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Goals for today

You should be able to...

* deepen knowledge of deep learning as a concept

* understand core building blocks of (simple) neural networks

e explain why neural networks are powerful ML approaches
e understand the basics of training neural networks

e discuss benefits and drawbacks of different activation functions



Fahrplan

* Recap: Machine Learning and Deep Learning

* Perceptron

* Fully-Connected Layers and Universal approximation theorem
* From Activations to Classifications

* Credit Assignment Problem

* Activation Functions



Al vs. ML vs. DL

* Al is broader than just VIL

* DL is a special type of VIL

* 100% of today’s Al hype is
caused by DL models

Artificial
Intelligence

Machi
& tocnie

Deep
Learning

Source: https://tinyurl.com/2yy97tu3



Machine learning

-

Machine learning denotes the multitude of algorithms for (semi-)automatic extraction of

\_

new and useful knowledge from arbitrary collections of data (aka datasets). This
knowledge is typically captured in the form of rules, patterns, or models.

J

Algorithm Model

sl

Source: https://tinyurl.com/mpd39647



https://tinyurl.com/mpd39647

Machine Learning Components

* Any ML algorithm/approach has to have
the following three components:

* Model
* Objective
e Optimization algorithm




The Basics of ML...

* Input: example represented by the feature vector: x =[x, x, ..., x]

e Output (in supervised learning): the label y assigned to the example
v is a discrete class (in classification problems) or a score (in regression problems)

* A machine learning model 1 maps an input [x,, x,, ..., x,] to a label y

* The model has a set of k parameters 6 = [0, O, ..

h(x|©)

8 J:y' = h(x|0)

Notation for ground truth y
vs. prediction '




|II

“Classical” Machine Learning

measurement preprocessing feature extraction classification

training

e (Multi-layer) perceptron (today‘s lecture) typically works with
predefined features

» ,Hand-crafted” feature design replaced by data-driven and end-to-end
feature learning in state-of-the-art architectures

* Most concepts are important across architectures

10



Supervised ML: Toy Example

* You want to learn a classifier that can differentiate between an apple
[ IERERENRE

* Instance/example: some concrete apple or some concrete banana.
* Feature vector x =[x, X, X3, X, ...]

x,: length of the fruit
X,: circumference

X5: weight

X,: color

* Label: y € {c, =apple, ¢, = banana}

11



From Machine Learning to Representation Learning
Essential terms in the context of Deep Learning:
1. Representation of data

2. Transformation

3. Dimensionality reduction

x,: top left pixel color I o 0\@\o x,: length of the fruit
X,: top right pixel color @ ®Ce X,: circumference
: i X @ O — x| @
X,: bottom left pixel color 1| o PS X5: weight 0%
x,: bottom right pixel color o ® - X,: average color Coo :
X, ' X2

- Goal: Make final classification (or regression) as easy as possible
12



Fahrplan

* Recap: Machine Learning and Deep Learning

* Perceptron

* Fully-Connected Layers and Universal approximation theorem
* From Activations to Classifications

* Credit Assignment Problem

* Activation Functions
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Toward Neural Networks

e Core contribution:
Rosenblatt’s perceptron (1957) [1]
aka: McCulloch—Pitts neuron

* Goal: Model a single (artificial) neuron
with incoming connections

* Motivated by biological neurons
e Connected by synapses

* If the sum of incoming activations is large enough,
an action potential is created

e “All-or-nothing” response based on a threshold
* Exhibits non-linear behavior

Adapted from Wikimedia Commons, Link

[1] Frank Rosenblatt. The Perceptron—a perceiving and recognizing automaton. 85-460-1. Cornell Aeronautical Laboratory, 1957. 14


https://commons.wikimedia.org/wiki/File:Complete_neuron_cell_diagram_de.svg

The Pe rce ptron Learned via a suitable

learning rule

* Incoming signals: weighted sum of
inputs x =[x, x,, ..., x.]
with weights w = [w,, w,, ..., w ] and w,

Z=W'x+w,

— Linear transformation of input

Activation

* “All-or-nothing” response (Heaviside): function

1 ifz=20,
0 otherwise

y'=0(z) = {

inputs weights

- Binary classification y € {0, 1}

15



Decision Boundary of a Perceptron

y =0

Activation
function

inputs weights

(WX + w,)

New sample

o
/
Orthogonal/distance
/
/
/ a = 90°

Decision boundary

16



XOR-Problem

* Q: Why is this problem (c;:@, ¢,:®)

not solvable with a perceptron?
* No linear projection exists that O
o, @ o
separates the two classes ° Co.
* 1969: “Perceptrons” [2] described ©
limitations of neural networks X1
— First “Al winter”
O
@ 0o @
O
%% o
X5

[2] Marvin Minsky, Seymour A. Papert. Perceptrons: An Introduction to Computational Geometry. The MIT Press, 2017
(Original 1969/1987).


https://doi.org/10.7551/mitpress/11301.001.0001

Fahrplan

* Recap: Machine Learning and Deep Learning

* Perceptron

* Fully-Connected Layers and Universal Approximation Theorem
* From Activations to Classifications

* Credit Assignment Problem

* Activation Functions
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From Single to Multilayer Perceptrons

* A single perceptron = a single neuron

- complex decisions need many neurons SR
p- y : IFA'SINGIE NEURON IS NOT ENOUGH
* Use multiple neurons as a layer ."
* Important synonym: fully-connected layer
e Chain layers of neurons " ‘.“-/ '
AT
k- -

4
<" JUST ADD MORE

imgflp.com J

19



Multilayer Perceptron

inputs weights

Activation
function

weights

Activation
function

20



Universal Approximation Theorem (UTA)

Let o(-) be a non-constant, bounded and monotonically increasing function.

For any £ > 0 and any continuous function 7 defined on a compact subset of there exist
an integer M, real constants v;, b; € R and real vectors w; € R™ where 1 =1, ..., M, such

that

— We can approximate any function with just one hidden layer with a
sensible activation function

— But: we have no algorithm how to: how many nodes, how to train, ...
22



Terminology

Hidden Hidden
layer layer

Activation
function

I

Activation Weights
function

inputs  weights

* Typically: Input layer, hidden layers, output layer

* A single hidden layer (of arbitrary width) can already be shown to be a
universal function approximator

* Non-linear functions:
 are called activation functions in hidden layers
e provide the final output and are used for the loss function

Qutput
layer

— @
e 0
o

23



Notation and Abstraction to Layers Dimensionalities

x € R" - x' e R
weR” 5w e R
* Single neuron: 2/2m € R!
W < RMx(nJrl)

ze RM

Z=WX+w,=[w;, w,, ..., w,] - X+ w,
- Elegant vector computation:
dropping ’ for
Z= [WO; Wi, Wy« Wn] -1, X110 Xy veey Xn] T=wTx convenience

* For M neurons in a layer with (w, ..., w_ ;)
z, =wW,_Tx
* This means we can formulate a matrix multiplication = layer view
z = WX
For layer O: h,(x, W) = o(W x)

24
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“Classical” Machine Learning vs. Representation Learning

measurement preprocessing feature extraction classification

"
=
—
—
—_—
—
—

training

—-—
—
=
—
B
—
=

: X feature feature transformation &
measurement preprocessing > : P
extraction classification

e (Multi-layer) perceptron iteratively transform features

* Neural networks are a concatenation of functions:

h(X, W) — hn—l(--- hl(ho(X, Wo), Wl), Wn—l))

25



DL vs. ML: Representation Learning

The key principle of deep learning is representation learning:

Instead of precomputing features according to human intuition,
let’s learn features from the raw data

Machine Learning

Gap — |&

Input Feature extraction Classification

Deep Learning

Feature extraction + Classification Output

https://levity.ai/blog/difference-machine-learning-deep-learning

26



Fahrplan

* Recap: Machine Learning and Deep Learning

* Perceptron

* Fully-Connected Layers and Universal Approximation Theorem
* From Activations to Classifications

* Credit Assignment Problem

* Activation Functions
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From Activations to Classification:
Softmax Function

* So far: ground truth/estimated label described by y/y’ € {0, 1}
* Instead, we can use a vectory = (y,, ..., ¥, )" where K = #classes
* For exclusive classes, y is then:

vy = {1 if k is the index of the true class,

0 otherwise

* Called one-hot encoding: Only one elementis 20
* Follows properties of a probability distribution:

K
1. Zk:l Yk = 1

2. vk 20 Vy €y

28



Softmax activation function

* One-hot ground truth needs matching prediction
* Softmax-function rescales a vector z:

v, = exp(zx)
kK — K
Zj:l exp(z;)

* Allows to treat the output as normalized probabilities

e Softmax function is also known as the normalized exponential function

29



Example: Ground truth & Softmax

e Softmax-function rescales a vector z:

yl = exp(zx)
“ Zszl exp(z;) Label Z. | exp(z,) Y,
* Four-class problem: y = [y,, ..., y,]7 |APPI€ -344| 003 00006
CENERE! 1.16 3.19| 0.0596
- Pear 0.81 044 0.0083
* New sample: y =10, 1, 0, 0]" Cherry 391| 49.90| 0.9315

)]
Y,

Prediction: y’ = [0.00, 0.06, 0.01, 0.93]"

Source: https://www.chefsculinar.de/rote-obstbanane-8515.htm
https://www.chefsculinar.de/chefsculinar/ds_img/assets_800/wk-01-rote_obstbanane.jpg 30



https://www.chefsculinar.de/rote-obstbanane-8515.htm
https://www.chefsculinar.de/rote-obstbanane-8515.htm

Loss function

* We now have two probability distributions (ground truth/prediction)
— they should be as similar as possible

* The cross entropy H of probability distributions p and q

H(p, a) Z Pk log(qx)

e Based on H, we formulate a loss function L:
L(y,y") = —log(yi)ly.=1

— More about this in the next lecture

31



Example: Ground truth & Softmax

* Four-class problem:y =[y,, ..., v, 1"

L(y,y") = —log(y))]y.=1

* Ground truth:y =10, 1, 0, 0]"
* Prediction: y’ = [0.00, 0.06, 0.01, 0.93]"

- Loss / Error for this specific sample: - log(0.06) = 1.22

32



"Softmax loss"

e Cross-entropy and the Softmax function typically appear together

L) — 1o [ P(2) )ykl
2) g(zj-‘lexp(zj) ‘

* Naturally handles multiple class problems

* Teaser: One-hot encoding, softmax, & cross-entropy allow
generalization to multi-label & label smoothing (non-unique class
assignments)

33



Fahrplan

* Recap: Machine Learning and Deep Learning

* Perceptron

* Fully-Connected Layers and Universal Approximation Theorem
* From Activations to Classifications

* Credit Assignment Problem

* Activation Functions
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Optimization: Credit Assighment Problem

What do these two images have in common?

Hidden Hidden

https://krypt3ia.files.wordpress.com/2011/11/rube.jpg

—> Difficult to identify which parts to adjust to change the output in a specific direction

35



Formalization as Optimization Problem

h(X, W) — hz(hl(ho(x, Wo), Wl), Wz))

Goal: Find best weights W for all layers

e Abstract the whole network as a function:
L(W, x,y)

* Consider all N training samples:
N
1
Ex,ywﬁdata(x,y) [L(Wv X, Y)] — N Z L(W1 X, y)
i=1
* We want to minimize the loss criterion:

minimize  {L(W, x, )}

36



Gradient Descent

argvcwin 4 NZL(W'X'y) .

Method of choice: Gradient Descent
1. Initialize W
2. lterate until convergence

M
whtl — wk — va% > L(w,x,y)

where n is commonly referred to as the learning rate

37



What is this L we are trying to optimize?

Complex network can be seen as a composed functions:
h(X, W) — hz(hl(ho(x, Wo), Wl), Wz))

— Gradient for each weight matrix needs to be determined

38



Backpropagation — Excessively Applying the Chain Rule

* Network is a set of composed (linear and non-linear) functions

h(X, W) - hg(hl(ho(x, W()), Wl), Wg))

* Chain rule:
e = 5 F(g0) - g

* Important: Need to compute weights
both for W and (intermediate) z

39



Additional Information on Backpropagation
Excessively Applying the Chain Rule

I |
hi(... fori >0
We define y; = () ort >_ :
X otherwise To improve your understanding:
— Ty.
Zi d— Wiy e Think about what dimensions disz(W, x,y) should have and how we arrive at this di-
an . mension.
let hi(x, W) =0c(Wx) i.e., a fully connected
layer with activation function o. o Try to derive the gradient for dLWlL(W, X, y) yourself. What intermediate gradients do you
Then: have to compute along the way?
d d
L(W = L(h(x, W
dW2 ( U X, y) dW2 ( (X, )1 y)
d To ease notation, replace with y,
= %L(h(x, W)’ Y) ' dW, h(x, W) Does not depend on W,
A
d d [ \
= —L(h(x,W . ho(hi(h W), W;), W
o L(h(x, W), y) aW, 2(h1(ho(x, Wo), W1), W2)
d
= —L(h(x,W . h W
dh ( (X’ )’ y) dW2 2(y11 2)
@ L(h(x, W), y) - 0 0(Way,)
= — . (o)
dh Y gy, TR
d d d
= —L(h(x,W),y) - ——0(z1) - —==-Woy1 :
dh dz; dW> > Matrix cookbook:
d d dXa _ T
= %L(h(x, W),y) - d—zla(zl) -y ax — 2 For the case of L(h(x, W),y) = ||h(x, W) —y||3,

and (for simplicity) o(x) = x (and therefore Lo(x) = 1)
41

=2(h(x, W) —y)-1-y/ <



Fahrplan

* Recap: Machine Learning and Deep Learning

* Perceptron
* Fully-Connected Layers and Universal Approximation Theorem

* From Activations to Classifications
* Credit Assignment Problem
e Activation Functions

42



Activation Functions (Recap)

e Recap 1: Biological neurons generate “all-or-nothing”
response

* Recap 2: UTA requires non-linear! function o

e Recap 3: Composition of two linear transforms

W, - W, is again a linear transform

- Non-linearity “prevents” collapse

* Recap 4: In perceptron: Heaviside function

1: plus additional properties

43



Sign activation function

Sign function:

(41 for x>0
\—1 for x <0
f'(x) = 20(x)

/

f(x) =<

oo forx =0

0 forx+#0

\

+ Normalized output

Gradient still vanishes almost everywhere

Z Backpropagation
45



Linear activation function

Linear function with parameter a
f(x) = ax

) =a

* Provides scaling / identity

+ Simple, good for certain proofs Al ast
. ) ) Source: https://tenor.com/de/view/captain-
Does not introduce non-Ilnearlty obvious-super-hero-superhero-gif-18644946

46



Sigmoid activation function

1 y Sigmoid (logistic) function:

1
fx) = 1 4+ exp(—x)

Fi(x) = £(x)(1 - £(x))

 C(lose to biological model, but differentiable
+ Probabilistic output

Saturates forx < 0and x> 0

Not zero-centered

—7 —5 —3 —1

iy



Why zero-centering?

e Sigmoid: f : R —]0, 1]
o Output of activation always +
> V. Will either be all + or all —

e A mean p = 0 of the input distribution will always be shifted to © > 0

> co-variate shift of successive layers

> layers constantly have to adapt to the shifting distribution
o Batch learning reduces the variance o of the updates

48



Tanh Activation Function

Tanh (hyperbolic tangent) function

— Tanh f(x) = tanh(x)

f'(x) =1— f(x)?

~7 -5 —3 —1

e Shifted version of the sigmoid function
tanh(x) = 20(2x) - 1

+ Zero-centered (LeCun '91)
Still saturates forx <K 0andx > 0

49



Why are vanishing gradients a problem?

* Essence of learning: How does x affect y?
. . —— Sigmoid
 Sigmoid/tanh map
large regions of X to a small range in Y
* A large change in x » minimal change iny

* Problem is amplified by backpropagation: el
Multiplication of small gradients

* Related problem: Exploding gradients

50



Rectified Linear Unit

So vanishing gradients are a problem -2 linear function + non-linearity

— sigmoid |3 |7
—— Tanh
—— RelLU

1 f/(X) —

Rectified Linear Unit (ReLU):
f(x) = max(0, x)

(1 ifx>0

0 else

\

+ Good generalization due to piece-wise linearity

+ Speed up during learning (6x (Krizhevsky '12))
+ No vanishing gradient problem

No signal <=0

Not zero-centered

51



Piecewise-linear Activation Function

* ReLUs were a big step forward!

1y
: —— Sigmoid |3
* ReLUs enable deep supervised neural ?anh
networks without unsupervised pretraining | ———=NEY

1

* First derivative is 1 if the unit is active,
second derivative is 0 almost everywhere
— no second-order effects

52



Variants

Activation Function

Leaky RelL. U / Parametric RelLU
ifx >0
ax else

ifx >0

else

-+ Fixes dying RelLU problem
e |eaky RelLU: & = 0.01 Maas13-RNI
e Parametric ReLU (PRelLU): learn & He15-DDR

53



Swish/Sigmoid Linear Unit (SiLU) function

Combination of Sigmoid and RelU:
f(x) =x-o(x)
f'(x) = o(x) + x - o' (x)

* Trainable version:

f(x) = x - o(6x)

* Preserves flow of gradients for x <0
* Smoother gradient flow that leaky ReLU

e superior or comparable performance to ReLU on deeper models and
complex datasets

- Exercise ©

54



Dancing activation functions




Summary

* Core building blocks:
* Linear Transformation
* Activation Function
* Loss Function

* Perceptron as an artificial neuron, inspired by biology
-2 linear transformation + non-linearity

* Multilayer fully-connected networks with suitable activation functions
are universal function approximators (but how to get there...)

 Comparison of probability distributions: Softmax & cross-entropy
* Credit Assignment Problem: How to update what & Backpropagation

e Activation Functions: Non-linearity, no vanishing gradients, ReLU and
SiLU as good standard options

56



NEAT TIME

ON DEEP LEARNING



Optimization and Training (April 29)

https://krypt3ia.files.wordpress.com/2011/11/rube.jpg Photograph by Twentleth Century Fox Film Corp L|nk

58
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Learning algorithm / Update rule of the perceptron

Task: find weights that minimize the distance of misclassified samples
to the decision boundary.

Training SEt: (XI Y) = [(x]_ly]_)l (XZI yZ)I SRy (xml ym)]
Let M be the set of misclassified feature vectors y.# y.'= o(w'x, + w,)
according to a given set of weights w

Optimization problem:

argmin {D(_w) = — Z Yi - (waf)}
XM

w

63



Update rule of the perceptron

* Objective function depends on misclassified feature vectors M:
iterative optimization

* In each iteration, the cardinality and composition ofMmay change
* The gradient of the objective function is:

64



Update rule of the perceptron

e Strategy 1: Process all samples, then perform weight update
 Strategy 2: Take an update step right after each misclassified sample

* Update rule in iteration (k + 1) for the misclassified sample x
simplifies to:

W(k+1) - W(k) -+ 0 (yI — yi') . Xi

where a is the step size

* Optimization until convergence or for a predefined number of
iterations

65



Machine Learning Components

* Any ML algorithm/approach has three components:

1. Model
* A set of functions among which we’re looking for the , best” one

H= {h(x‘e)}e

* Hypothesis /1 = a concrete function obtained for some concrete
values of ©

* Model = set of hypotheses

66



Machine Learning Components

* Any ML algorithm/approach has three components:

2. Objective

* We're looking from the best hypothesis h in the model H = {h(x|0)},
* (Q: But ,best” according to what?

* Objective J is a function that quantifies how good/bad a hypothesis /1 is
e Usually Jis a ,loss function” that we’re minimizing

 We're looking for h (that is, values of parameters 0) that maximize or
minimize the objective J

*=argmin, ., J(h(x]|BO))
* =argming J(h(x]0))

e ML thus amounts to solving optimization problems

67



Machine Learning Components

* Any ML algorithm/approach has three components:

1. Optimization algorithm
* An exact algorithm that we use to solve the optimization problem

* = argming J(h(x|6))

* Selection/type of the optimization algorithm depends on the two
functions — the model H and the objective )

68
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