Deep Learning
Summer semester ‘24 .

Machine Learning Components

* Any ML algorithm/approach has to have
the following three components:

* Model
* Objective
* Optimization algorithm

Machine Learning Components

* Any ML algorithm/approach has three components:

1. Model
e A set of functions among which we’re looking for the , best” one

H = {h(x]|0)}

* Hypothesis /1 = a concrete function obtained for some concrete
values of 6

* Model = set of hypotheses

Machine Learning Components

* Any ML algorithm/approach has three components:

2. Objective

* We're looking from the best hypothesis hin the model H = {h(x|0)},
* (Q: But ,best” according to what?

* Objective J is a function that quantifies how good/bad a hypothesis / is
e Usually Jis a ,loss function” that we’re minimizing

* We're looking for h (that is, values of parameters 0) that maximize or
minimize the objective J

*=argmin,_, J(h(x]0))
* =argming J(h(x]|0))

e ML thus amounts to solving optimization problems

Machine Learning Components

* Any ML algorithm/approach has three components:

3. Optimization algorithm
* An exact algorithm that we use to solve the optimization problem

0* =argming J(h(x|0))

* Selection/type of the optimization algorithm depends on the two
functions — the model H and the objective J

Optimization of a DL model

* D ={x", y}_ 4 > training dataset

 We rarely/never optimize based on the whole training dataset at once, but on
the small subset of B examples, called batch, one batch at a time

* h(x|0) =lay(lay, ,(...(lay,(x|0,,)0,,)...)|©,,.)

 Our DL model (aka ,architecture”), composition of parameterized functions

* L(h(x|8©),y) =2 loss function (for a single instance)

¢ :% 7 L(h(x(1]8), y) > objective function to minimize w.r.t. 0

0* =argming J

Fahrplan

* Gradient-Based Optimization
* Backpropagation
 Automatic Differentiation

* Training in Batches

* Regularization

Gradient-Based Optimization

 We resort to (in DL, typically unconstrained) numerical optimization

(Numerical Optimization \

Numerical optimization refers to optimizing real-valued functions f(0): R" = [,
0=0,0, ..., 0, € R. This means finding values 6, 0., ..., 0 for which f obtains
the minimal or maximal value.

_ J

* Concretely, optimization of deep NNs relies on gradient-based optimization,
i.e., variants of gradient descent

* Gradient descent — optimization algorithm that uses function differentiation
(w.r.t. parameters) to find the minimum of a function

Gradient-Based Optimization

Objective / needs to be differentiable™ w.r.t. all parameters 6 = {06,,0,, ..., 0.}

-

_

Gradient of a differentiable function

A function of multiple parameters f(0 =0, 6., ..., 0) is differentiable if its

gradient V, f — a vector of partial derivatives Vf = [gg : gg . g—ef] — exists
1 2 n

for every point of the input domain.

\

J

Gradient-Based Optimization

* Gradient descent is a method that moves the parameter values in the
direction opposite of the function’s gradient in the current point

e This is guaranteed to lead to a global minimum only for convex functions*

* Objectives of DL models are
never globally convex

No guarantee of ,,global” minimum
But we hope for a good enough
Llocal” minimum, i.e., to find such values 0

for which Jis , small enough”

) I i I i b » i
A 2 A1 B 1 &2 % 4 5§ @& ¥ &8 2 9% W
% 5 = 5%

Gradient Descent

Gradient Descent —\

-

Gradient descent (sometimes also called steepest descent) is an iterative
algorithm for (continuous) optimization that finds a minimum of a convex (single)
differentiable function.

\ J

* In each iteration GD moves the values of parameters 6 = {0, 0., ..., 0 _}in the
direction opposite to the gradient in the current point

0l+1) = gkl — NV, f(OK)

* V,f(0)—value of the gradient (a vector of same dimensionality as 0) of the

function fin the point 0
* 1 —learning rate, defines by how much to move the parameters in the direction

opposite of the gradient

Gradient-Based Optimization

* So, what we need to compute for gradient descent is

Vol =V, [B . L(h(x1@), yi)]

* Or, put differently, :—;

i

for each parameter 0.in 6
[_1 L(h(x16), y")]

L3 5 Lh(x016), yO)

Gradient-Based Optimization

* So, to update some parameter 6. we would need to compute in

closed-form the partial derivative of the loss L w.r.t. O,: g—;

e But our L is a complex composition of parametrized functions
(i.e., model layers)

* Because it’s computed on the output of the model, h(x'8)

° In other words:

An Zl 169 (|ayn(|ayn_1(...(|ay1(X|9,_1)|9|_2)...)|9|_n), y(i))

Fahrplan

* Gradient-Based Optimization
* Backpropagation
 Automatic Differentiation

* Training in Batches

* Regularization

Backpropagation

E Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533-536.

0 . .
— (i) (i)
s L(h(x"|@), y0)

|

= diei L(lay (lay, _4(...(lay,(x]|©,4)|0,,)...)|0,,), Y1)

* Let 0, denote the j-th parameter of the i-th layer of the model

e Computing g—eL in closed form for params 6, of the last layer is easy
ij

* But it gets progressively more cumbersome and difficult the ,,deeper” in the
model the layer of the parameter is

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation

E Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533-536.

. OL, : e ”
 Computing 3510 closed form gets progressively more difficult the ,further away
the parameter (i.e., its layer) is from the loss”

* Backpropagation leverages the chain rule of differentiation to avoid the difficult
computation of closed-form gradients for ,,deeper” parameters
e Gradients of parameters from k-th layer are estimated from gradients of
parameters from layer k+1

oL _ 0L Oh @layn (3layl.l1 @layi
@GU ~ Oh Olay, Olay, , Olay:. GGU

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation

E Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533-536.

oL _ 0L Oh @layn (3la,yl._1 @layl.
dei]. ~ Oh Olay, Olay, , @lay: @Gij

* For some (j-th) parameter 0, . of the last, n-th layer:

i_aL oh alayn
08,; Oh Olay, 08,

Oy

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation

E Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533-536.

oL @L Oh @lay @layillalayi
(36 ~ On Olay, Glay ' Glay: OGU

* Forsome (j-th) parameter 0, 1, ; of the penultimate, (n-1)-th layer:

oL _dL On Olay, Olay |
06 _\ah alayn}alay den V]

N _1’j
Y

Oy

6N-l

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-

propagating errors. Nature, 323(6088), 533-536.

oL

d6

n_1’j

=0

=0

-5 alay alay

N alay aE)n v

alayi.1 alayi
+1 alayz aei,j

(3lay2 (3lay1
- C)lay1 (36

With backprop we avoid having to explicitly
compute derivatives for all
layers/parameters

But we have to compute gradients in the
inverse order of layers ©

(part of the) gradient of a subsequent layer
needed for the computation of the gradient
of the preceding layer

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation — example

* Model: 2-layer feed-forward network with sigmoid activation
* scalar output

h(x]|0) = o(c(xW, + b;)W, + b,)

o(x) = 1/(1+e™)

* x € R
* 0={W,e RI*H b.e RH, w,e R"*! b,e R}

* Loss function: binary cross-entropy loss (BCE)
* L(h(x]0),y) ==[yIn(h(x]e8))+(1-y)/n(1-h(x]e))]

Backpropagation — example

* Model: h(x]0) = o(c(xW, + b,)W, + b,)

* Loss function: L(h(x]0),y) =—[y /n h + (1 -vy) In(1-h)]
* Last (second) layer parameters:

oL OL Oh (3lay2 and oL GL Oh (3lay2
0w, Oh Olay, OW, db, Oh Olay, Ob,

oL _-0[y/nh+(1-vy)/n(1-h)]
oh - Oh
_ —Y _
=-(+t (1) =

1.

h-y
h(1-h)

Backpropagation — example

lay,(a) = o(aW, + b,)

* Model: h(x|8) = o(c(xW, + by)W, + b
odel: h(x]|0) = o(o(xW, + b,)W, + b,) lay,(a) = 6(aW, + b,)

= lay,(lay,(x))

* Last (second) layer parameters h =lay,
. OL _OL Oh Olay, .4 OL _OL Oh Olay, Output of
dw, ~ Oh Olay, OW, Ob, Oh Olay, Ob, lay, is the
output of
On the whole

= @layzz 1 model

Backpropagation — example

* Model: h(x]0) = o(c(xW, + b,)W, + b,)
= lay,(lay,(x))
* First, last (second) layer parameters

. oL _ 0L Oh Olay2
ow, Oh Olay, OW,

Olay, _ G[O(O(XWl + bl)W; + bﬁ

ow, ow, St)
=lay, * (1 - lay,) | ayla\s,lz]

=lay, *(1- lay,) * lay;,—_

3.

vector

lay,(a) = o(aW, + b,)
lay,(a) = o(aW, + b,)

o(a)’ = o(a) * (1 - o(a))

Sigmoid has a
very nice
derivative ©

Olay,
5= lay, * (1-lay,) * 1

Backpropagation — example

* Model: h(x]0) = o(c(xW, + b,)W, + b,)

* Loss function: L(h(x]0), y) =—[y /n h + (1 - y) In(1-h)]
e Last (second) layer parameters:

oL OL| Oh alay2

OwW, |Oh|Olay,|OW,

2

h-y 3¢
= * 17 lay, * (1-lay,)* lay,

\ J
|

0,

Backpropagation — example

* Model: h(x]0) = o(c(xW, + b,)W, + b,)

* Loss function: L(h(x]0),y) =—[y /n h + (1 -vy) In(1-h)]
* First layer parameters:

o oL _OL Oh (3lay2 (3lay1 31

Ow, |Oh|Olay, Olay, OW, 3o = *8,* W, * lay, * (1-lay,)
1. 990y % (1 lay)* W

' Qlay, . . 2
2. 6lay1 = layl * (1 - layl) Explanation video (from 9:00)

ow,

https://www.youtube.com/watch?v=x4RNPJD-IkQ&ab_channel=MeerkatStatistics

Fahrplan

* Gradient-Based Optimization
* Backpropagation

* Automatic Differentiation

* Training in Batches

* Regularization

Automatic Differentiation

* |n our backpropagation example, we manually differentiated
e Tedious, error-prone

e Other options (all in principle ,automatic”)
* Numerical differentiation
* () Numerical instabilities, problem-specific selection of learning rates

* Symbolic differentiation

* Automation of manual diff.,, computer applies diff. rules step by step
* Result is an explicit (symbolic, closed form) derivative: () expression swell

* () Model has to implemented with ,,pure functions”, no common programming constructs
loops, conditions, ... (no discrete computation steps)

* Example library: SymPy

 Automatic differentiation

https://www.sympy.org/en/index.html

Automatic Differentiation

* Does not need the symbolic formula of the derivative
* only computes values of the derivatives in concrete points

* Computation graph = intermediate variables in the code and how
they are computed from one another

 Computation graph then used to propagate computation of gradients
* Forward mode
* Reverse mode

Computation Graph

X

. . —1 X X
* Example function of two variables: f(x,, x,) = (ex, + x—l) * (x—1 - In x,)
2

2

* We introduce variables for intermediate steps

* V3=V, +V,
*v,=1Inx,
X
- 21 _ -\ —
V5= Inx,=v,—V,
2

[J
—
1
<
w
*
<
(9]

Automatic Differentiation: Forward Mode
 Forward mode

* For each input variable, we compute both the value of each node as well as
the value of the derivative of the intermediate node w.r.t that variable

* Start from: (x,, x,) = (0.5, 1), compute g){ v, =e
, _ Ov, :
We compute v, and v, = ox.
* v, =0.5, vii=1/x,=1
* v,=e"=164, v’',=e"'*Vv =165
* v;=2.14, V=V, +v’,=2.65
* v, =0, vi,=0
* v.=0.5, Ve=v, -v’,=1

Y g)]; = V'3 v + v *v; = 3.46

1

Automatic Differentiation: Forward Mode

 Forward mode

* For each input variable, we compute both the value of each node as well as
the value of the derivative of that node w.r.t that variable

oJj
Ox,

o)
* (Q: Can we compute also % , for some
1

* One forward pass to compute

other function g(x,, x,) in the same pass?
* Yes!
* One joint computational graph for
arbitrary number of functions
over the same variables

Automatic Differentiation: Forward Mode

 Forward mode

* For each input variable, we compute both the value of each node as well as
the value of the derivative of the intermediate node w.r.t that variable

* One forward pass to compute ((339]:

of .
* (Q: Can we compute also oj:,ln the same
2

pass (while computing %)?
* No*, we have to run two forward
passes
 Computation of partial derivatives of
functions per different parameters is
independent in forward mode

Automatic Differentiation

* Forward mode
* Not suitable for deep learning!
* Q: Why? Hint: how many paramaters do we have in DL models?

* Forward mode good when
* No. outputs >> no. of inputs/parameters

* We need gradients of many different functions defined over the same small number of
parameters

* Reverse mode
 Start from end nodes of comp. graph and compute gradients backwards
* Q: Familiar?

Automatic Differentiation: Forward Mode

e Reverse mode
* Forward pass computes just the values
e ,Gradients” (actually adjoints) computed in a backward pass

X

e f(x, x,) = (eZ + i—l) k (i—l - In x,)

* Start from: (x,, x,) = (0.5, 1
* 1. Forward pass to compute the values
* v, =0.5,
* v,=¢e"'=1.64,
° v;=2.14,
* v, =0,
* ve=0.5,
« f=1.07

Automatic Differentiation: Forward Mode

e Reverse mode
* Forward pass computes just the values
e ,Gradients” (actually adjoints) computed in a backward pass

X

e f(x, x,) = (eZ + i—l) k (i—l - In x,)

* Start from: (x,, x,) = (0.5, 1
e 2.Backward pass to compute adjoints

* Adjoint U, of the node v, is g—\];

* Adjoints of parent nodes v, colmputed
from adjoints of their children nodes v,

Vi =2y chitd of vi(V; * 3,

Automatic Differentiation: Forward Mode

e Reverse mode
* Forward pass computes just the values
e ,Gradients” (actually adjoints) computed in a backward pass v, =e’s

. f(x,, X,) = (ex, + %) * (2 - In x,)

of 2 2
. 175=6—V5=v3=2.14
. 173=§—\Z=v5=0.5
. 172=173*S—Zz=o.5*1=o.5
. @=175*g—zi=2.14*(-1)=-2.14 5
'ﬂ=@*%?ﬁﬁ%%ﬁ?%% @=Zwmmwﬂ4@*é?

=05*1.64+05*1+2.14*1=3.46

Automatic Differentiation: Forward Mode

e Reverse mode
* Forward pass computes just the values
e ,Gradients” (actually adjoints) computed in a backward pass v, =e’s

e f(x, x,) = (eZ + %) k (ﬁ - In x,)

. 2 x2

o i — i ¥ (3175_ * _
V=05 *52=05 (-1)=-0.5
__ _,0v, _ . Ov, _ , Ov

TP P E R P L v
=0.5%1.64+05*1+2.14*1=3.46
f]ﬂﬂ*%%=ﬁfVU@=346*l=346 3y

77— 5k I
_ _ 4 Ov Oy _ V= ZV- child of V-(Uj)
S i Ov,

2 2

Automatic Differentiation: Forward Mode
e Reverse mode

* Forward pass computes just the values
e ,Gradients” (actually adjoints) computed in a backward pass v,= e’

* : How many reverse/backward

passes would we need if:

 We have many variables/parameters:
X1, Xy «eey Xy

 Just one!
* Thisis why it's usedin DL!

_ _ . Ov.

: U; = D child ofV-(v' *57)

 We have more than one target function: L j i~ J Ov,
i, T vee T2

Reverse Mode Autodiff vs. Backpropagation?

* Q: How is reverse mode autodiff different from backpropagation?
* Reverse mode autodiff is more general than backpropagation

* Backpropagation a special case of reverse mode autodiff v, =e’s
* Initially designed for FFNNs
* One target function/loss (i.e., scalar)

* Q: Autodiff vs. Autograd?
* Autograd is just the name of the
popular autodiff Python implementation
e Used also by PyTorch

* torch.autograd _ _ . Ov.
Wy = Zvj chitd of vi(V; * 3)

Automatic Differentiation in PyTorch

(o + X1y (K1
f(x,, x,) = (ex, + xz) (x2 In x,)

import torch

x1 = torch.tensor(0.5, requires_grad
x2 = torch.tensor(1.0, requires_grad

True)
True)

f = (torch.exp(x1/x2) + x1/x2) * (x1/x2 - torch.log(x2))
f.backward() # executes reverse mode autodiff

print(xl.grad)
print(x2.grad)

Fahrplan

e Gradient-Based Optimization & Backpropagation
* Automatic Differentiation

* Training in Batches

* Regularization

Stochastic Gradient Descent

* In Deep Learning, we never compute the exact gradient of the loss function on
the whole training set D = {(x,, yk)}ki’1
* Q: Why not?

* Conceptual reason: gradient descent is guaranteed to lead to the closest
local minimum (if n small enough)

* Practical reason: we cannot fit all training examples into memory (GPU
VRAM) at once*

* Stochastic gradient descent (SGD) — compute the loss, gradients, and update
the parameters based on a single training instance
e Repeat for all training instances
e Order of instances random (hence the name stochastic)
 Many parameter updates —slow training

Mini-Batch Gradient Descent

* (Mini-)batch GD: sweet spot between full GD and SGD
* We train in the so-called mini-batches of B examples (e.g., B = 32)
* |teratively (mini-batch after mini-batch):
1. Select B training examples from the training set D

2. Compute the loss L, and gradient V,L,(0) based on B (using the reverse mode
automatic differentiation)

3. Update the parameters 01 = 01— 1V L,(00)

e Batch-based GD — more resilient to local minima than GD and faster than SGD

* Training epoch: model updated on all mini-batches B from D,
e Each training example part of exactly one mini-batch
* [tis common to train DL models for multiple epochs

Gradient Accumulation

* All instances of the batch B are ,packed” into a single input tensor
* Forward pass through the model simultaneous for instances in B

* In DL, we generally want to train on batches as large as possible
* Limitation: VRAM of your GPU

* Let B, be the practical batch size, that is, the max. number of instances that fit into GPU
memory at once

* If B,< desired batch size B, then we will resort to gradient accumulation

* Gradient accumulation
e Accumulating (i.e., summing) gradients across |B|/|B,| batches of size|B, |
* Updating the parameters only at the end (learning rate needs to be adjusted™):

O(t+1) — O(t) - (l B |’/7| BP |) ZBP VBLBP(G(t))

* |B|/|B,| passes through the model (forward pass + reverse mode autodiff) for one
parameter update

Fahrplan

e Gradient-Based Optimization & Backpropagation
* Automatic Differentiation

* Training in Batches

* Regularization

e |If (sometimes in DL also called) of the model
(x| 0) is (much) larger than the data distribution we’re modeling...

e ...model will likely and

Underfitting Overfitting
Predictive

* Regularization is an umbrella term Error
for methods that try to N

by

Error on Training Data

Model Complexity

Ideal Range
for Model Complexi

Regularization

* Regularization is an umbrella term for methods that try to prevent
overfitting by reducing model complexity

* Two most commonly used regularization techniques in Deep Learning:
* L2-Regularization (called Ridge Regression in statistics)
* Dropout

e L2-Regularization

* Prevents parameters from getting large absolute values (which is what
commonly happens when overfitting)

* We minimize the objective: J.(0) = J(8) + A* [|6]],
* [[6]l,—sum of Euclidean (L,) norms of all parameter vectors and matrices

Dropout

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, ., & Salakhutdinov, R. (2014). Dropout:
E a simple way to prevent neural networks from overfitting. The journal of Machine Learning
Research, 15(1), 1929-1958..

* Regularization by training multiple models (multiple different model instances and
ensembling their predictions is effective
* But this is very computationally prohibitive!
* Especially if models have billions of parameters ©

* Dropout: a regularization method that simulates training many (slightly) different
models in a single training procedure
* By means of randomly dropping out “neurons” (zeroing out values in tensors)
* Applied on per-layer basis, i.e., on the output of a layer

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Dropout

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, ., & Salakhutdinov, R. (2014). Dropout:
E a simple way to prevent neural networks from overfitting. The journal of Machine Learning

Research, 15(1), 1929-1958..

* Let x be any hidden representation, output of any
layer of an arbitrary DL model
* E.g., output of layer K

* Applying dropout on a layer means
* To modify layer’s output(s) x so that each
element x, becomes replaced with x":

x'. =0 with dropout probability p or
x'.=x./ (1-p) with the probability (1-p)

X
SEE GEE EEE aEas

Layer K ()

Layer 2 (0,)

Layer 1 (0,)

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Deep Learning
Summer semester ‘24 .

	Slide 1
	Slide 2: Machine Learning Components
	Slide 3: Machine Learning Components
	Slide 4: Machine Learning Components
	Slide 5: Machine Learning Components
	Slide 6: Optimization of a DL model
	Slide 7: Fahrplan
	Slide 8: Gradient-Based Optimization
	Slide 9: Gradient-Based Optimization
	Slide 10: Gradient-Based Optimization
	Slide 11: Gradient Descent
	Slide 12: Gradient-Based Optimization
	Slide 13: Gradient-Based Optimization
	Slide 14: Fahrplan
	Slide 15: Backpropagation
	Slide 16: Backpropagation
	Slide 17: Backpropagation
	Slide 18: Backpropagation
	Slide 19: Backpropagation
	Slide 20: Backpropagation – example
	Slide 21: Backpropagation – example
	Slide 22: Backpropagation – example
	Slide 23: Backpropagation – example
	Slide 24: Backpropagation – example
	Slide 25: Backpropagation – example
	Slide 26: Fahrplan
	Slide 27: Automatic Differentiation
	Slide 28: Automatic Differentiation
	Slide 29: Computation Graph
	Slide 30: Automatic Differentiation: Forward Mode
	Slide 31: Automatic Differentiation: Forward Mode
	Slide 32: Automatic Differentiation: Forward Mode
	Slide 33: Automatic Differentiation
	Slide 34: Automatic Differentiation: Forward Mode
	Slide 35: Automatic Differentiation: Forward Mode
	Slide 36: Automatic Differentiation: Forward Mode
	Slide 37: Automatic Differentiation: Forward Mode
	Slide 38: Automatic Differentiation: Forward Mode
	Slide 39: Reverse Mode Autodiff vs. Backpropagation?
	Slide 40: Automatic Differentiation in PyTorch
	Slide 41: Fahrplan
	Slide 42: Stochastic Gradient Descent
	Slide 43: Mini-Batch Gradient Descent
	Slide 44: Gradient Accumulation
	Slide 45: Fahrplan
	Slide 46: Regularization
	Slide 47: Regularization
	Slide 48: Dropout
	Slide 49: Dropout
	Slide 50

