based on the whole training dataset at once, but on the small subset of B examples, called batch, one batch at a time
- $h(x \mid \theta)=\operatorname{lay}_{n}\left(\operatorname{lay}_{\mathrm{n}-1}\left(\ldots\left(\operatorname{lay}_{1}\left(x \mid \theta_{\mathrm{L} 1}\right) \mid \theta_{\mathrm{L} 2}\right) \ldots\right) \mid \theta_{\mathrm{Ln}}\right)$
- Our DL model (aka „architecture"), composition of parameterized functions
- $\mathrm{L}(\mathrm{h}(\mathrm{x} \mid \theta), \mathrm{y}) \rightarrow$ loss function (for a single instance)
- $\mathrm{J}=\frac{1}{B} \sum_{i=1}^{B} \mathrm{~L}\left(\mathrm{~h}\left(\mathrm{x}^{(i)} \mid \theta\right), \mathrm{y}^{(\mathrm{i})}\right) \rightarrow$ objective function to minimize w.r.t. θ

$$
\theta^{*}=\operatorname{argmin}_{\theta} J
$$

Fahrplan

- Gradient-Based Optimization
- Backpropagation
- Automatic Differentiation
- Training in Batches
- Regularization

Gradient-Based Optimization

- We resort to (in DL, typically unconstrained) numerical optimization

Numerical Optimization

Numerical optimization refers to optimizing real-valued functions $f(\theta): \mathbb{R}^{n} \rightarrow \mathbb{R}$, $\boldsymbol{\theta}=\theta_{1}, \theta_{2}, \ldots, \theta_{n} \in \mathbb{R}$. This means finding values $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ for which f obtains the minimal or maximal value.

- Concretely, optimization of deep NNs relies on gradient-based optimization, i.e., variants of gradient descent
- Gradient descent - optimization algorithm that uses function differentiation (w.r.t. parameters) to find the minimum of a function

Gradient-Based Optimization

- Objective J needs to be differentiable* w.r.t. all parameters $\theta=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\}$

Gradient of a differentiable function

A function of multiple parameters $f\left(\theta=\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ is differentiable if its gradient $\nabla_{\theta} f$ - a vector of partial derivatives $\nabla_{\theta} f=\left[\frac{\partial f}{\partial \theta_{1}}, \frac{\partial f}{\partial \theta_{2}}, \ldots, \frac{\partial f}{\partial \theta_{n}}\right]$ - exists for every point of the input domain.

Gradient-Based Optimization

- Gradient descent is a method that moves the parameter values in the direction opposite of the function's gradient in the current point
- This is guaranteed to lead to a global minimum only for convex functions*
- Objectives of DL models are never globally convex
- No guarantee of „global" minimum
- But we hope for a good enough „local" minimum, i.e., to find such values θ for which J is „small enough"

Gradient Descent

Gradient Descent
Gradient descent (sometimes also called steepest descent) is an iterative algorithm for (continuous) optimization that finds a minimum of a convex (single) differentiable function.

- In each iteration GD moves the values of parameters $\boldsymbol{\theta}=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\}$ in the direction opposite to the gradient in the current point

$$
\theta^{(k+1)}=\theta^{(k)}-\eta \nabla_{\theta} f\left(\theta^{(k)}\right)
$$

- $\nabla_{\theta} f(\theta)$ - value of the gradient (a vector of same dimensionality as θ) of the function f in the point θ
- η - learning rate, defines by how much to move the parameters in the direction opposite of the gradient

Gradient-Based Optimization

- So, what we need to compute for gradient descent is

$$
\nabla_{\theta} J=\nabla_{\theta}\left[\frac{1}{B} \sum_{i=1}^{B} \mathrm{~L}\left(\mathrm{~h}\left(\mathbf{x}^{(\mathrm{i}) \mid \boldsymbol{\theta}}\right), \mathrm{y}^{(\mathrm{i})}\right)\right]
$$

- Or, put differently, $\frac{\partial J}{\partial \theta_{\mathrm{i}}}$ for each parameter θ_{i} in θ

$$
\begin{aligned}
& =\frac{\partial}{\partial \theta_{\mathrm{i}}}\left[\frac{1}{B} \sum_{i=1}^{B} \mathrm{~L}\left(\mathrm{~h}\left(\mathbf{x}^{(\mathrm{i} \mid} \mid \boldsymbol{\theta}\right), \mathrm{y}^{(\mathrm{i})}\right)\right] \\
& =\frac{1}{B} \sum_{i=1}^{B} \frac{\partial}{\partial \theta_{\mathrm{i}}} \mathrm{~L}\left(\mathrm{~h}\left(\mathbf{x}^{(\mathrm{i})} \mid \boldsymbol{\theta}\right), \mathrm{y}^{(\mathrm{i})}\right)
\end{aligned}
$$

Gradient-Based Optimization

- So, to update some parameter θ_{i} we would need to compute in closed-form the partial derivative of the loss L w.r.t. $\theta_{i}: \frac{\partial L}{\partial \theta_{\mathrm{i}}}$
- But our L is a complex composition of parametrized functions (i.e., model layers)
- Because it's computed on the output of the model, $\mathrm{h}\left(\mathrm{x}^{(\mathrm{i}) \mid} \boldsymbol{\theta}\right)$
- In other words:

$$
\frac{\partial J}{\partial \theta_{\mathrm{i}}}=\frac{1}{B} \sum_{i=1}^{B} \frac{\partial}{\partial \theta_{\mathrm{i}}} \mathrm{~L}\left(\operatorname{lay}_{\mathrm{n}}\left(\operatorname{lay_{\mathrm {n}-1}}\left(\ldots\left(\operatorname{lay_{1}}\left(\mathrm{x} \mid \theta_{\mathrm{L} 1}\right) \mid \theta_{\mathrm{L} 2}\right) \ldots\right) \mid \theta_{\mathrm{Ln}}\right), \mathrm{y}^{(\mathrm{i})}\right)
$$

Fahrplan

- Gradient-Based Optimization
- Backpropagation
- Automatic Differentiation
- Training in Batches
- Regularization

Backpropagation

Rumelhart, D. E., Hinton, G. E., \& Williams, R. J. (1986). Learning representations by backpropagating errors. Nature, 323(6088), 533-536.

$$
\begin{aligned}
& \frac{\partial}{\partial \theta_{i}} L\left(h\left(x^{(i)} \mid \theta\right), y^{(i)}\right) \\
= & \frac{\partial}{\partial \theta_{i}} L\left(\mid a y_{n}\left(\operatorname{lay} y_{n-1}\left(\ldots\left(\left|a y_{1}\left(x \mid \theta_{\mathrm{L} 1}\right)\right| \theta_{\mathrm{L} 2}\right) \ldots\right) \mid \theta_{\mathrm{Ln}}\right), y^{(\mathrm{i})}\right)
\end{aligned}
$$

- Let θ_{ij} denote the j -th parameter of the i -th layer of the model
- Computing $\frac{\partial L}{\partial \theta_{i j}}$ in closed form for params θ_{Nj} of the last layer is easy
- But it gets progressively more cumbersome and difficult the „deeper" in the model the layer of the parameter is

Backpropagation

Rumelhart, D. E., Hinton, G. E., \& Williams, R. J. (1986). Learning representations by backpropagating errors. Nature, 323(6088), 533-536.

- Computing $\frac{\partial L}{\partial \theta}$ in closed form gets progressively more difficult the „further away" the parameter (i.e., its layer) is from the loss"
- Backpropagation leverages the chain rule of differentiation to avoid the difficult computation of closed-form gradients for „deeper" parameters
- Gradients of parameters from k-th layer are estimated from gradients of parameters from layer k+1

$$
\frac{\partial L}{\partial \theta_{i j}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial \operatorname{lay}_{n}} \frac{\partial \operatorname{lay}_{n}}{\partial \operatorname{lay}_{n_{-}}} \ldots \frac{\partial \operatorname{lay}_{i_{+1}}}{\partial \operatorname{lay}_{i}} \frac{\partial \operatorname{lay}_{i}}{\partial \theta_{i j}}
$$

Backpropagation

Rumelhart, D. E., Hinton, G. E., \& Williams, R. J. (1986). Learning representations by backpropagating errors. Nature, 323(6088), 533-536.

$$
\frac{\partial L}{\partial \theta_{i j}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial l a y_{n}} \frac{\partial l a y_{n}}{\partial l a y_{n_{-}}} \ldots \frac{\partial l a y_{i_{1}}}{\partial l a y_{i}} \frac{\partial l a y_{i}}{\partial \theta_{i j}}
$$

- For some (j-th) parameter $\theta_{n^{\prime} j}$ of the last, n-th layer:

$$
\frac{\partial L}{\partial \theta_{n^{\prime} j}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial l a y_{n}} \frac{\partial l a y_{n}}{\partial \theta_{n^{\prime} j}}
$$

Backpropagation

Rumelhart, D. E., Hinton, G. E., \& Williams, R. J. (1986). Learning representations by backpropagating errors. Nature, 323(6088), 533-536.

$$
\frac{\partial L}{\partial \theta_{i j}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial l a y_{n}} \frac{\partial l a y_{n}}{\partial l a y_{n_{-}}} \ldots \frac{\partial l a y_{i_{+1}}}{\partial l a y_{i}} \frac{\partial l a y_{i}}{\partial \theta_{i j}}
$$

- For some (j -th) parameter $\theta_{n_{-}}, j$ of the penultimate, $(\mathrm{n}-1)$-th layer:

$$
\frac{\partial L}{\partial \theta_{N_{-} 1^{\prime} j}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial l a y_{n}} \frac{\partial l a y_{n}}{\partial l a y_{n_{-}}} \frac{\partial l a y_{n-1}}{\partial \theta_{n_{-} 1^{\prime} j}}
$$

Backpropagation

Rumelhart, D. E., Hinton, G. E., \& Williams, R. J. (1986). Learning representations by backpropagating errors. Nature, 323(6088), 533-536.

$$
\begin{aligned}
& \frac{\partial L}{\partial \theta_{n_{1} 1^{\prime} j}}=\delta_{N} \frac{\partial \operatorname{lay}_{n}}{\partial \operatorname{lay}_{n_{-}-1}} \frac{\partial \operatorname{lay}_{n-1}}{\partial \theta_{n_{-} 1^{\prime} j}} \\
& \cdots \\
& \frac{\partial L}{\partial \theta_{i^{\prime} j}}=\delta_{i+1} \frac{\partial \operatorname{lay}_{i_{i+1}}}{\partial \operatorname{lay}_{i}} \frac{\partial l a y_{i}}{\partial \theta_{i^{\prime} j}} \\
& \cdots \\
& \frac{\partial L}{\partial \theta_{1^{\prime} j}}=\delta_{2} \frac{\partial \operatorname{lay}_{2}}{\partial \operatorname{lay}_{1}} \frac{\partial l a y_{1}}{\partial \theta_{1^{\prime} j}}
\end{aligned}
$$

- With backprop we avoid having to explicitly compute derivatives for all layers/parameters
- But we have to compute gradients in the inverse order of layers ()
- (part of the) gradient of a subsequent layer needed for the computation of the gradient of the preceding layer

Backpropagation - example

- Model: 2-layer feed-forward network with sigmoid activation
- scalar output

$$
h(\mathbf{x} \mid \boldsymbol{\theta})=\sigma\left(\sigma\left(\mathbf{x} \mathbf{W}_{1}+\mathbf{b}_{1}\right) \mathbf{W}_{2}+\mathbf{b}_{2}\right)
$$

- $\mathbf{x} \in \mathbb{R}^{\mathrm{d}}$
- $\boldsymbol{\theta}=\left\{\mathbf{W}_{1} \in \mathbb{R}^{\mathrm{d} \times \mathrm{H}}, \mathbf{b}_{1} \in \mathbb{R}^{\mathrm{H}}, \mathrm{W}_{2} \in \mathbb{R}^{\mathrm{H} \times 1}, \mathrm{~b}_{2} \in \mathbb{R}\right\}$
- Loss function: binary cross-entropy loss (BCE)
- $L(h(x \mid \theta), y)=-[y \ln (h(x \mid \theta))+(1-y) \ln (1-h(x \mid \theta))]$
$\sigma(x)=1 /\left(1+e^{-x}\right)$

Backpropagation - example

- Model: $h(\mathbf{x} \mid \theta)=\sigma\left(\sigma\left(\mathbf{x} \mathbf{W}_{1}+\mathrm{b}_{1}\right) \mathbf{W}_{2}+\mathrm{b}_{2}\right)$
- Loss function: $\mathrm{L}(\mathrm{h}(\mathbf{x} \mid \theta), \mathrm{y})=-[\mathrm{y} \ln \mathrm{h}+(1-\mathrm{y}) \ln (1-\mathrm{h})]$
- Last (second) layer parameters:
- $\frac{\partial L}{\partial W_{2}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial l a y_{2}} \frac{\partial l a y_{2}}{\partial W_{2}} \quad$ and $\frac{\partial L}{\partial b_{2}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial l a y_{2}} \frac{\partial l a y_{2}}{\partial b_{2}}$

1. $\frac{\partial L}{\partial h}=\frac{-\partial[\mathrm{y} \ln \mathrm{h}+(1-\mathrm{y}) \ln (1-\mathrm{h})]}{\partial h}$

$$
=-\left(\frac{y}{h}+\frac{1-y}{1-h}(-1)\right)=\frac{h-y}{h(1-h)}
$$

Backpropagation - example

- Model: $h(\mathbf{x} \mid \boldsymbol{\theta})=\sigma\left(\sigma\left(\mathbf{x} \mathbf{W}_{1}+\mathbf{b}_{1}\right) \mathbf{W}_{2}+\mathrm{b}_{2}\right)$

$$
=\operatorname{lay}_{2}\left(\operatorname{lay} y_{1}(\mathbf{x})\right)
$$

$$
\begin{aligned}
& \operatorname{lay}_{1}(\mathbf{a})=\sigma\left(\mathbf{a} \mathbf{W}_{1}+\mathbf{b}_{1}\right) \\
& \operatorname{lay}_{2}(\mathbf{a})=\sigma\left(\mathbf{a} \mathbf{W}_{2}+\mathbf{b}_{2}\right)
\end{aligned}
$$

- Last (second) layer parameters
- $\frac{\partial L}{\partial W_{2}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial l a y_{2}} \frac{\partial l a y_{2}}{\partial W_{2}}$ and $\frac{\partial L}{\partial b_{2}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial l a y_{2}} \frac{\partial l a y_{2}}{\partial b_{2}}$

2. $\frac{\partial h}{\partial l a y_{2}}=1$

$$
\mathrm{h}=\mathrm{lay}{ }_{2}
$$

Output of lay_{2} is the output of the whole model

Backpropagation - example

- Model: $\mathrm{h}(\mathbf{x} \mid \boldsymbol{\theta})=\sigma\left(\sigma\left(\mathbf{x} \mathbf{W}_{1}+\mathrm{b}_{1}\right) \mathbf{W}_{2}+\mathrm{b}_{2}\right)$

$$
=\operatorname{lay}_{2}\left(\operatorname{lay} y_{1}(\mathbf{x})\right)
$$

$$
\begin{aligned}
& \operatorname{lay}_{1}(\mathbf{a})=\sigma\left(\mathbf{a} \mathbf{W}_{1}+\mathbf{b}_{1}\right) \\
& \operatorname{lay}_{2}(\mathbf{a})=\sigma\left(\mathbf{a} \mathbf{W}_{2}+\mathbf{b}_{2}\right)
\end{aligned}
$$

- First, last (second) layer parameters

$$
\sigma(\mathrm{a})^{\prime}=\sigma(\mathrm{a})^{*}(1-\sigma(\mathrm{a}))
$$

- $\frac{\partial L}{\partial w_{2}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial l a y_{2}} \frac{\partial l a y_{2}}{\partial w_{2}}$

3. $\frac{\partial l a y_{2}}{\partial W_{2}}=\frac{\partial\left[\sigma\left(\sigma\left(\mathbf{x} \mathbf{W}_{1}+\mathbf{b}_{1}\right) \mathbf{W}_{2}+\mathrm{b}_{2}\right)\right]}{\partial W_{2}}$

Sigmoid has a very nice derivative ()

$$
\frac{\partial l a y_{2}}{\partial b_{2}}=\operatorname{lay}_{2} *\left(1-l a y_{2}\right) * 1
$$

Backpropagation - example

- Model: $h(\mathbf{x} \mid \theta)=\sigma\left(\sigma\left(\mathbf{x} W_{1}+b_{1}\right) W_{2}+b_{2}\right)$
- Loss function: $L(h(x \mid \theta), y)=-[y \ln h+(1-y) \ln (1-h)]$
- Last (second) layer parameters:

$$
\begin{aligned}
\frac{\partial L}{\partial w_{2}} & =\frac{\partial L}{\partial h} \frac{\partial h}{\partial l a y_{2}} \frac{\partial \operatorname{lay}_{2}}{\partial W_{2}} \\
& =\underbrace{\frac{h-y}{h(1-h)} * 1 * \underbrace{l a y_{2} *\left(1-l a y_{2}\right)} * \text { lay }_{1}}_{\mathbf{\delta}_{\mathbf{2}}}
\end{aligned}
$$

Backpropagation - example

- Model: $h(\mathbf{x} \mid \theta)=\sigma\left(\sigma\left(\mathbf{x} \mathbf{W}_{1}+\mathrm{b}_{1}\right) \mathbf{W}_{2}+\mathrm{b}_{2}\right)$
- Loss function: $L(h(x \mid \theta), y)=-[y \ln h+(1-y) \ln (1-h)]$
- First layer parameters:
- $\frac{\partial L}{\partial W_{1}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial l a y_{2}} \frac{\partial l a y_{2}}{\partial l a y_{1}} \frac{\partial l a y_{1}}{\partial W_{1}}$

$$
\frac{\partial L}{\partial w_{1}}=x^{\top} * \boldsymbol{\delta}_{2} * \mathbf{W}_{2} * l a y_{1} *\left(1-l a y_{1}\right)
$$

1. $\frac{\partial l a y_{2}}{\partial l a y_{1}}=l a y_{2} *\left(1-l a y_{2}\right) * \mathbf{W}_{2}$
2. $\frac{\partial l a y_{1}}{\partial w_{1}}=l a y_{1} *\left(1-l a y_{1}\right)$

Fahrplan

- Gradient-Based Optimization
- Backpropagation
- Automatic Differentiation
- Training in Batches
- Regularization

Automatic Differentiation

- In our backpropagation example, we manually differentiated
- Tedious, error-prone
- Other options (all in principle „automatic")
- Numerical differentiation
- () Numerical instabilities, problem-specific selection of learning rates
- Symbolic differentiation
- Automation of manual diff., computer applies diff. rules step by step
- Result is an explicit (symbolic, closed form) derivative: ($)$ expression swell
- (-) Model has to implemented with „pure functions", no common programming constructs loops, conditions, ... (no discrete computation steps)
- Example library: SymPy
- Automatic differentiation

Automatic Differentiation

- Does not need the symbolic formula of the derivative
- only computes values of the derivatives in concrete points
- Computation graph = intermediate variables in the code and how they are computed from one another
- Computation graph then used to propagate computation of gradients
- Forward mode
- Reverse mode

Computation Graph

- Example function of two variables: $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(e^{\left.\frac{x_{1}}{x_{2}}+\frac{x_{1}}{x_{2}}\right) *\left(\frac{x_{1}}{x_{2}}-\ln x_{2}\right)}\right.$
- We introduce variables for intermediate steps
- $\mathrm{v}_{1}=\frac{x_{1}}{x_{2}}$
- $\boldsymbol{v}_{2}=e^{\frac{x_{1}}{x_{2}}}=e^{v_{1}}$
- $\mathrm{v}_{3}=\mathrm{v}_{2}+\mathrm{v}_{1}$
- $\mathrm{v}_{4}=\ln x_{2}$
- $\mathrm{v}_{5}=\frac{x_{1}}{x_{2}}-\ln x_{2}=\mathrm{v}_{1}-\mathrm{v}_{4}$
- $\mathrm{f}=\mathrm{v}_{3}{ }^{*} \mathrm{v}_{5}$

Automatic Differentiation: Forward Mode

- Forward mode

- For each input variable, we compute both the value of each node as well as the value of the derivative of the intermediate node w.r.t that variable
- Start from: $\left(x_{1}, x_{2}\right)=(0.5,1)$, compute $\frac{\partial f}{\partial x_{1}}$
- We compute v_{i} and $v_{i}^{\prime}=\frac{\partial v_{i}}{\partial x_{1}}$
- $\mathrm{v}_{1}=0.5$,

$$
v_{1}^{\prime}=1 / x_{2}=1
$$

- $v_{2}=e^{v 1}=1.64, \quad v^{\prime}{ }_{2}=e^{v 1 *} \mathrm{v}_{1}^{\prime}=1.65$
- $\mathrm{v}_{3}=2.14$,

$$
v_{3}^{\prime}=v_{1}^{\prime}+v^{\prime}{ }_{2}=2.65
$$

- $\mathrm{v}_{4}=0$,

$$
\mathrm{v}_{4}^{\prime}=0
$$

- $\mathrm{v}_{5}=0.5$,

$$
\mathrm{v}_{5}^{\prime}=\mathrm{v}_{1}^{\prime}-\mathrm{v}_{4}^{\prime}=1
$$

- $\mathrm{f}=1.07$

$$
\frac{\partial f}{\partial x_{1}}=v_{3}^{\prime} *_{5}+v_{5}^{\prime}{ }^{*} v_{3}=3.46
$$

Automatic Differentiation: Forward Mode

- Forward mode

- For each input variable, we compute both the value of each node as well as the value of the derivative of that node w.r.t that variable
- One forward pass to compute $\frac{\partial f}{\partial x_{1}}$
- Q: Can we compute also $\frac{\partial g}{\partial x_{1}}$, for some other function $\mathrm{g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ in the same pass?
- Yes!
- One joint computational graph for arbitrary number of functions over the same variables

Automatic Differentiation: Forward Mode

- Forward mode

- For each input variable, we compute both the value of each node as well as the value of the derivative of the intermediate node w.r.t that variable
- One forward pass to compute $\frac{\partial f}{\partial x_{1}}$
- Q: Can we compute also $\frac{\partial f}{\partial x_{2}}$, in the same pass (while computing $\frac{\partial f}{\partial x_{1}}$)?
- No*, we have to run two forward passes
- Computation of partial derivatives of functions per different parameters is
 independent in forward mode

Automatic Differentiation

- Forward mode
- Not suitable for deep learning!
- Q: Why? Hint: how many paramaters do we have in DL models?
- Forward mode good when
- No. outputs >> no. of inputs/parameters
- We need gradients of many different functions defined over the same small number of parameters
- Reverse mode
- Start from end nodes of comp. graph and compute gradients backwards
- Q: Familiar?

Automatic Differentiation: Forward Mode

- Reverse mode
- Forward pass computes just the values
- „Gradients" (actually adjoints) computed in a backward pass
- $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(e^{\frac{x_{1}}{x_{2}}}+\frac{x_{1}}{x_{2}}\right) *\left(\frac{x_{1}}{x_{2}}-\ln x_{2}\right)$
- Start from: $\left(x_{1}, x_{2}\right)=(0.5,1)$
- 1. Forward pass to compute the values
- $\mathrm{v}_{1}=0.5$,
- $\mathrm{v}_{2}=\mathrm{e}^{\mathrm{v} 1}=1.64$,
- $\mathrm{v}_{3}=2.14$,
- $\mathrm{v}_{4}=0$,
- $v_{5}=0.5$,
- $\mathrm{f}=1.07$

Automatic Differentiation: Forward Mode

- Reverse mode

- Forward pass computes just the values
- „Gradients" (actually adjoints) computed in a backward pass

$$
\mathbf{v}_{2}=e^{v_{1}}
$$

- $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(e^{\frac{x_{1}}{x_{2}}}+\frac{x_{1}}{x_{2}}\right) *\left(\frac{x_{1}}{x_{2}}-\ln x_{2}\right)$
- Start from: $\left(x_{1}, x_{2}\right)=(0.5,1)$
- 2. Backward pass to compute adjoints
- Adjoint \bar{v}_{i} of the node v_{i} is $\frac{\partial f}{\partial \mathrm{v}_{\mathrm{i}}}$
- Adjoints of parent nodes v_{i} computed from adjoints of their children nodes v_{j}

$$
\bar{v}_{i}=\sum_{\left.\mathrm{v}_{\mathrm{j}} \text { child of } \mathrm{v}_{\mathrm{i}}\left(\bar{v}_{j} * \frac{\partial v_{j}}{\partial v_{i}}\right), ~\right) ~}^{\text {and }}
$$

Automatic Differentiation: Forward Mode

- Reverse mode
- Forward pass computes just the values
- „Gradients" (actually adjoints) computed in a backward pass $\mathrm{v}_{2}=e^{v_{1}}$
- $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(e^{\frac{x_{1}}{x_{2}}}+\frac{x_{1}}{x_{2}}\right) *\left(\frac{x_{1}}{x_{2}}-\ln x_{2}\right)$
- $\bar{v}_{5}=\frac{\partial f}{\partial \mathrm{v}_{5}}=\mathrm{v}_{3}=2.14$
- $\bar{v}_{3}=\frac{\partial \stackrel{f}{f}}{\partial v_{3}}=\mathrm{v}_{5}=0.5$
- $\overline{v_{2}}=\bar{v}_{3} * \frac{\partial v_{3}}{\partial v_{2}}=0.5 * 1=0.5$
- $\bar{v}_{4}=\bar{v}_{5} * \frac{\partial v_{5}^{2}}{\partial v_{4}}=2.14 *(-1)=-2.14$
- $\bar{v}_{1}=\bar{v}_{2} * \frac{\partial v_{2}^{4}}{\partial v_{1}}+\bar{v}_{3} * \frac{\partial v_{3}}{\partial v_{1}}+\bar{v}_{5} * \frac{\partial v_{5}}{\partial v_{1}}$

$$
\bar{v}_{i}=\sum_{\mathrm{v}_{\mathrm{j}} \text { child of } \mathrm{v}_{\mathrm{i}}}\left(\bar{v}_{j} * \frac{\partial v_{j}}{\partial v_{i}}\right)
$$

$$
=0.5 * 1.64+0.5 * 1+2.14 * 1=3.46
$$

Automatic Differentiation: Forward Mode

- Reverse mode
- Forward pass computes just the values
- „Gradients" (actually adjoints) computed in a backward pass $\mathrm{v}_{2}=e^{v_{1}}$
- $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(e^{\frac{x_{1}}{x_{2}}}+\frac{x_{1}}{x_{2}}\right) *\left(\frac{x_{1}}{x_{2}}-\ln x_{2}\right)$
- $\bar{v}_{4}=\bar{v}_{5} * \frac{\partial v_{5}}{\partial v_{4}}=0.5 *(-1)=-0.5$
- $\overline{v_{1}}=\overline{v_{2}} * \frac{\partial v_{2}}{\partial v_{1}}+\overline{v_{3}} * \frac{\partial v_{3}}{\partial v_{1}}+\overline{v_{5}} * \frac{\partial v_{5}}{\partial v_{1}}$

$$
=0.5 * 1.64+0.5 * 1+2.14 * 1=3.46
$$

- $\bar{x}_{1}=\bar{v}_{1}^{*} \frac{\partial v_{1}}{\partial x_{1}}=\bar{v}_{1} * 1 / \mathrm{x}_{2}=3.46 * 1=3.46$
- $\overline{x_{2}}=\bar{v}_{1} * \frac{\partial v_{1}}{\partial x_{2}}+\bar{v}_{4} * \frac{\partial v_{4}}{\partial x_{2}}=\ldots$

$$
\bar{v}_{i}=\sum_{\mathrm{v}_{\mathrm{j}} \text { child of } \mathrm{v}_{\mathrm{i}}}\left(\bar{v}_{j} * \frac{\partial v_{\mathrm{i}}}{\partial v_{i}}\right)
$$

Automatic Differentiation: Forward Mode

- Reverse mode

- Forward pass computes just the values
- „Gradients" (actually adjoints) computed in a backward pass $\mathrm{v}_{2}=e^{v_{1}}$
- Q: How many reverse/backward passes would we need if:
- We have many variables/parameters: $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{M}}$
- Just one!

- This is why it's used in DL!
- We have more than one target function:

$$
\bar{v}_{i}=\sum_{\mathrm{v}_{\mathrm{j}} \text { child of } \mathrm{v}_{\mathrm{i}}}\left(\bar{v}_{j} * \frac{\partial v_{\mathrm{i}}}{\partial v_{i}}\right)
$$ $f_{1}, f_{2}, \ldots, f_{N}$?

Reverse Mode Autodiff vs. Backpropagation?

- Q: How is reverse mode autodiff different from backpropagation?
- Reverse mode autodiff is more general than backpropagation
- Backpropagation a special case of reverse mode autodiff $\mathrm{v}_{2}=e^{v_{1}}$
- Initially designed for FFNNs
- One target function/loss (i.e., scalar)
- Q: Autodiff vs. Autograd?
- Autograd is just the name of the popular autodiff Python implementation
- Used also by PyTorch
- torch.autograd

$$
v_{5}=v_{1}-v_{4}
$$

$$
\bar{v}_{i}=\sum_{\mathrm{v}_{\mathrm{j}} \text { child of } \mathrm{v}_{\mathrm{i}}}\left(\bar{v}_{j} * \frac{\partial v_{j}}{\partial v_{i}}\right)
$$

Automatic Differentiation in PyTorch

$$
\begin{aligned}
& f\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(e^{\frac{x_{1}}{x_{2}}}+\frac{x_{1}}{x_{2}}\right) *\left(\frac{x_{1}}{x_{2}}-\ln x_{2}\right) \\
& \quad \text { import torch } \\
& \mathrm{x} 1=\text { torch.tensor(0.5, requires_grad }=\text { True }) \\
& \mathrm{x} 2=\text { torch.tensor(1.0, requires_grad }=\text { True }) \\
& \mathrm{f}=(\text { (torch.exp }(x 1 / \mathrm{x} 2)+\mathrm{x} 1 / \mathrm{x} 2) *(\mathrm{x} 1 / \mathrm{x} 2 \text { - torch. } 1 \mathrm{log}(\mathrm{x} 2)) \\
& \mathrm{f} . \operatorname{backward}() \# \text { executes reverse mode autodiff } \\
& \quad \operatorname{print}(\mathrm{x} 1 . \operatorname{grad}) \\
& \operatorname{print}(\mathrm{x} 2 . \operatorname{grad})
\end{aligned}
$$

Fahrplan

- Gradient-Based Optimization \& Backpropagation
- Automatic Differentiation
- Training in Batches
- Regularization

Stochastic Gradient Descent

- In Deep Learning, we never compute the exact gradient of the loss function on the whole training set $\mathrm{D}=\left\{\left(\mathbf{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}\right)\right\}_{k=1}^{N}$
- Q: Why not?
- Conceptual reason: gradient descent is guaranteed to lead to the closest local minimum (if η small enough)
- Practical reason: we cannot fit all training examples into memory (GPU VRAM) at once*
- Stochastic gradient descent (SGD) - compute the loss, gradients, and update the parameters based on a single training instance
- Repeat for all training instances
- Order of instances random (hence the name stochastic)
- Many parameter updates - slow training

Mini-Batch Gradient Descent

- (Mini-)batch GD: sweet spot between full GD and SGD
- We train in the so-called mini-batches of B examples (e.g., $B=32$)
- Iteratively (mini-batch after mini-batch):

1. Select B training examples from the training set D
2. Compute the loss L_{B} and gradient $\nabla_{\theta} L_{B}(\theta)$ based on B (using the reverse mode automatic differentiation)
3. Update the parameters $\boldsymbol{\theta}^{(t+1)}=\theta^{(t)}-\eta \nabla_{\theta} L_{B}\left(\theta^{(t)}\right)$

- Batch-based GD - more resilient to local minima than GD and faster than SGD
- Training epoch: model updated on all mini-batches B from D,
- Each training example part of exactly one mini-batch
- It is common to train DL models for multiple epochs

Gradient Accumulation

- All instances of the batch B are „packed" into a single input tensor
- Forward pass through the model simultaneous for instances in B
- In DL, we generally want to train on batches as large as possible
- Limitation: VRAM of your GPU
- Let B_{p} be the practical batch size, that is, the max. number of instances that fit into GPU memory at once
- If $B_{p}<$ desired batch size B, then we will resort to gradient accumulation
- Gradient accumulation
- Accumulating (i.e., summing) gradients across $|B| /\left|B_{p}\right|$ batches of size $\left|B_{p}\right|$
- Updating the parameters only at the end (learning rate needs to be adjusted*):

$$
\boldsymbol{\theta}^{(\mathrm{t}+1)}=\boldsymbol{\theta}^{(\mathrm{t})}-\frac{\eta}{\left(|\mathrm{B}| /\left|\mathrm{B}_{\mathrm{p}}\right|\right)} \sum_{B_{P}} \nabla_{\boldsymbol{\theta}} \mathrm{L}_{\mathrm{Bp}}\left(\boldsymbol{\theta}^{(\mathrm{t})}\right)
$$

- $|B| /\left|B_{p}\right|$ passes through the model (forward pass + reverse mode autodiff) for one parameter update

Fahrplan

- Gradient-Based Optimization \& Backpropagation
- Automatic Differentiation
- Training in Batches
- Regularization

Regularization

- If complexity (sometimes in DL also called capacity) of the model $h(x \mid \theta)$ is (much) larger than the data distribution we're modeling...
- ...model will likely overfit to training data and won't generalize well
- Regularization is an umbrella term for methods that try to prevent overfitting by reducing model complexity

Regularization

- Regularization is an umbrella term for methods that try to prevent overfitting by reducing model complexity
- Two most commonly used regularization techniques in Deep Learning:
- L2-Regularization (called Ridge Regression in statistics)
- Dropout
- L2-Regularization
- Prevents parameters from getting large absolute values (which is what commonly happens when overfitting)
- We minimize the objective: $J_{\mathrm{R}}(\theta)=J(\theta)+\lambda^{*}\|\theta\|_{2}$
- $\|\theta\|_{2}$ - sum of Euclidean $\left(L_{2}\right)$ norms of all parameter vectors and matrices

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., \& Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of Machine Learning Research, 15(1), 1929-1958..

- Regularization by training multiple models (multiple different model instances and ensembling their predictions is effective
- But this is very computationally prohibitive!
- Especially if models have billions of parameters ()
- Dropout: a regularization method that simulates training many (slightly) different models in a single training procedure
- By means of randomly dropping out "neurons" (zeroing out values in tensors)
- Applied on per-layer basis, i.e., on the output of a layer

Dropout

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., \& Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of Machine Learning Research, 15(1), 1929-1958..

- Let \mathbf{x} be any hidden representation, output of any layer of an arbitrary DL model
- E.g., output of layer K
- Applying dropout on a layer means
- To modify layer's output(s) x so that each element x_{i} becomes replaced with x^{\prime} :

$$
\begin{aligned}
& x_{i}^{\prime}=0 \text { with dropout probability } p \text { or } \\
& x_{i}^{\prime}=x_{i} /(1-p) \text { with the probability (1-p) }
\end{aligned}
$$

