Deep Learning
Summer semester ‘24

» )— B
2. Feed-forward Neural Networks
s , > —
‘™ € e : » T
" . S‘Ifd.e' ._cfe_diﬁt'-"ﬁl_i_des in parts aza_p'fedﬁto_' ' V. C .i



Who am | and who are we?

)

Frauke Wilm Mathias Ottl Zhaoya Pan Jonathan Ganz Maja Schlereth
Katharina Breininger, PhD PhD Student, Aug 2020 PhD Student, January 2021 PhD Student, March 2021 PhD Student, April 2021 PhD Student, July 2021
Group Lead e ML & data science (with Andreas Maier) (with Andreas Maier) TH Ingolstadt * Multimodal imaging
* Domain adaptation & *  Representation learning * Interventional imaging (with Marc Aubreville) * Interpretable ML
transfer learning * Annotation & label * Artifact detection & +  Image analysis

collaboration robustness * Interpretable ML

b
\

Jingna Qiu Jonas Utz Jonas Ammeling Anne Tjorven BlRen Moritz Schillinger

PhD Student, July 2021 PhD Student, July 2022 PhD Student, May 2022 PhD Student, May 2023 PhD Student, Dec 2023
O ACt|Ve |earning O Morph0|0gy ana|ySIS TH /ngO/Sfadt . |ntraoperative |mag|ng ° Optoacoustic |mag|ng
* ML & data science * 3-Ddata synthesis (with Marc Aubreville) «  Workflow analysis Hyperspectral data

* Human behavior and ML
* Recommendation systems



Who am | and who are we?

Friedrich-Alexander University Erlangen-Niirnberg = Julius-Maximilians-University Wirzburg

Al in Medical Imaging Lab = Pattern Recognition

Intraoperative &
Multimodal Imaging

Prof. Dr. Ostendorf
Heinrich-Heine-Universitat Dusseldorf

Image courtesy: Prof. Dr. Falkenberg, Sahlgrenska, Sweden

Public Datasets,
Annotation & Label-
efficient Learning

AtA MIDOG 2021

& "sf ,m Mitosis Domain Generalization
. b

MICCAI

Machine Learning for
Microscopic Imaging

Image courtesy: Prof. . Uderhardt



Goals for today

You should be able to...

* deepen knowledge of deep learning as a concept

* understand core building blocks of (simple) neural networks

e explain why neural networks are powerful ML approaches
e understand the basics of training neural networks

e discuss benefits and drawbacks of different activation functions



Fahrplan

* Recap: Machine Learning and Deep Learning

* Perceptron

* Fully-Connected Layers and Universal approximation theorem
* From Activations to Classifications

* Credit Assignment Problem

* Activation Functions



Al vs. ML vs. DL

* Al is broader than just VIL

* DL is a special type of VIL

* 100% of today’s Al hype is
caused by DL models

Artificial
Intelligence

Machi
& tocnie

Deep
Learning

Source: https://tinyurl.com/2yy97tu3



Machine learning

-

Machine learning denotes the multitude of algorithms for (semi-)automatic extraction of

\_

new and useful knowledge from arbitrary collections of data (aka datasets). This
knowledge is typically captured in the form of rules, patterns, or models.

J

Algorithm Model

sl

Source: https://tinyurl.com/mpd39647



https://tinyurl.com/mpd39647

Machine Learning Components

* Any ML algorithm/approach has to have
the following three components:

* Model
* Objective
e Optimization algorithm




The Basics of ML...

* Input: example represented by the feature vector: x =[x, x, ..., x]

e Output (in supervised learning): the label y assigned to the example
v is a discrete class (in classification problems) or a score (in regression problems)

* A machine learning model 1 maps an input [x,, x,, ..., x,] to a label y

* The model has a set of k parameters 6 = [0, O, ..

h(x|©)

8 J:y' = h(x|0)

Notation for ground truth y
vs. prediction '




|II

“Classical” Machine Learning

measurement preprocessing feature extraction classification

training

e (Multi-layer) perceptron (today‘s lecture) typically works with
predefined features

» ,Hand-crafted” feature design replaced by data-driven and end-to-end
feature learning in state-of-the-art architectures

* Most concepts are important across architectures

10



Supervised ML: Toy Example

* You want to learn a classifier that can differentiate between an apple
[ IERERENRE

* Instance/example: some concrete apple or some concrete banana.
* Feature vector x =[x, X, X3, X, ...]

x,: length of the fruit
X,: circumference

X5: weight

X,: color

* Label: y € {c, =apple, ¢, = banana}

11



From Machine Learning to Representation Learning
Essential terms in the context of Deep Learning:
1. Representation of data

2. Transformation

3. Dimensionality reduction

x,: top left pixel color I o 0\@\o x,: length of the fruit
X,: top right pixel color @ ®Ce X,: circumference
: i X @ O — x| @
X,: bottom left pixel color 1| o PS X5: weight 0%
x,: bottom right pixel color o ® - X,: average color Coo :
X, ' X2

- Goal: Make final classification (or regression) as easy as possible
12



Fahrplan

* Recap: Machine Learning and Deep Learning

* Perceptron

* Fully-Connected Layers and Universal approximation theorem
* From Activations to Classifications

* Credit Assignment Problem

* Activation Functions

13



Toward Neural Networks

e Core contribution:
Rosenblatt’s perceptron (1957) [1]
aka: McCulloch—Pitts neuron

* Goal: Model a single (artificial) neuron
with incoming connections

* Motivated by biological neurons
e Connected by synapses

* If the sum of incoming activations is large enough,
an action potential is created

e “All-or-nothing” response based on a threshold
* Exhibits non-linear behavior

Adapted from Wikimedia Commons, Link

[1] Frank Rosenblatt. The Perceptron—a perceiving and recognizing automaton. 85-460-1. Cornell Aeronautical Laboratory, 1957. 14


https://commons.wikimedia.org/wiki/File:Complete_neuron_cell_diagram_de.svg

The Pe rce ptron Learned via a suitable

learning rule

* Incoming signals: weighted sum of
inputs x =[x, x,, ..., x.]
with weights w = [w,, w,, ..., w ] and w,

Z=W'x+w,

— Linear transformation of input

Activation

* “All-or-nothing” response (Heaviside): function

1 ifz=20,
0 otherwise

y'=0(z) = {

inputs weights

- Binary classification y € {0, 1}

15



Decision Boundary of a Perceptron

y =0

Activation
function

inputs weights

(WX + w,)

New sample

o
/
Orthogonal/distance
/
/
/ a = 90°

Decision boundary

16



XOR-Problem

* Q: Why is this problem (c;:@, ¢,:®)

not solvable with a perceptron?
* No linear projection exists that O
o, @ o
separates the two classes ° Co.
* 1969: “Perceptrons” [2] described ©
limitations of neural networks X1
— First “Al winter”
O
@ 0o @
O
%% o
X5

[2] Marvin Minsky, Seymour A. Papert. Perceptrons: An Introduction to Computational Geometry. The MIT Press, 2017
(Original 1969/1987).


https://doi.org/10.7551/mitpress/11301.001.0001

Fahrplan

* Recap: Machine Learning and Deep Learning

* Perceptron

* Fully-Connected Layers and Universal Approximation Theorem
* From Activations to Classifications

* Credit Assignment Problem

* Activation Functions

18



From Single to Multilayer Perceptrons

* A single perceptron = a single neuron

- complex decisions need many neurons SR
p- y : IFA'SINGIE NEURON IS NOT ENOUGH
* Use multiple neurons as a layer ."
* Important synonym: fully-connected layer
e Chain layers of neurons " ‘.“-/ '
AT
k- -

4
<" JUST ADD MORE

imgflp.com J

19



Multilayer Perceptron

inputs weights

Activation
function

weights

Activation
function

20



Universal Approximation Theorem (UTA)

Let o(-) be a non-constant, bounded and monotonically increasing function.

For any £ > 0 and any continuous function 7 defined on a compact subset of there exist
an integer M, real constants v;, b; € R and real vectors w; € R™ where 1 =1, ..., M, such

that

— We can approximate any function with just one hidden layer with a
sensible activation function

— But: we have no algorithm how to: how many nodes, how to train, ...
22



Terminology

Hidden Hidden
layer layer

Activation
function

I

Activation Weights
function

inputs  weights

* Typically: Input layer, hidden layers, output layer

* A single hidden layer (of arbitrary width) can already be shown to be a
universal function approximator

* Non-linear functions:
 are called activation functions in hidden layers
e provide the final output and are used for the loss function

Qutput
layer

— @
e 0
o

23



Notation and Abstraction to Layers Dimensionalities

x € R" - x' e R
weR” 5w e R
* Single neuron: 2/2m € R!
W < RMx(nJrl)

ze RM

Z=WX+w,=[w;, w,, ..., w,] - X+ w,
- Elegant vector computation:
dropping ’ for
Z= [WO; Wi, Wy« Wn] -1, X110 Xy veey Xn] T=wTx convenience

* For M neurons in a layer with (w, ..., w_ ;)
z, =wW,_Tx
* This means we can formulate a matrix multiplication = layer view
z = WX
For layer O: h,(x, W) = o(W x)

24



|”

“Classical” Machine Learning vs. Representation Learning

measurement preprocessing feature extraction classification

"
=
—
—
—_—
—
—

training

—-—
—
=
—
B
—
=

: X feature feature transformation &
measurement preprocessing > : P
extraction classification

e (Multi-layer) perceptron iteratively transform features

* Neural networks are a concatenation of functions:

h(X, W) — hn—l(--- hl(ho(X, Wo), Wl), Wn—l))

25



DL vs. ML: Representation Learning

The key principle of deep learning is representation learning:

Instead of precomputing features according to human intuition,
let’s learn features from the raw data

Machine Learning

Gap — |&

Input Feature extraction Classification

Deep Learning

Feature extraction + Classification Output

https://levity.ai/blog/difference-machine-learning-deep-learning

26



Fahrplan

* Recap: Machine Learning and Deep Learning

* Perceptron

* Fully-Connected Layers and Universal Approximation Theorem
* From Activations to Classifications

* Credit Assignment Problem

* Activation Functions

27



From Activations to Classification:
Softmax Function

* So far: ground truth/estimated label described by y/y’ € {0, 1}
* Instead, we can use a vectory = (y,, ..., ¥, )" where K = #classes
* For exclusive classes, y is then:

vy = {1 if k is the index of the true class,

0 otherwise

* Called one-hot encoding: Only one elementis 20
* Follows properties of a probability distribution:

K
1. Zk:l Yk = 1

2. vk 20 Vy €y

28



Softmax activation function

* One-hot ground truth needs matching prediction
* Softmax-function rescales a vector z:

v, = exp(zx)
kK — K
Zj:l exp(z;)

* Allows to treat the output as normalized probabilities

e Softmax function is also known as the normalized exponential function

29



Example: Ground truth & Softmax

e Softmax-function rescales a vector z:

yl = exp(zx)
“ Zszl exp(z;) Label Z. | exp(z,) Y,
* Four-class problem: y = [y,, ..., y,]7 |APPI€ -344| 003 00006
CENERE! 1.16 3.19| 0.0596
- Pear 0.81 044 0.0083
* New sample: y =10, 1, 0, 0]" Cherry 391| 49.90| 0.9315

)]
Y,

Prediction: y’ = [0.00, 0.06, 0.01, 0.93]"

Source: https://www.chefsculinar.de/rote-obstbanane-8515.htm
https://www.chefsculinar.de/chefsculinar/ds_img/assets_800/wk-01-rote_obstbanane.jpg 30



https://www.chefsculinar.de/rote-obstbanane-8515.htm
https://www.chefsculinar.de/rote-obstbanane-8515.htm

Loss function

* We now have two probability distributions (ground truth/prediction)
— they should be as similar as possible

* The cross entropy H of probability distributions p and q

H(p, a) Z Pk log(qx)

e Based on H, we formulate a loss function L:
L(y,y") = —log(yi)ly.=1

— More about this in the next lecture

31



Example: Ground truth & Softmax

* Four-class problem:y =[y,, ..., v, 1"

L(y,y") = —log(y))]y.=1

* Ground truth:y =10, 1, 0, 0]"
* Prediction: y’ = [0.00, 0.06, 0.01, 0.93]"

- Loss / Error for this specific sample: - log(0.06) = 1.22

32



"Softmax loss"

e Cross-entropy and the Softmax function typically appear together

L) — 1o [ P(2) )ykl
2) g(zj-‘lexp(zj) ‘

* Naturally handles multiple class problems

* Teaser: One-hot encoding, softmax, & cross-entropy allow
generalization to multi-label & label smoothing (non-unique class
assignments)

33



Fahrplan

* Recap: Machine Learning and Deep Learning

* Perceptron

* Fully-Connected Layers and Universal Approximation Theorem
* From Activations to Classifications

* Credit Assignment Problem

* Activation Functions

34



Optimization: Credit Assighment Problem

What do these two images have in common?

Hidden Hidden

https://krypt3ia.files.wordpress.com/2011/11/rube.jpg

—> Difficult to identify which parts to adjust to change the output in a specific direction

35



Formalization as Optimization Problem

h(X, W) — hz(hl(ho(x, Wo), Wl), Wz))

Goal: Find best weights W for all layers

e Abstract the whole network as a function:
L(W, x,y)

* Consider all N training samples:
N
1
Ex,ywﬁdata(x,y) [L(Wv X, Y)] — N Z L(W1 X, y)
i=1
* We want to minimize the loss criterion:

minimize  {L(W, x, )}

36



Gradient Descent

argvcwin 4 NZL(W'X'y) .

Method of choice: Gradient Descent
1. Initialize W
2. lterate until convergence

M
whtl — wk — va% > L(w,x,y)

where n is commonly referred to as the learning rate

37



What is this L we are trying to optimize?

Complex network can be seen as a composed functions:
h(X, W) — hz(hl(ho(x, Wo), Wl), Wz))

— Gradient for each weight matrix needs to be determined

38



Backpropagation — Excessively Applying the Chain Rule

* Network is a set of composed (linear and non-linear) functions

h(X, W) - hg(hl(ho(x, W()), Wl), Wg))

* Chain rule:
e = 5 F(g0) - g

* Important: Need to compute weights
both for W and (intermediate) z

39



Additional Information on Backpropagation
Excessively Applying the Chain Rule

I |
hi(... fori >0
We define y; = () ort >_ :
X otherwise To improve your understanding:
— Ty.
Zi d— Wiy e Think about what dimensions disz(W, x,y) should have and how we arrive at this di-
an . mension.
let hi(x, W) =0c(Wx) i.e., a fully connected
layer with activation function o. o Try to derive the gradient for dLWlL(W, X, y) yourself. What intermediate gradients do you
Then: have to compute along the way?
d d
L(W = L(h(x, W
dW2 ( U X, y) dW2 ( (X, )1 y)
d To ease notation, replace with y,
= %L(h(x, W)’ Y) ' dW, h(x, W) Does not depend on W,
A
d d [ \
= —L(h(x,W . ho(hi(h W), W;), W
o L(h(x, W), y) aW, 2(h1(ho(x, Wo), W1), W2)
d
= —L(h(x,W . h W
dh ( (X’ )’ y) dW2 2(y11 2)
@ L(h(x, W), y) - 0 0(Way,)
= — . (o)
dh Y gy, TR
d d d
= —L(h(x,W),y) - ——0(z1) - —==-Woy1 :
dh dz; dW> > Matrix cookbook:
d d dXa _ T
= %L(h(x, W),y) - d—zla(zl) -y ax — 2 For the case of L(h(x, W),y) = ||h(x, W) —y||3,

and (for simplicity) o(x) = x (and therefore Lo(x) = 1)
41

=2(h(x, W) —y)-1-y/ <



Fahrplan

* Recap: Machine Learning and Deep Learning

* Perceptron
* Fully-Connected Layers and Universal Approximation Theorem

* From Activations to Classifications
* Credit Assignment Problem
e Activation Functions

42



Activation Functions (Recap)

e Recap 1: Biological neurons generate “all-or-nothing”
response

* Recap 2: UTA requires non-linear! function o

e Recap 3: Composition of two linear transforms

W, - W, is again a linear transform

- Non-linearity “prevents” collapse

* Recap 4: In perceptron: Heaviside function

1: plus additional properties

43



Sign activation function

Sign function:

(41 for x>0
\—1 for x <0
f'(x) = 20(x)

/

f(x) =<

oo forx =0

0 forx+#0

\

+ Normalized output

Gradient still vanishes almost everywhere

Z Backpropagation
45



Linear activation function

Linear function with parameter a
f(x) = ax

) =a

* Provides scaling / identity

+ Simple, good for certain proofs Al ast
. ) ) Source: https://tenor.com/de/view/captain-
Does not introduce non-Ilnearlty obvious-super-hero-superhero-gif-18644946

46



Sigmoid activation function

1 y Sigmoid (logistic) function:

1
fx) = 1 4+ exp(—x)

Fi(x) = £(x)(1 - £(x))

 C(lose to biological model, but differentiable
+ Probabilistic output

Saturates forx < 0and x> 0

Not zero-centered

—7 —5 —3 —1

iy



Why zero-centering?

e Sigmoid: f : R —]0, 1]
o Output of activation always +
> V. Will either be all + or all —

e A mean p = 0 of the input distribution will always be shifted to © > 0

> co-variate shift of successive layers

> layers constantly have to adapt to the shifting distribution
o Batch learning reduces the variance o of the updates

48



Tanh Activation Function

Tanh (hyperbolic tangent) function

— Tanh f(x) = tanh(x)

f'(x) =1— f(x)?

~7 -5 —3 —1

e Shifted version of the sigmoid function
tanh(x) = 20(2x) - 1

+ Zero-centered (LeCun '91)
Still saturates forx <K 0andx > 0

49



Why are vanishing gradients a problem?

* Essence of learning: How does x affect y?
. . —— Sigmoid
 Sigmoid/tanh map
large regions of X to a small range in Y
* A large change in x » minimal change iny

* Problem is amplified by backpropagation: el
Multiplication of small gradients

* Related problem: Exploding gradients

50



Rectified Linear Unit

So vanishing gradients are a problem -2 linear function + non-linearity

— sigmoid |3 |7
—— Tanh
—— RelLU

1 f/(X) —

Rectified Linear Unit (ReLU):
f(x) = max(0, x)

(1 ifx>0

0 else

\

+ Good generalization due to piece-wise linearity

+ Speed up during learning (6x (Krizhevsky '12))
+ No vanishing gradient problem

No signal <=0

Not zero-centered

51



Piecewise-linear Activation Function

* ReLUs were a big step forward!

1y
: —— Sigmoid |3
* ReLUs enable deep supervised neural ?anh
networks without unsupervised pretraining | ———=NEY

1

* First derivative is 1 if the unit is active,
second derivative is 0 almost everywhere
— no second-order effects

52



Variants

Activation Function

Leaky RelL. U / Parametric RelLU
ifx >0
ax else

ifx >0

else

-+ Fixes dying RelLU problem
e |eaky RelLU: & = 0.01 Maas13-RNI
e Parametric ReLU (PRelLU): learn & He15-DDR

53



Swish/Sigmoid Linear Unit (SiLU) function

Combination of Sigmoid and RelU:
f(x) =x-o(x)
f'(x) = o(x) + x - o' (x)

* Trainable version:

f(x) = x - o(6x)

* Preserves flow of gradients for x <0
* Smoother gradient flow that leaky ReLU

e superior or comparable performance to ReLU on deeper models and
complex datasets

- Exercise ©

54



Dancing activation functions




Summary

* Core building blocks:
* Linear Transformation
* Activation Function
* Loss Function

* Perceptron as an artificial neuron, inspired by biology
-2 linear transformation + non-linearity

* Multilayer fully-connected networks with suitable activation functions
are universal function approximators (but how to get there...)

 Comparison of probability distributions: Softmax & cross-entropy
* Credit Assignment Problem: How to update what & Backpropagation

e Activation Functions: Non-linearity, no vanishing gradients, ReLU and
SiLU as good standard options

56



NEAT TIME

ON DEEP LEARNING



Optimization and Training (April 29)

https://krypt3ia.files.wordpress.com/2011/11/rube.jpg Photograph by Twentleth Century Fox Film Corp L|nk

58


https://i.natgeofe.com/n/45277cd7-1e97-425a-9d50-55928c30802e/47096_4x3.jpg

Deep Learning
Summer semester ‘24

e ;

Y ‘v.'f""

T s



Learning algorithm / Update rule of the perceptron

Task: find weights that minimize the distance of misclassified samples
to the decision boundary.

Training SEt: (XI Y) = [(x]_ly]_)l (XZI yZ)I SRy (xml ym)]
Let M be the set of misclassified feature vectors y.# y.'= o(w'x, + w,)
according to a given set of weights w

Optimization problem:

argmin {D(_w) = — Z Yi - (waf)}
XM

w

63



Update rule of the perceptron

* Objective function depends on misclassified feature vectors M:
iterative optimization

* In each iteration, the cardinality and composition ofMmay change
* The gradient of the objective function is:

64



Update rule of the perceptron

e Strategy 1: Process all samples, then perform weight update
 Strategy 2: Take an update step right after each misclassified sample

* Update rule in iteration (k + 1) for the misclassified sample x
simplifies to:

W(k+1) - W(k) -+ 0 (yI — yi') . Xi

where a is the step size

* Optimization until convergence or for a predefined number of
iterations

65



Machine Learning Components

* Any ML algorithm/approach has three components:

1. Model
* A set of functions among which we’re looking for the , best” one

H= {h(x‘e)}e

* Hypothesis /1 = a concrete function obtained for some concrete
values of ©

* Model = set of hypotheses

66



Machine Learning Components

* Any ML algorithm/approach has three components:

2. Objective

* We're looking from the best hypothesis h in the model H = {h(x|0)},
* (Q: But ,best” according to what?

* Objective J is a function that quantifies how good/bad a hypothesis /1 is
e Usually Jis a ,loss function” that we’re minimizing

 We're looking for h (that is, values of parameters 0) that maximize or
minimize the objective J

*=argmin, ., J(h(x]|BO))
* =argming J(h(x]0))

e ML thus amounts to solving optimization problems

67



Machine Learning Components

* Any ML algorithm/approach has three components:

1. Optimization algorithm
* An exact algorithm that we use to solve the optimization problem

* = argming J(h(x|6))

* Selection/type of the optimization algorithm depends on the two
functions — the model H and the objective )

68



	Foliennummer 1
	Who am I and who are we?
	Who am I and who are we?
	Goals for today
	Fahrplan	
	AI vs. ML vs. DL
	Machine learning
	Machine Learning Components
	The Basics of ML...
	“Classical” Machine Learning
	Supervised ML: Toy Example
	From Machine Learning to Representation Learning
	Fahrplan	
	Toward Neural Networks
	The Perceptron 
	Decision Boundary of a Perceptron
	XOR-Problem
	Fahrplan	
	From Single to Multilayer Perceptrons
	Multilayer Perceptron
	Universal Approximation Theorem (UTA)
	Terminology
	Notation and Abstraction to Layers
	“Classical” Machine Learning vs. Representation Learning
	DL vs. ML: Representation Learning
	Fahrplan	
	From Activations to Classification: �Softmax Function
	Softmax activation function
	Example: Ground truth & Softmax
	Loss function
	Example: Ground truth & Softmax
	"Softmax loss"
	Fahrplan	
	Optimization: Credit Assignment Problem
	Formalization as Optimization Problem
	Gradient Descent
	What is this L we are trying to optimize?
	Backpropagation – Excessively Applying the Chain Rule
	Additional Information on Backpropagation�Excessively Applying the Chain Rule
	Fahrplan	
	Activation Functions (Recap)
	Sign activation function
	Linear activation function
	Sigmoid activation function
	Why zero-centering?
	Tanh Activation Function
	Why are vanishing gradients a problem?
	Rectified Linear Unit
	Piecewise-linear Activation Function
	Variants
	Swish/Sigmoid Linear Unit (SiLU) function
	Dancing activation functions
	Summary
	Foliennummer 57
	Optimization and Training (April 29)
	Foliennummer 62
	Learning algorithm / Update rule of the perceptron
	Update rule of the perceptron
	Update rule of the perceptron
	Machine Learning Components
	Machine Learning Components
	Machine Learning Components

