
3. Optimization & Training

Deep Learning
Summer semester ‘24

Machine Learning Components

• Any ML algorithm/approach has to have
the following three components:

• Model

• Objective

• Optimization algorithm

Machine Learning Components

• Any ML algorithm/approach has three components:

1. Model
• A set of functions among which we’re looking for the „best” one

H = {h(x|θ)}θ

• Hypothesis h = a concrete function obtained for some concrete
values of θ

• Model = set of hypotheses

Machine Learning Components

• Any ML algorithm/approach has three components:

2. Objective
• We’re looking from the best hypothesis h in the model H = {h(x|θ)}θ

• Q: But „best” according to what?

• Objective J is a function that quantifies how good/bad a hypothesis h is
• Usually J is a „loss function” that we’re minimizing

• We’re looking for h (that is, values of parameters θ) that maximize or
minimize the objective J

• ML thus amounts to solving optimization problems

h* = argminh∈H J(h(x|θ))
θ* = argminθ J(h(x|θ))

Machine Learning Components

• Any ML algorithm/approach has three components:

3. Optimization algorithm
• An exact algorithm that we use to solve the optimization problem

θ* = argminθ J(h(x|θ))

• Selection/type of the optimization algorithm depends on the two
functions – the model H and the objective J

Optimization of a DL model

• D = {x(i), y(i)}i = {1, ..., B}→ training dataset
• We rarely/never optimize based on the whole training dataset at once, but on

the small subset of B examples, called batch, one batch at a time

• h(x|θ) = layn(layn-1(...(lay1(x|θL1)|θL2)...)|θLn)
• Our DL model (aka „architecture”), composition of parameterized functions

• L(h(x|θ), y) → loss function (for a single instance)

• J =
1

𝐵
σ𝑖=1
𝐵 L(h(x(i)|θ), y(i))→ objective function to minimize w.r.t. θ

θ* = argminθ J

Fahrplan

• Gradient-Based Optimization

• Backpropagation

• Automatic Differentiation

• Training in Batches

• Regularization

Gradient-Based Optimization

• We resort to (in DL, typically unconstrained) numerical optimization

• Concretely, optimization of deep NNs relies on gradient-based optimization,
i.e., variants of gradient descent

• Gradient descent – optimization algorithm that uses function differentiation
(w.r.t. parameters) to find the minimum of a function

Numerical optimization refers to optimizing real-valued functions f(𝛉): ℝn
→ ℝ,

𝛉 = θ1, θ2, ..., θ𝑛 ∈ ℝ. This means finding values θ1, θ2, ..., θ𝑛 for which f obtains
the minimal or maximal value.

Numerical Optimization

Gradient-Based Optimization

• Objective J needs to be differentiable* w.r.t. all parameters 𝜽 = {θ1,θ2, ..., θ𝑛}

A function of multiple parameters f(𝛉 = θ1, θ2, ..., θ𝑛) is differentiable if its

gradient ∇𝛉 f – a vector of partial derivatives ∇𝛉 f = [
∂𝑓
∂θ1

,
∂𝑓
∂θ2

, ...,
∂𝑓
∂θn

] – exists

for every point of the input domain.

Gradient of a differentiable function

• Gradient descent is a method that moves the parameter values in the
direction opposite of the function’s gradient in the current point

• This is guaranteed to lead to a global minimum only for convex functions*

• Objectives of DL models are
never globally convex

• No guarantee of „global” minimum
• But we hope for a good enough

„local” minimum, i.e., to find such values 𝛉
for which J is „small enough”

Gradient-Based Optimization

Gradient descent (sometimes also called steepest descent) is an iterative
algorithm for (continuous) optimization that finds a minimum of a convex (single)

differentiable function.

Gradient Descent

• In each iteration GD moves the values of parameters 𝛉 = {θ1, θ2, ..., θ𝑛} in the
direction opposite to the gradient in the current point

𝛉(k+1) = 𝛉(k) – η∇𝛉 f(𝛉(k))

• ∇𝛉f(𝛉) – value of the gradient (a vector of same dimensionality as 𝛉) of the
function f in the point 𝛉

• η – learning rate, defines by how much to move the parameters in the direction
opposite of the gradient

Gradient Descent

Gradient-Based Optimization

• So, what we need to compute for gradient descent is

• Or, put differently,
∂𝑱
∂𝜽i

for each parameter θi in θ

=
∂
∂𝜽i

[
1

𝐵
σ𝑖=1
𝐵 L(h(x(i)|θ), y(i))]

=
1

𝐵
σ𝑖=1
𝐵 ∂

∂𝜽i
L(h(x(i)|θ), y(i))

∇𝛉 J = ∇𝛉 [
1

𝐵
σ𝑖=1
𝐵 L(h(x(i)|θ), y(i))]

Gradient-Based Optimization

• So, to update some parameter θ𝑖 we would need to compute in

closed-form the partial derivative of the loss L w.r.t. θ𝑖:
∂𝑳
∂𝜽i

• But our L is a complex composition of parametrized functions
(i.e., model layers)
• Because it’s computed on the output of the model, h(x(i)|θ)

• In other words:

∂𝑱
∂𝜽i

=
1

𝐵
σ𝑖=1
𝐵 ∂

∂𝜽i
L(layn(layn-1(...(lay1(x|θL1)|θL2)...)|θLn), y

(i))

Fahrplan

• Gradient-Based Optimization

• Backpropagation

• Automatic Differentiation

• Training in Batches

• Regularization

∂
∂𝜽i

L(h(x(i)|θ), y(i))

=
∂
∂𝜽i

L(layn(layn−1(...(lay1(x|θL1)|θL2)...)|θLn), y
(i))

• Let 𝛉ij denote the j-th parameter of the i-th layer of the model

• Computing
∂𝐿
∂θ

𝑖𝑗

in closed form for params 𝛉Nj of the last layer is easy

• But it gets progressively more cumbersome and difficult the „deeper” in the
model the layer of the parameter is

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533-536.

Backpropagation

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

• Computing
∂𝐿
∂θ

in closed form gets progressively more difficult the „further away”

the parameter (i.e., its layer) is from the loss”

• Backpropagation leverages the chain rule of differentiation to avoid the difficult
computation of closed-form gradients for „deeper” parameters
• Gradients of parameters from k-th layer are estimated from gradients of

parameters from layer k+1

∂𝐿
∂θ

𝑖𝑗

=
∂𝐿
∂ℎ

∂ℎ
∂𝑙𝑎𝑦

𝑛

∂𝑙𝑎𝑦𝑛
∂𝑙𝑎𝑦

𝑛−1

...
∂𝑙𝑎𝑦𝑖

+
1

∂𝑙𝑎𝑦
𝑖

∂𝑙𝑎𝑦𝑖
∂θ

𝑖𝑗

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533-536.

Backpropagation

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

∂𝐿
∂θ𝑖𝑗

=
∂𝐿
∂ℎ

∂ℎ
∂𝑙𝑎𝑦𝑛

∂𝑙𝑎𝑦𝑛

∂𝑙𝑎𝑦𝑛−1

...
∂𝑙𝑎𝑦𝑖+1

∂𝑙𝑎𝑦𝑖

∂𝑙𝑎𝑦𝑖

∂θ𝑖𝑗

• For some (j-th) parameter θ𝑛, 𝑗 of the last, n-th layer:

∂𝐿
∂θ𝑛,𝑗

=
∂𝐿
∂ℎ

∂ℎ
∂𝑙𝑎𝑦𝑛

∂𝑙𝑎𝑦𝑛

∂θ𝑛,𝑗

δN

Backpropagation

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533-536.

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

∂𝐿
∂θ𝑖𝑗

=
∂𝐿
∂ℎ

∂ℎ
∂𝑙𝑎𝑦𝑛

∂𝑙𝑎𝑦
𝑛

∂𝑙𝑎𝑦𝑛−1

...
∂𝑙𝑎𝑦

𝑖+1

∂𝑙𝑎𝑦𝑖

∂𝑙𝑎𝑦
𝑖

∂θ𝑖𝑗

• For some (j-th) parameter θ𝑛 − 1, 𝑗 of the penultimate, (n-1)-th layer:

∂𝐿
∂θ

𝑁−1
,
𝑗

=
∂𝐿
∂ℎ

∂ℎ
∂𝑙𝑎𝑦

𝑛

∂𝑙𝑎𝑦
𝑛

∂𝑙𝑎𝑦
𝑛−1

∂𝑙𝑎𝑦
𝑛
−
1

∂θ
𝑛
−
1
,
𝑗

δN-1

Backpropagation

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533-536.

δN

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

∂𝐿
∂θ

𝑛−1
,
𝑗

= δN

∂𝑙𝑎𝑦
𝑛

∂𝑙𝑎𝑦
𝑛−1

∂𝑙𝑎𝑦
𝑛−1

∂θ
𝑛−1

,
𝑗

...

∂𝐿
∂θ

𝑖
,
𝑗

= δi+1

∂𝑙𝑎𝑦
𝑖+1

∂𝑙𝑎𝑦
𝑖

∂𝑙𝑎𝑦
𝑖

∂θ
𝑖
,
𝑗

...

∂𝐿
∂θ1,𝑗

= δ2

∂𝑙𝑎𝑦
2

∂𝑙𝑎𝑦1

∂𝑙𝑎𝑦
1

∂θ1,𝑗

• With backprop we avoid having to explicitly
compute derivatives for all
layers/parameters

• But we have to compute gradients in the
inverse order of layers☺

• (part of the) gradient of a subsequent layer
needed for the computation of the gradient
of the preceding layer

Backpropagation

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533-536.

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation – example

• Model: 2-layer feed-forward network with sigmoid activation
• scalar output

h(x|𝛉) = σ(σ(xW1 + b1)W2 + b2)

• x ∈ ℝd

• 𝛉 = { W1∈ ℝd x H, b1∈ ℝH, W2∈ ℝH x 1, b2∈ ℝ }

• Loss function: binary cross-entropy loss (BCE)
• L(h(x|𝛉), y) = –[y ln(h(x|𝛉)) + (1 - y) ln(1-h(x|𝛉))]

σ(x) = 1/(1+e-x)

Backpropagation – example

• Model: h(x|𝛉) = σ(σ(xW1 + b1)W2 + b2)

• Loss function: L(h(x|𝛉), y) = –[y ln h + (1 - y) ln(1-h)]

• Last (second) layer parameters:

• and∂𝐿
∂𝑾2

=
∂𝐿
∂ℎ

∂ℎ
∂𝑙𝑎𝑦2

∂𝑙𝑎𝑦
2

∂𝑾2

∂𝐿
∂𝑏2

=
∂𝐿
∂ℎ

∂ℎ
∂𝑙𝑎𝑦2

∂𝑙𝑎𝑦
2

∂𝑏2

1.
∂𝐿
∂ℎ

=
-∂[y ln h + (1 - y) ln(1-h)]

∂ℎ

= - (
y
ℎ

+
1−𝑦

1−ℎ
(-1)) =

𝒉−𝒚

𝒉(𝟏−𝒉)

Backpropagation – example

• Model: h(x|𝛉) = σ(σ(xW1 + b1)W2 + b2)

= lay2(lay1(x))

• Last (second) layer parameters

• and∂𝐿
∂𝑾2

=
∂𝐿
∂ℎ

∂ℎ
∂𝑙𝑎𝑦2

∂𝑙𝑎𝑦
2

∂𝑾2

∂𝐿
∂𝑏2

=
∂𝐿
∂ℎ

∂ℎ
∂𝑙𝑎𝑦2

∂𝑙𝑎𝑦
2

∂𝑏2

2.
∂ℎ

∂𝑙𝑎𝑦2

= 1

lay1(a) = σ(aW1 + b1)
lay2(a) = σ(aW2 + b2)

h = lay2

Output of
lay2 is the
output of
the whole
model

Backpropagation – example

• Model: h(x|𝛉) = σ(σ(xW1 + b1)W2 + b2)

= lay2(lay1(x))

• First, last (second) layer parameters

• ∂𝐿
∂𝑾

2

=
∂𝐿
∂ℎ

∂ℎ
∂𝑙𝑎𝑦

2

∂𝑙𝑎𝑦2

∂𝑾
2

3.
∂𝑙𝑎𝑦

2

∂𝑾2

=
∂[σ(σ(xW1 + b1)W2 + b2)]

∂𝑾2

= 𝑙𝑎𝑦2 * (1 - 𝑙𝑎𝑦2)
∂[lay1W2 + b2]

∂𝑾2

= 𝑙𝑎𝑦2 * (1 - 𝑙𝑎𝑦2) * lay1

lay1(a) = σ(aW1 + b1)
lay2(a) = σ(aW2 + b2)

σ(a)’ = σ(a) * (1 - σ(a))

Sigmoid has a
very nice

derivative ☺

∂𝑙𝑎𝑦
2

∂𝑏
2

= 𝑙𝑎𝑦2 * (1 - 𝑙𝑎𝑦2) * 1
vector

Backpropagation – example

• Model: h(x|𝛉) = σ(σ(xW1 + b1)W2 + b2)

• Loss function: L(h(x|𝛉), y) = –[y ln h + (1 - y) ln(1-h)]

• Last (second) layer parameters:

∂𝐿
∂𝑾2

=
∂𝐿
∂ℎ

∂ℎ
∂𝑙𝑎𝑦2

∂𝑙𝑎𝑦2

∂𝑾2

=
𝒉−𝒚

𝒉(𝟏−𝒉)
* 1 * 𝑙𝑎𝑦2 * (1 - 𝑙𝑎𝑦2) * lay1

δ2

Backpropagation – example

• Model: h(x|𝛉) = σ(σ(xW1 + b1)W2 + b2)

• Loss function: L(h(x|𝛉), y) = –[y ln h + (1 - y) ln(1-h)]

• First layer parameters:

• ∂𝐿
∂𝑾1

=
∂𝐿
∂ℎ

∂ℎ
∂𝑙𝑎𝑦2

∂𝑙𝑎𝑦
2

∂𝑙𝑎𝑦1

∂𝑙𝑎𝑦
1

∂𝑾𝟏

1.
∂𝑙𝑎𝑦

2

∂𝑙𝑎𝑦1

= 𝑙𝑎𝑦2 * (1 - 𝑙𝑎𝑦2) * W2

2.
∂𝑙𝑎𝑦1

∂𝑾
𝟏

= 𝑙𝑎𝑦1 * (1 - 𝑙𝑎𝑦1) * xT

∂𝐿
∂𝑾1

= xT * δ2 * W2 * 𝑙𝑎𝑦1 * (1 - 𝑙𝑎𝑦1)

Explanation video (from 9:00)

https://www.youtube.com/watch?v=x4RNPJD-IkQ&ab_channel=MeerkatStatistics

Fahrplan

• Gradient-Based Optimization

• Backpropagation

• Automatic Differentiation

• Training in Batches

• Regularization

Automatic Differentiation

• In our backpropagation example, we manually differentiated
• Tedious, error-prone

• Other options (all in principle „automatic”)
• Numerical differentiation

• (–) Numerical instabilities, problem-specific selection of learning rates

• Symbolic differentiation
• Automation of manual diff., computer applies diff. rules step by step
• Result is an explicit (symbolic, closed form) derivative: (–) expression swell
• (–) Model has to implemented with „pure functions”, no common programming constructs

loops, conditions, ... (no discrete computation steps)
• Example library: SymPy

• Automatic differentiation

https://www.sympy.org/en/index.html

Automatic Differentiation

• Does not need the symbolic formula of the derivative
• only computes values of the derivatives in concrete points

• Computation graph = intermediate variables in the code and how
they are computed from one another

• Computation graph then used to propagate computation of gradients
• Forward mode

• Reverse mode

Computation Graph

• Example function of two variables: f(x1, x2) = (𝑒
𝑥
1

𝑥
2 +

𝑥1
𝑥2

) * (
𝑥1
𝑥2

- ln 𝑥2)

• We introduce variables for intermediate steps

• v1 =
𝑥
1

𝑥
2

• v2 = 𝑒
𝑥
1

𝑥
2 = 𝑒𝑣1

• v3 = v2 + v1

• v4 = ln 𝑥2
• v5 =

𝑥
1

𝑥
2

- ln 𝑥2 = v1 – v4

• f = v3 * v5

v2 = 𝑒𝑣1

v1

v2

x1

x2 v4

v3

v5

f

v1 =
𝑥
1

𝑥
2

v4 = ln 𝑥2

v3 = v2 + v1

v5 = v1 – v4

f = v3 * v5

Automatic Differentiation: Forward Mode

• Forward mode
• For each input variable, we compute both the value of each node as well as

the value of the derivative of the intermediate node w.r.t that variable

v2 = 𝑒𝑣1

v1

v2

x1

x2 v4

v3

v5

f

v1 =
𝑥
1

𝑥
2

v4 = ln 𝑥2

v3 = v2 + v1

v5 = v1 – v4

f = v3 * v5

• Start from: (x1, x2) = (0.5, 1), compute
∂𝑓
∂𝑥

1

• We compute vi and v’i =
∂𝑣

𝑖

∂𝑥
1

• v1 = 0.5, v’1 = 1/x2 = 1
• v2 = ev1 = 1.64, v ’2 = ev1 * v’1 = 1.65
• v3 = 2.14, v’3 = v’1 + v ’2 = 2.65
• v4 = 0, v’4 = 0
• v5 = 0.5, v’5 = v’1 - v ’4 = 1

• f = 1.07
∂𝑓
∂𝑥

1

= v’3*v5 + v’5*v3 = 3.46

Automatic Differentiation: Forward Mode

• Forward mode
• For each input variable, we compute both the value of each node as well as

the value of the derivative of that node w.r.t that variable

v2 = 𝑒𝑣1

v1

v2

x1

x2 v4

v3

v5

f

v1 =
𝑥
1

𝑥
2

v4 = ln 𝑥2

v3 = v2 + v1

v5 = v1 – v4

f = v3 * v5

• One forward pass to compute
∂𝑓
∂𝑥

1

• Q: Can we compute also
∂𝑔
∂𝑥

1

, for some

other function g(x1, x2) in the same pass?
• Yes!
• One joint computational graph for

arbitrary number of functions
over the same variables

Automatic Differentiation: Forward Mode

• Forward mode
• For each input variable, we compute both the value of each node as well as

the value of the derivative of the intermediate node w.r.t that variable

v2 = 𝑒𝑣1

v1

v2

x1

x2 v4

v3

v5

f

v1 =
𝑥
1

𝑥
2

v4 = ln 𝑥2

v3 = v2 + v1

v5 = v1 – v4

f = v3 * v5

• One forward pass to compute
∂𝑓
∂𝑥

1

• Q: Can we compute also
∂𝑓
∂𝑥

2

, in the same

pass (while computing
∂𝑓
∂𝑥

1

)?

• No*, we have to run two forward
passes

• Computation of partial derivatives of
functions per different parameters is
independent in forward mode

Automatic Differentiation

• Forward mode
• Not suitable for deep learning!

• Q: Why? Hint: how many paramaters do we have in DL models?

• Forward mode good when
• No. outputs >> no. of inputs/parameters

• We need gradients of many different functions defined over the same small number of
parameters

• Reverse mode
• Start from end nodes of comp. graph and compute gradients backwards

• Q: Familiar?

Automatic Differentiation: Forward Mode

• Reverse mode
• Forward pass computes just the values

• „Gradients” (actually adjoints) computed in a backward pass

v2 = 𝑒𝑣1

v1

v2

x1

x2 v4

v3

v5

f

v1 =
𝑥
1

𝑥
2

v4 = ln 𝑥2

v3 = v2 + v1

v5 = v1 – v4

f = v3 * v5

• f(x1, x2) = (𝑒
𝑥
1

𝑥
2 +

𝑥1
𝑥
2

) * (
𝑥1
𝑥
2

- ln 𝑥2)

• Start from: (x1, x2) = (0.5, 1)
• 1. Forward pass to compute the values

• v1 = 0.5,
• v2 = ev1 = 1.64,
• v3 = 2.14,
• v4 = 0,
• v5 = 0.5,
• f = 1.07

Automatic Differentiation: Forward Mode

• Reverse mode
• Forward pass computes just the values

• „Gradients” (actually adjoints) computed in a backward pass
v2 = 𝑒𝑣1

v1

v2

x1

x2 v4

v3

v5

f

v1 =
𝑥
1

𝑥
2

v4 = ln 𝑥2

v3 = v2 + v1

v5 = v1 – v4

f = v3 * v5

• f(x1, x2) = (𝑒
𝑥
1

𝑥
2 +

𝑥1
𝑥
2

) * (
𝑥1
𝑥
2

- ln 𝑥2)

• Start from: (x1, x2) = (0.5, 1)
• 2. Backward pass to compute adjoints

• Adjoint ഥ𝑣𝑖 of the node vi is
∂𝑓
∂vi

• Adjoints of parent nodes vi computed
from adjoints of their children nodes vj

ഥ𝑣𝑖 = σvj𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 vi
(ഥ𝑣𝑗 *

∂𝑣
𝑗

∂𝑣
𝑖

)

Automatic Differentiation: Forward Mode

• Reverse mode
• Forward pass computes just the values

• „Gradients” (actually adjoints) computed in a backward pass v2 = 𝑒𝑣1

v1

v2

x1

x2 v4

v3

v5

f

v1 =
𝑥
1

𝑥
2

v4 = ln 𝑥2

v3 = v2 + v1

v5 = v1 – v4

f = v3 * v5

• f(x1, x2) = (𝑒
𝑥
1

𝑥
2 +

𝑥1
𝑥
2

) * (
𝑥1
𝑥
2

- ln 𝑥2)

• ഥ𝑣5 =
∂𝑓
∂v5

= v3 = 2.14

• ഥ𝑣3 =
∂𝑓
∂v3

= v5 = 0.5

• ഥ𝑣2 = ഥ𝑣3 *
∂𝑣

3

∂𝑣
2

= 0.5 * 1 = 0.5

• ഥ𝑣4 = ഥ𝑣5 *
∂𝑣

5

∂𝑣
4

= 2.14 * (-1) = -2.14

• ഥ𝑣1 = ഥ𝑣2 *
∂𝑣

2

∂𝑣
1

+ ഥ𝑣3 *
∂𝑣

3

∂𝑣
1

+ ഥ𝑣5 *
∂𝑣

5

∂𝑣
1

= 0.5 * 1.64 + 0.5 * 1 + 2.14 * 1 = 3.46

ഥ𝑣𝑖 = σvj𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 vi
(ഥ𝑣𝑗 *

∂𝑣𝑗
∂𝑣

𝑖

)

Automatic Differentiation: Forward Mode

• Reverse mode
• Forward pass computes just the values

• „Gradients” (actually adjoints) computed in a backward pass v2 = 𝑒𝑣1

v1

v2

x1

x2 v4

v3

v5

f

v1 =
𝑥
1

𝑥
2

v4 = ln 𝑥2

v3 = v2 + v1

v5 = v1 – v4

f = v3 * v5

• f(x1, x2) = (𝑒
𝑥
1

𝑥
2 +

𝑥1
𝑥
2

) * (
𝑥1
𝑥
2

- ln 𝑥2)

• …

• ഥ𝑣4 = ഥ𝑣5 *
∂𝑣

5

∂𝑣
4

= 0.5 * (-1) = -0.5

• ഥ𝑣1 = ഥ𝑣2 *
∂𝑣

2

∂𝑣
1

+ ഥ𝑣3 *
∂𝑣

3

∂𝑣
1

+ ഥ𝑣5 *
∂𝑣

5

∂𝑣
1

= 0.5 * 1.64 + 0.5 * 1 + 2.14 * 1 = 3.46

• ഥ𝑥1 = ഥ𝑣1*
∂𝑣

1

∂𝑥
1

= ഥ𝑣1 * 1/x2 = 3.46 * 1 = 3.46

• ഥ𝑥2 = ഥ𝑣1*
∂𝑣

1

∂𝑥
2

+ ഥ𝑣4*
∂𝑣

4

∂𝑥
2

= ...
ഥ𝑣𝑖 = σvj𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 vi

(ഥ𝑣𝑗 *
∂𝑣𝑗
∂𝑣

𝑖

)

Automatic Differentiation: Forward Mode

• Reverse mode
• Forward pass computes just the values

• „Gradients” (actually adjoints) computed in a backward pass v2 = 𝑒𝑣1

v1

v2

x1

x2 v4

v3

v5

f

v1 =
𝑥
1

𝑥
2

v4 = ln 𝑥2

v3 = v2 + v1

v5 = v1 – v4

f = v3 * v5

• Q: How many reverse/backward
passes would we need if:

• We have many variables/parameters:
x1, x2, ..., xM

• Just one!
• This is why it’s used in DL!

• We have more than one target function:
f1, f2, ..., fN?

ഥ𝑣𝑖 = σvj𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 vi
(ഥ𝑣𝑗 *

∂𝑣𝑗
∂𝑣

𝑖

)

Reverse Mode Autodiff vs. Backpropagation?

• Q: How is reverse mode autodiff different from backpropagation?
• Reverse mode autodiff is more general than backpropagation

• Backpropagation a special case of reverse mode autodiff
• Initially designed for FFNNs

• One target function/loss (i.e., scalar)

v2 = 𝑒𝑣1

v1

v2

x1

x2 v4

v3

v5

f

v1 =
𝑥
1

𝑥
2

v4 = ln 𝑥2

v3 = v2 + v1

v5 = v1 – v4

f = v3 * v5

• Q: Autodiff vs. Autograd?
• Autograd is just the name of the

popular autodiff Python implementation
• Used also by PyTorch

• torch.autograd
ഥ𝑣𝑖 = σvj𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 vi

(ഥ𝑣𝑗 *
∂𝑣𝑗
∂𝑣

𝑖

)

Automatic Differentiation in PyTorch

import torch

x1 = torch.tensor(0.5, requires_grad = True)
x2 = torch.tensor(1.0, requires_grad = True)

f = (torch.exp(x1/x2) + x1/x2) * (x1/x2 - torch.log(x2))

f.backward() # executes reverse mode autodiff

print(x1.grad)
print(x2.grad)

f(x1, x2) = (𝑒
𝑥
1

𝑥
2 +

𝑥
1

𝑥
2

) * (
𝑥
1

𝑥
2

- ln 𝑥2)

Fahrplan

• Gradient-Based Optimization & Backpropagation

• Automatic Differentiation

• Training in Batches

• Regularization

• In Deep Learning, we never compute the exact gradient of the loss function on

the whole training set D = {(xk, yk)}
𝑁
𝑘=1

• Q: Why not?

• Conceptual reason: gradient descent is guaranteed to lead to the closest
local minimum (if η small enough)

• Practical reason: we cannot fit all training examples into memory (GPU
VRAM) at once*

• Stochastic gradient descent (SGD) – compute the loss, gradients, and update
the parameters based on a single training instance
• Repeat for all training instances
• Order of instances random (hence the name stochastic)
• Many parameter updates – slow training

Stochastic Gradient Descent

• (Mini-)batch GD: sweet spot between full GD and SGD
• We train in the so-called mini-batches of B examples (e.g., B = 32)
• Iteratively (mini-batch after mini-batch):

1. Select B training examples from the training set D
2. Compute the loss LB and gradient ∇𝛉LB(𝛉) based on B (using the reverse mode

automatic differentiation)
3. Update the parameters 𝛉(t+1) = 𝛉(t) – η∇𝛉LB(𝛉(t))

• Batch-based GD – more resilient to local minima than GD and faster than SGD

• Training epoch: model updated on all mini-batches B from D,
• Each training example part of exactly one mini-batch
• It is common to train DL models for multiple epochs

Mini-Batch Gradient Descent

Gradient Accumulation

• All instances of the batch B are „packed” into a single input tensor
• Forward pass through the model simultaneous for instances in B

• In DL, we generally want to train on batches as large as possible
• Limitation: VRAM of your GPU

• Let BP be the practical batch size, that is, the max. number of instances that fit into GPU
memory at once

• If BP < desired batch size B, then we will resort to gradient accumulation

• Gradient accumulation
• Accumulating (i.e., summing) gradients across |B|/|BP| batches of size|BP|

• Updating the parameters only at the end (learning rate needs to be adjusted*):

• |B|/|BP| passes through the model (forward pass + reverse mode autodiff) for one
parameter update

𝛉(t+1) = 𝛉(t) –
η

(|B|/|BP|)
σ𝐵

𝑃
∇𝛉LBP(𝛉(t))

Fahrplan

• Gradient-Based Optimization & Backpropagation

• Automatic Differentiation

• Training in Batches

• Regularization

Regularization

• If complexity (sometimes in DL also called capacity) of the model
h(x|𝛉) is (much) larger than the data distribution we’re modeling...

• ...model will likely overfit to training data and won’t generalize well

• Regularization is an umbrella term
for methods that try to prevent
overfitting by reducing model
complexity

Regularization

• Regularization is an umbrella term for methods that try to prevent
overfitting by reducing model complexity

• Two most commonly used regularization techniques in Deep Learning:
• L2-Regularization (called Ridge Regression in statistics)

• Dropout

• L2-Regularization
• Prevents parameters from getting large absolute values (which is what

commonly happens when overfitting)

• We minimize the objective: JR(𝛉) = J(𝛉) + λ* ∥𝛉∥2

• ∥𝛉∥2 – sum of Euclidean (L2) norms of all parameter vectors and matrices

• Regularization by training multiple models (multiple different model instances and
ensembling their predictions is effective
• But this is very computationally prohibitive!
• Especially if models have billions of parameters ☺

• Dropout: a regularization method that simulates training many (slightly) different
models in a single training procedure
• By means of randomly dropping out ”neurons” (zeroing out values in tensors)
• Applied on per-layer basis, i.e., on the output of a layer

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:
a simple way to prevent neural networks from overfitting. The journal of Machine Learning
Research, 15(1), 1929-1958..

Dropout

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

• Let x be any hidden representation, output of any
layer of an arbitrary DL model
• E.g., output of layer K

• Applying dropout on a layer means
• To modify layer’s output(s) x so that each

element xi becomes replaced with x’i:

x’i = 0 with dropout probability p or
x’i = xi / (1-p) with the probability (1-p)

...

Layer 1 (𝛉1)

Layer 2 (𝛉2)

Layer K (𝛉K)

...

x

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:
a simple way to prevent neural networks from overfitting. The journal of Machine Learning
Research, 15(1), 1929-1958..

Dropout

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

3. Optimization & Training

Deep Learning
Summer semester ‘24

	Slide 1
	Slide 2: Machine Learning Components
	Slide 3: Machine Learning Components
	Slide 4: Machine Learning Components
	Slide 5: Machine Learning Components
	Slide 6: Optimization of a DL model
	Slide 7: Fahrplan
	Slide 8: Gradient-Based Optimization
	Slide 9: Gradient-Based Optimization
	Slide 10: Gradient-Based Optimization
	Slide 11: Gradient Descent
	Slide 12: Gradient-Based Optimization
	Slide 13: Gradient-Based Optimization
	Slide 14: Fahrplan
	Slide 15: Backpropagation
	Slide 16: Backpropagation
	Slide 17: Backpropagation
	Slide 18: Backpropagation
	Slide 19: Backpropagation
	Slide 20: Backpropagation – example
	Slide 21: Backpropagation – example
	Slide 22: Backpropagation – example
	Slide 23: Backpropagation – example
	Slide 24: Backpropagation – example
	Slide 25: Backpropagation – example
	Slide 26: Fahrplan
	Slide 27: Automatic Differentiation
	Slide 28: Automatic Differentiation
	Slide 29: Computation Graph
	Slide 30: Automatic Differentiation: Forward Mode
	Slide 31: Automatic Differentiation: Forward Mode
	Slide 32: Automatic Differentiation: Forward Mode
	Slide 33: Automatic Differentiation
	Slide 34: Automatic Differentiation: Forward Mode
	Slide 35: Automatic Differentiation: Forward Mode
	Slide 36: Automatic Differentiation: Forward Mode
	Slide 37: Automatic Differentiation: Forward Mode
	Slide 38: Automatic Differentiation: Forward Mode
	Slide 39: Reverse Mode Autodiff vs. Backpropagation?
	Slide 40: Automatic Differentiation in PyTorch
	Slide 41: Fahrplan
	Slide 42: Stochastic Gradient Descent
	Slide 43: Mini-Batch Gradient Descent
	Slide 44: Gradient Accumulation
	Slide 45: Fahrplan
	Slide 46: Regularization
	Slide 47: Regularization
	Slide 48: Dropout
	Slide 49: Dropout
	Slide 50

