\ B

oos| LN "

' | "I" ;—"’.; ;
p 'gﬁ -
e;dle;der‘M'khalcﬁLIf |

Ny NS

After this lecture, you'll...

Get the core idea behind neural language modeling

Learn about different ways to tokenize text

Understand the details of most popular tokenization strategies used in
(Transformer-based) neural language models

Content

What is Language Modeling?
Neural Language Modeling

« Tokenization

: e Word-Level vs. Character-Level
« Subwords

TR

What is Language Modeling?

* Guess the next word in the sequence:

| see three people standing on the ___
't e,

., 0,

".':::.:'.:‘."‘._ * Which is more likely?

PO » beach or wardrobe

:::.i,:‘:" o e mountain or cat

'.'_“'.::s:.{:' » sidewalk or bookshelf

1 -‘-“::’.‘

What is Language Modeling?

- Language modeling aims to determine the probabilities of

sequences of words in a language

P(| see three people standing on the bridge) = ?
e or generally P(w,w,...w_) =7

 O: How could we estimate this P?

« Maximum likelihood estimation (MLE)

TR

IO * Large corpus C = all the text we can get our hands on
« Countthe number of occurrences of c(w,w,...w,)in C
* Divide the count with the size of C

P(w,w,...w_) = c(w,w,...w_)/|C]

What is Language Modeling?

f : :"\'/
” ~”

7z 7 |
- I/u\

e C = all text ever produced in the history of human kind
P(an unicorn riding a crocodile while drinking wine) = ?

“ Write a five-sentence story about an unicorn riding a crocodile while drinking wine

Once upon a time, in a land where mythical creatures roamed free, a curious unicorn named
Stardust decided to try something daring. While strolling along the banks of the mystical
Crocoglide River, she came across a friendly crocodile named Chomper, sunbathing lazily.
Stardust, holding a bottle of enchanted wine, struck a deal with Chomper: in exchange for a
ride down the river, she would share her wine. As they glided gracefully through the
shimmering water, Stardust sipped her wine, marveling at the harmonious partnership
between two unlikely creatures. The extraordinary sight of Stardust riding Chomper soon

became a legend, a testament to the power of friendship and the boundless possibilities of a

world where anything can happen.

Image generated with Stable Diffusion:
https://stablediffusionweb.com/#demo

https://stablediffusionweb.com/#demo

f : :‘ \',
- =2 /\
“, ’/,;’H\‘

° /7
N-gram Language Modeling s
iy

« Symbolic NLP: every word/token a different symbol
* Meaning of text stems from the set of symbols it contains
« Under such a representation, language is very sparse
* The longer the sequence w,w,...w, (i.e., the larger n is), the less

likely it is that it will be observed in C, no matter the size of C

TR

* N-gram language models are (a partial) remedy
P(w,w,...w) = P(w,) P(wy|w,) - P(ws|w,w,)-...- P(w_ |w,w,...w, ;)

P(w_|w,wy..w)= P(w_|w_ . 1..W_ 1)

N-gram Language Modeling oan

* N-gram language models are (a partial) remedy

P(w,w,...w,) = P(w,): P(wy|w,) - P(ws|w,w,)-...- P(w_ |w,w,...w, ;)

P(w,_ |ww,..w_)= P(w_|w_ _...w_.)
.'t"o

l.' O' P
L Ty, ¢ * ’o o
IO e Unigram LM: n =1

:'-" e P(w, |w,w,..w_)= P(w,.)
:_‘:."’:.: == o P(w,w,..w_) = P(w,)-P(w,)-...-P(w, 1) P(w,)
.' “‘t o s:g: .

Pt -

* Bigram LM: n =2

llll

o P(w_|w,w,..w)= Plw_ |[w.,)
o P(w,w,..w)= P(w,) P(wy|wq):...-P(w, {|w, o) Plw_|w,)

N-gram Language Modeling o

* Shortcomings of n-gram LM-ing (i.e., symbolic LM-ing)

« Generating language with n-gram LMs with small n leads to
incoherent (non-sensical) text

* E.g., n =3, we start with ,a blue unicorn”
: « argmax,, P(w|"blue unicorn”) 2 e.g., t-shirt
e argmax,, P(w|"unicorn t-shirt”) 2 e.g., shop
* argmax,, P(w|"t-shirt shop”) 2 e.g., bankruptcy

TR

R0 ,a blue unicorn t-shirt shop bankruptcy...” ?!

* This can be somewhat remedied (but not much) with:
* Smoothing schemes

« Searching for ,globally” best probability (e.g., w. beam search)

N-gram Language Modeling oan

TR

* Shortcomings of n-gram LM-ing (i.e., symbolic LM-ing)

Sparsity of symbols in language prevents n-gram LMs with large n
But large n would only lead to repetition of n-grams from the training set
(on which we estimated conditional probabilities)

No semantic relations whatsoever between symbols
« If we know cat is similar to dog

* Then observing “l pet a white cat” should affect P(dog | pet a white)

The core idea of neural language modeling:

« By establishing semantic relations between symbols, we can alleviate
the issue of sparsity of language (in terms of symbols)

« Q: How to determine such semantic relations? By LM-ing ©

Content

* What is Language Modeling?
* Neural Language Modeling

 Tokenization
« Word-Level vs. Character-Level
« Subwords

Neural Language Modeling

 Traditional N-gram LM-ing is discrete
« Any two words equally (dis)similar

hO vector space, each word one axis

P
P ygganrt

.
"sagqunt

* Neural language modeling is continuous

. 5 ~ 17, . .
ATRCOK e words 2 ,dense” vectors in continous space
| I | . * Q~ . .
P * Q: how to obtain meaningful vectors?
Y 5 5 5 . c c
e Words with similar meaning get similar vectors

« Vectors that enable better language modeling

* Vocabulary of N words = corresponds to an N-dim.

- COt 1
— dog

— airplane |

10 00 us

'

{

UL B

1.0

| 0.8

Wt

Neural Language Modeling

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic
Language Model. Journal of Machine Learning Research, 3, 1137-1155.

Abstract

A goal of statistical language modeling is to learn the joint probability function of sequences of
words in a language. This is intrinsically difficult because of the curse of dimensionality: a word

sequence on which the model will be tested is likely to be different from all the word sequences seen

during training. Traditional but very successful approaches based on n-grams obtain generalization
by concatenating very short overlapping sequences seen in the training set. We propose to fight the
curse of dimensionality by learning a distributed representation for words which allows each
training sentence to inform the model about an exponential number of semantically neighboring
sentences. The model learns simultaneously (1) a distributed representation for each word along

with (2) the probability function for word sequences, expressed in terms of these representations.

Generalization is obtained because a sequence of words that has never been seen before gets high

probability if it is made of words that are similar (in the sense of having a nearby representation) to
words forming an already seen sentence. Training such large models (with millions of parameters)
within a reasonable time is itself a significant challenge. We report on experiments using neural
networks for the probability function, showing on two text corpora that the proposed approach
significantly improves on state-of-the-art n-gram models, and that the proposed approach allows to
take advantage of longer contexts.

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Language Modeling i

TR

— Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

—| Language Model. Journal of Machine Learning Research, 3, 1137-1155.

Assign to each word in the vocabulary ,a distributed feature vector”

* We assume we have a vocabulary V
« Each word w €V gets a d-dimensional vector v, € R?
* d usually much smaller than V

Vectors v,, of all |V| vocabulary words stacked in a matrix
W € R|V| x d

* We will call W an embedding matrix of the LM
e Encodes context-independent meanings of words

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Language Modeling s

TR

— Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

—| Language Model. Journal of Machine Learning Research, 3, 1137-1155.

Define language modeling probabilities as a function of vector
representations (i.e., embeddings) of words

P(w_ |wwy..W. 1) =gV, 1, ey Vo) ooy Vg | W)

* ,The function g may be implemented by a feed forward or recurrent
neural network or another parametrized function, with parameters w”

* The overall set of parameters of the model is 6 = (W, w)

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Recap: (Supervised) Machine Learning 7,/

(Supervised) machine learning always has three components:

e, 1. Amodel h(x|8): defines how the output is computed from input x

In deep learning models are highly parametrized compositions of
wele) non-linear functions (each individual function is a ,layer”)
* 0-model's parameters

TR

“
—_—
‘Q ’g ~Q x
*

. 1
Xy =

: h(xI0) F——

xﬂ'

Neural Language Modeling i

— Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

—| Language Model. Journal of Machine Learning Research, 3, 1137-1155.

\ Fth output = P{w, = i| context)
..."

. .'t "o softmax

", v e, 0 see)

L Ty, 2 " o *,

l' : S : 0‘ ’o‘ o‘ ‘,. most| computation here \-.,‘
¢ * % 4w \

L] L - . . . i
“tz:1%%%¢ Input: concatenation of embeddings |

FESSCRERE i . tanh ll

st o~ 5 of context words =0 |

* o o W f

| "“"“‘ ~.*~. ff

s - —_ s

RLARY X=Vint1® -V 2® Vg

S et + xis of length (n-1)d

m-1 . lookup into the
embedding matrix
W

::: \l,
-— - B
s 7 |

AUl

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

-2/
-, ’/, an
Neural Language Modeling 70
AR
— Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic
—| Language Model. Journal of Machine Learning Research, 3, 1137-1155.
Fth output = P{w, = i| context)
« Bengio’s Neural LM: The Model I —
A
‘,. y: tanh(w1x + b1)W2 + W3X + b2 most | computation here \\x
= . Layer #1: non-linear down-projection of x - '.
- e xV=tanh(W.x +b,) —
& * tanh = hyperbolic tangent
° hX(ﬂ-1)d h
Ll S amelley € X : v Vit A . lookup into the
parameters that downproject x silsedling e

from size (n-1)d to size h W

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Language Modeling s

— Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

—| Language Model. Journal of Machine Learning Research, 3, 1137-1155.

Fth output = P{w, = i| context)

'..."
l::: ,':,'. ~ w h W b W b softmax
I”'r,oo' ., Y= ztan (1X+ 1)+ 3X+ 2 Csss — °e \u-)
"y, o", ‘¢ “ ;" .r’ most| computation here \-.
v1,% %% o lLayer #2: linear projection of x(") into a vector / / ':
PRI y Proj
¥, ‘- - - . ! i 1
=Lil==- of length |V| (vocabulary size) - :
~ oo N W N L]
::"Q~§‘. o ¢ x(2)=W2x(1)+b2 ee)
s ‘:;‘:: .‘:r fl
L F
PO « W,e RVxhandb, e RV /
| I * » . f’
pant oot parameters that up-project x'"
xant

from hidden size h to size |V m1 .4 . lookupintothe

embedding matrix
w

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Language Modeling s

— Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

—| Language Model. Journal of Machine Learning Research, 3, 1137-1155.

. Fth output = P{w, = i| context)

e, y =W, tanh(W,;x + b,) + Wyx +b

ST 2 1 1 3 2)

”'r:'o", T] 8o)
rre e, 0%, o Layer #3: parallel linear up-projection of x into .

r . s o . most| computation here \
e0, %% o2 avector of length |V| (vocabulary size) \
R RIII ¢ x®=Wyx ‘-

v : : - == . . 0 o I tanh]'
PO Nl e This we will call ,residual connection o) |

5y W

LI A A T ff
..“““* o o W3€ RIVIx (n-1)d !
st $“0‘ !
{ B .
..'I' vt : Vv .
. Finally, y = x(2) + x(3 m-n+1 lookup into the

embedding matrix

« Vector of |V| scores, one for each vocab. word W

* These unnormalized scores are called |ogits

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

-7, 71\
Neural Language Modelin s
/
g g g ar i\
— Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic
—| Lanquage Model. Journal of Machine Learning Research, 3, 1137-1155.
Fth output = P{w, = i| context)
y =W, tanh(W;x + b,;) + Wyx + b,
| | ..snftmax soo)
.+ yeRMisavector of logits ot computaton e \\
-= « ButweneedP(w]|w,_ . ..w,) foreach i, ',
R word w from the vocabulary V —)
~ * Needtoconverty into a probability
distribution
« Softmax function: Vi1 4 . lookup into the
eYi embedding matrix

9, w

vl V.
lezll ey

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Recap: (Supervised) Machine Learning 7,/

TR

(Supervised) machine learning always has three components:

1. Model

2. An objective function - quantifies ,how correct” model’s prediction
prediction h(x|0) is w.r.t. to the desired output y
* Most commonly we minimize a loss function

Objective of Bengio’s LM:
* For an observed sequence w_ . ,..w_ W, _

« We want to maximize P(w |w, . q...w, ;) for the true word w_,
« WewantP = 1forw,_ andP =0 for all other words from vocabulary V

e Common loss function in LMs: negative log-likelihood
© Loy |0) = -Eily v In(F) or - In Plwp | W oWy,)

Recap: (Supervised) Machine Learning 7,

(Supervised) machine learning always has three components:

1. Model
. 2. Objective function
o’ 3. Optimization algorithm - an algorithm that finds values 8 for the
] model’'s parameters that optimize the objective function on the
training dataset D = {(x, y)}

0 = argmin, L(D|0)

* In deep learning: numerical optim. with gradient-based algorithms
« Layerwise, from last layer to the first - backpropagation (Lecture 3)

TR

Neural Language Modeling s

— Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

—| Language Model. Journal of Machine Learning Research, 3, 1137-1155.

Fth output = P{w, = i| context)

Bengio’'s LM is from 2003!!! — Lot ___
« Today's LLMs are conceptually 7 | e |
virtually identical!
r’.' : tanh I'

Q: why did it take 15-20 years for neural
LMs to become ,a thing”

Short answer: hardware
* softmax over large vectors is slow
* Prevented Bengio's LM to be trained
on (very) large text collections

m-1 . lookup into the
embedding matrix
W

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Types of Language Modeling

Autoregressive (aka causal) LM-ing
Only preceding context available
Better for lang. generation tasks

Naturally, more of a ,decoder”

Masked LM-ing

Whole context available
Better for lang. understanding tasks

Naturally, more of an ,encoder”

models

T

Autoregressive LM-ing

[A

talk on language ___

language

T

Masked LM-ing

[

talk on ___ models

Neural Language Modeling s

Mikolov, T., Sutskever, |., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
—| representations of words and phrases and their compositionality. Advances in
neural information processing systems, 26.

',':.':.::.. » Fast-forward 10 years: word embedding models
f::'.:'."o"‘. « Two models: Skip-Gram and CBOW in a software package word2vec

-+ Shallower model than Bengio's LM
: * Word representations only parameters

SIS + Two vectors for each word from the vocabulary
. ¢ c . .
RIS * Correspondingly, two embedding matrices
s’ ‘s‘

W, € RVIxd and W, € RIx VI

* v4(w): vector of word w in W, (a row in the matrix)
* Vv,(w): vector of word w in W, (a column in the matrix)

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Neural Language Modeling

Mikolov, T., Sutskever, |., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
—| representations of words and phrases and their compositionality. Advances in
neural information processing systems, 26.

Hiddon layer

|

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Neural Language Modeling

Mikolov, T., Sutskever, |., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed

—| representations of words and phrases and their compositionality. Advances in

neural information processing systems, 26.

W, € RMxd and W, € Ré* M

Continous Bag-of-Words (CBOW)
« predict central word from context
« Effectively, masked LM-ing

o Input:w, ..w ([wilw,;..wi
* Model:

« Layer #1: V=57 Zk_ _k V1(wiy)
« lLayer#2:y = softmax(vc W,)

« y = one-hot encoding of w,

\\YXX¥/ /
KELK,

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Neural Language Modeling

Mikolov, T., Sutskever, |., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. Advances in
neural information processing systems, 26.

W, € RVxd and W, € RIx VI
Skip-Gram
e Predict each of context words from

the center word

* One training instance is one pair

w;and wi,; (j between -k and k)

e Model:

« Layer #1":just lookup - v_isthe
row of W, that corresponds to w.

* Layer #2:y = softmax(v.W,)

« y = one-hot encoding of Wi,

N\ /
9.9.9.0.¢
W Y MO X
\ WX

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Neural Language Modeling 7,1

TR

Mikolov, T., Sutskever, |., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
—| representations of words and phrases and their compositionality. Advances in
neural information processing systems, 26.

Both Skip-Gram and CBOW:
y = softmax(v.W,)

Lesson from Bengio: softmax over large

vectors is slow ' | @
Trick: Negative sampling A AP
« Multiply v_only with a small subset of Y &
columns from W, 35

* Must include the column of the ,gold” Z
. onC p O 7’, = SR >O
word to be predicted (,positive”)... o S
« ..and N ragdomly selected columns - @ Ne
.negatives ‘—°|
« Softmax over a vector of length N+1

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Neural Language Modeling 1

—N Mikolov, T., Sutskever, |., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
—| representations of words and phrases and their compositionality. Advances in
neural information processing systems, 26.

A IR
* o
o

|'l...."o VS.
. '::', ."-‘ - —) Bengio, Y., Ducharme, R., Vincent, P, & Jauvin, C. (2003). A Neural Probabilistic
.i'._'-_'-_ = —| Language Model. Journal of Machine Learning Research, 3, 1137-1155.

ittt e s Q: Which model is more expressive/powerful?

et e Skip-Gram/CBOW: produces only static word vectors
« The vector of the word is always the same, regardless of the context

« Bengio's LM has more parameters than just word embeddings: these
parameters essentialy contextualize word vectors against each other

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Content

* What is Language Modeling?
* Neural Language Modeling

 Tokenization
« Word-Level vs. Character-Level
« Subwords

Tokenization %7, 11

 So far, we always assumed a vocabulary V
« What ,words” should be in that vocabulary?

_ * In neural LM-ing, we typically build the vocabulary from a large
training corpus on which we intend to train the LM

>
. *
L)

¢ o o
LA | 4 Y
"" - [)

Two key considerations (especially important for multilingual LMs):
* Coverage

 Minimize the number of tokens that are unknown (UNK) to the
KOOI LM (i.e., unseen in the training corpus)

* Memory

* Avery large vocabulary means a very large embedding matrix,
* Neural LMs are trained on GPUs with limited VRAM

-
-
-
-
-

'y
N EEE R
"oaguant

L
' 4
’

Word-level tokenization N

« Whitespace tokenization: simply split the text on whitespaces
« Some tweaks needed, e.g., for punctuation ,ain't that funny.”
* Rule-based word-level tokenizers (typically language-specific)

* |ssues: word-level tokenization is ,sparse”

... Languages that do not use whitespaces to delimit words

A » E.g., Mandarin Chinese (Simplified): § X &4 /R%XEN—NFH T

EACIE R * E.g., Komposita in German: ,Rhabarberbarbarabarbarbaren”

« Word-level tokenization doesn't reflect morphosyntax of the language
R * tokenization vs. token

* tokenization vs. industrialization

« Word-level tokenization results in very large vocabularies
* Nonetheless, any word not seen in training data is UNK

https://www.youtube.com/watch?v=gG62zay3kck&ab_channel=winmic7

f : :‘ \'/
-Z27/C
AT
o ® ,/ ,/I' \
Character-level tokenization i
* How about each character being its own token
e Through LM-ing, we learn an embedding for each character
et « Advantages
Tatziiit « Small vocabulary
PR R * Even if we collect all characters from all scripts in the world, still

o merely a few thousand symbols
' * Simple and super-fast!

f : :‘ \'/
-2\
EAIAUIL
I i A
Character-level tokenization o
« How about each character being its own token
* Through LM-ing, we learn an embedding for each character
* Shortcomings
« Embedding vectors supposed to encode context-independent
meaning of tokens
- -'.'.'."-:‘.".': * Characters have no intrinsic meaning* (recall: morphemes)
- - * What's the context-independent meaning of ,a"?
« Hard to obtain meaningful representations for units that do have
ORI meaning - morphemes or words - from character embeddings
« Character-level tokenization commonly leads to performance loss

« Texts/sentences (e.g., in classification) very long sequences of
character embeddings - only short texts would fit into GPU memory

Content

* What is Language Modeling?
* Neural Language Modeling

« Tokenization
« Word-Level vs. Character-Level
« Subwords

f : :‘ \'/
-Z27/C
;, ’/,;’H\‘
° ° /7
Subword tokenization i
* Sweet spot between word- and character-level tokenization
 Searching for the optimal tradeoff between
« Memory footprint of an LM and
WAL * LM’s ability to learn semantically meaningful text representations

e Subword tokenization is:
s * More memory-efficient than word-level tokenization
R * More semantically meaningful than character-level tokenization

Subword tokenization s

* What we know from early work on LMs (Bengio, Mikolov):
« Token frequency correlates with embedding quality

«i/r.+ Core ideas of subword tokenization:
oo 1. Frequent words should not be split into smaller parts

2. Less frequent words split into subwords that occur more frequently

TR

ISR Example: ,token” vs. ,tokenization”
« ,tokenization” split into subwords ,token” and ,ization”
* both ,token” and ,ization” will have larger corpus frequency

» Q: how to decide (1) what to split and (2) how to split it?

llll

Subword tokenization

» What we know from early work on LMs (Bengio, Mikolov):
« Token frequency correlates with embedding quality

* Q: how to decide (1) what to split and (2) how to split it?

wes=1it e Different subword tokenization algorithms
*:: ¢ Byte-Pair Encoding (BPE)

« WordPiece
* SentPiece

Byte-Pair Encoding s

Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

i Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with

',':_':::*.. * Introduced in the context of neural machine translation (NMT),
A before pretraining neural (L)LMs was ,a thing”

« Requires a (typically language-specific) pre-tokenizer
RS AR * E.g., whitespace or rule-based tokenizer

« Result of pre-tokenization of the training corpus:
A set of word-level tokens with occurrence frequencies

https://aclanthology.org/P16-1162.pdf

= o /,/
Byte-Pair Encoding s

—N Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with
:\ Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

« Step 1: pre-tokenize and produce the set of word-level tokens V
""','.:',",‘-_ Toy example: V = {son:8, ton: 4, top:12, pop:3, sons:4}

" FIIIII e Step 2: build the initial base vocabulary

e Initial base vocabulary: all characters in words from V

St Vg={n, 0, p, s, t}

« V, (as perVy): {s,0,n:8;t,0,n:4;t 0,p:12; p,0, p: 3;s,0,n,s: 4}

https://aclanthology.org/P16-1162.pdf

Byte-Pair Encoding s

Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

i Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with

., * Step 3 (repeat until desired vocabulary size is reached):

« Countthe frequency of each pair of ,tokens” from V,

« Merge the two tokens V; with highest frequency of co-occurrence across the
words from V,,

TR

'.'.“‘:.‘:.{.: V,={s,0,n:9;t,0,n:4;t0,p:12;p,0,p: 3;s,0,n,s: 4}
TS Vi ={n, o, p, s, t} (desired vocab size: 8 tokens)

lteration #1: ,0"+,n" have the highest frequency of 17 (,son”, ton”, and ,sons”)
 Merge ,0” and ,n"into ,on"” in all corresponding words from V,

https://aclanthology.org/P16-1162.pdf

Byte-Pair Encoding s

Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

i Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with

., * Step 3 (repeated until desired vocabulary size is reached):

« Countthe frequency of each pair of ,tokens” from V,

« Merge the two tokens \V; with highest frequency of occurrence across the
words from V,,

TR

'.'-“‘:3:,{.: V,=1{s,0n:9;t,on:4;t0,p:12; p,0, p: 3;s,0n,s: 4}
TS Vi ={n, o, p, s, t, on} (desired vocab size: 8 tokens)

lteration #2: ,0"+,p" have the highest frequency of 15 (,top”, and ,pop”)
* Merge ,0" and ,p” into ,op” in all corresponding words from V.,

https://aclanthology.org/P16-1162.pdf

Byte-Pair Encoding s

Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

i Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with

., * Step 3 (repeated until desired vocabulary size is reached):

« Countthe frequency of each pair of ,tokens” from V,

« Merge the two tokens \V; with highest frequency of occurrence across the
words from V,,

TR

L I I

e V,=1s,0n:9;t on:4;t op: 12; p,op: 3;s,0on,s: 4}
LI L § -

TR Vg=1{n, 0, p, s, t, on, op}

lteration #3: ,s"+,0on"” have the highest frequency of 13 (,son”, and ,sons”)
* Merge ,s”" and ,on” into ,son” in all corresponding words from V

https://aclanthology.org/P16-1162.pdf

Byte-Pair Encoding s

Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

i Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with

., * Step 3 (repeated until desired vocabulary size is reached):

« Countthe frequency of each pair of ,tokens” from V,

« Merge the two tokens \V; with highest frequency of occurrence across the
words from V,,

TR

L I I

. .:“‘.1,‘»‘.« V,=1{son: 9;t,on: 4; t, op: 12; p, op: 3; son, s: 4}
LI L § -

LM Vg=1{n, 0, p, s, t, on, op, son}

* We reached the desired vocabulary size of 8 tokens
« Merge rules we obtained: 1. o+n -> on, 2. o+p -> op, 3. s+on -> son

https://aclanthology.org/P16-1162.pdf

_‘: : : \'/
-2/
- ’/,,’l I
[[
Byte-Pair Encoding sl
I
—N Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with
:\ Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).
“re.,, * Inference: applying the tokenizer once we obtained the vocabulary V;
Il."O'OO’ . . .
e, 0o, o Closely mirrors the training process
n ", 0' e v
. '0:“ “ ‘- ‘- :
“l1l-:: Step 1:apply the same pre-tokenizer on the new text
PN E.g., ,no nop sonop” = {no; nop; sonop}
1t e 6 e
. "“‘Q~’§-Q
Leasthes Step 2: start from individual characters for each word-level token
« keep merging using the merge rules learned in training Merge rules
. . 1. o+n ->on
n, © =2 no rule applies, separate into two tokens [n, 0] 2. 0+p -> op

3. s+on ->son

https://aclanthology.org/P16-1162.pdf

-2 /\
27, 1
] []
Byte-Pair Encoding sl
iy
—N Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with
:\ Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).
“re.., * Inference: applying the tokenizer once we obtained the vocabulary V;
Il."O'OO’ . . .
e, 0o, o Closely mirrors the training process
ny * o e
e ::*:“ % ‘- %
“l1l-:% Step 1:apply the same pre-tokenizer on the new text
::“".‘;‘:";; E.g., ,no nop sonop” = {no; nop; opt}
. "“‘Q~’§-Q
Leasthes Step 2: start from individual characters for each word-level token
« keep merging using the merge rules learning in training Merge rules
. . 1. o+n->on
n, o, p 2 2. merge rule applies, separate into two tokens [n, op] 2. 0+p -> 0Op

3. s+on -> son

https://aclanthology.org/P16-1162.pdf

_‘: : : \'/
-2/
PRI
- - 7, 710!
Byte-Pair Encodin il
[g //,
M
—N Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with
:\ Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).
“re.., * Inference: applying the tokenizer once we obtained the vocabulary V;
Il."O'OO’ . . .
e, 0o, o Closely mirrors the training process
ny * o e
e ::*:“ % ‘- %
“l1l-:% Step 1:apply the same pre-tokenizer on the new text
::“".‘;‘:";; E.g., ,no nop sonop” = {no; nop; opt}
. "“‘Q~’§-Q
Leasthes Step 2: start from individual characters for each word-level token
« keep merging using the merge rules learning in training Merge rules
. 1. o+n->on
s, 0, n, 0, p =2 all three rules apply (in order of rules), 2. 0+p -> op

separate into two tokens [son, op] 3. s+on -> son

https://aclanthology.org/P16-1162.pdf

WordPiece Tokenization 7

Devlin, J., Chang, M., Lee, K., & Toutanova, L. K. (2019). BERT: Pre-training of Deep

—| Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-
HLT (pp. 4171-4186).

o, « Tokenization algorithm proposed with BERT
NS * Training similar to BPE, with two main differences:

Initial vocabulary base V; distinguishes characters that start words
from those that are inside of the word-level tokens

.
"oaguant
—

e Toy example: V , = {son:8, ton: 4, top:12, pop:3, sons:4}
Vg ={p, s, t, ##o, ##n, ##p, ##s} (## preftix for ,inside” chars)

https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf

WordPiece Tokenization il

Kenton, J. D. M. W. C., & Toutanova, L. K. (2019). BERT: Pre-training of Deep

—| Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-
HLT (pp. 4171-4186).

« Tokenization algorithm proposed with BERT
 Training similar to BPE, two main differences:

2. Merge of tokens based on relative frequency score
f(t 1)
f(t))H(t,)
* In essence very similar to pointwise mutual information (PMI)

* Prioritizes merging of pairs with lower-frequency parts
« E.g., ,like”"and ,##ly” will not be merged early

f : :‘ \'/
-2\
<, '/,;’I I
° ® ° 7 /
WordPiece Tokenization i
Kenton, J. D. M. W. C., & Toutanova, L. K. (2019). BERT: Pre-training of Deep
—| Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-
HLT (pp. 4171-4186).
e, « Tokenization algorithm proposed with BERT
,'.'::':’o,":“‘ * Inference is very different from BPE
» WordPiece keeps only the final vocabulary V,
SRS Not the merge rules
« Greedy splitting: find the longest substring that is in V;
« Split on it and repeat for the remainder of the word-level token

* E.g., {transform, ##ers, trans, ##form, transformer, ##s} all in Vg
* Q: how will WordPiece tokenize ,transformers”?

SentencePiece Tokenization il

Kudo, T., & Richardson, J. (2018, November). SentencePiece: A simple and languag
—| independent subword tokenizer and detokenizer for Neural Text Processing. In
Proceedings of EMNLP Processing: System Demonstrations (pp. 66-71).

Wl BPE and WordPiece rely on a pre-tokenizer and its word tokenization
r:-}i',:.:"{'.‘ « Word-level tokenization is, in principle, language-specific

« Some languages don't have ,words” as such

:.‘ * Problem for multilingual LMs

L

sl ss ¢ SentencePiece
+

DRSS * Does not require a pre-tokenizer, creates \V/; from raw sentences
' * It does need sentence segmentation, but this is more
consistent across languages

SentencePiece Tokenization 01

Kudo, T., & Richardson, J. (2018, November). SentencePiece: A simple and languag
—| independent subword tokenizer and detokenizer for Neural Text Processing. In
Proceedings of EMNLP Processing: System Demonstrations (pp. 66-71).

V.. 1., + SentencePiece is essentially BPE, but
« Whitespace (denoted with underscore , ") is a character-level
RO token, like any other character

R « Each sentence in the corpus is now for SentencePiece what a
RN ,word-level” token was for BPE

« ,todayismyday” 2> [t o0,d,a,y _is _,my_da,yl

	Slide 1: Multilingual NLP
	Slide 2: After this lecture, you’ll...
	Slide 3: Content
	Slide 4: What is Language Modeling?
	Slide 5: What is Language Modeling?
	Slide 6: What is Language Modeling?
	Slide 7: N-gram Language Modeling
	Slide 8: N-gram Language Modeling
	Slide 9: N-gram Language Modeling
	Slide 10: N-gram Language Modeling
	Slide 11: Content
	Slide 12: Neural Language Modeling
	Slide 13: Neural Language Modeling
	Slide 14: Neural Language Modeling
	Slide 15: Neural Language Modeling
	Slide 16: Recap: (Supervised) Machine Learning
	Slide 17: Neural Language Modeling
	Slide 18: Neural Language Modeling
	Slide 19: Neural Language Modeling
	Slide 20: Neural Language Modeling
	Slide 21: Neural Language Modeling
	Slide 22: Recap: (Supervised) Machine Learning
	Slide 23: Recap: (Supervised) Machine Learning
	Slide 24: Neural Language Modeling
	Slide 25: Types of Language Modeling
	Slide 26: Neural Language Modeling
	Slide 27: Neural Language Modeling
	Slide 28: Neural Language Modeling
	Slide 29: Neural Language Modeling
	Slide 30: Neural Language Modeling
	Slide 31: Neural Language Modeling
	Slide 32: Content
	Slide 33: Tokenization
	Slide 34: Word-level tokenization
	Slide 35: Character-level tokenization
	Slide 36: Character-level tokenization
	Slide 37: Content
	Slide 38: Subword tokenization
	Slide 39: Subword tokenization
	Slide 40: Subword tokenization
	Slide 41: Byte-Pair Encoding
	Slide 42: Byte-Pair Encoding
	Slide 43: Byte-Pair Encoding
	Slide 44: Byte-Pair Encoding
	Slide 45: Byte-Pair Encoding
	Slide 46: Byte-Pair Encoding
	Slide 47: Byte-Pair Encoding
	Slide 48: Byte-Pair Encoding
	Slide 49: Byte-Pair Encoding
	Slide 50: WordPiece Tokenization
	Slide 51: WordPiece Tokenization
	Slide 52: WordPiece Tokenization
	Slide 53: SentencePiece Tokenization
	Slide 54: SentencePiece Tokenization
	Slide 55: The End

