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Who am I and who are we?

Friedrich-Alexander University Erlangen-Nürnberg  Julius-Maximilians-University Würzburg

AI in Medical Imaging Lab  Pattern Recognition

https://www.healthcare.siemens.com

Image courtesy: Prof. Dr. Klopfleisch, FU Berlin

Public Datasets, 
Annotation & Label-

efficient Learning

Intraoperative & 
Multimodal Imaging

Machine Learning for 
Microscopic Imaging

Image courtesy: Prof. Dr. Falkenberg, Sahlgrenska, Sweden

before after

Prof. Dr. Ostendorf
Heinrich-Heine-Universität Düsseldorf

Image courtesy: Prof. Dr. Uderhardt3



Goals for today

You should be able to…
• deepen knowledge of deep learning as a concept
• understand core building blocks of (simple) neural networks
• explain why neural networks are powerful ML approaches
• understand the basics of training neural networks
• discuss benefits and drawbacks of different activation functions

4



Fahrplan

• Recap: Machine Learning and Deep Learning
• Perceptron
• Fully-Connected Layers and Universal approximation theorem
• From Activations to Classifications
• Credit Assignment Problem
• Activation Functions
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AI vs. ML vs. DL

• AI is broader than just ML
• DL is a special type of ML
• 100% of today’s AI hype is 

caused by DL models

Source: https://tinyurl.com/2yy97tu3
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Machine learning

Machine learning denotes the multitude of algorithms for (semi-)automatic extraction of 
new and useful knowledge from arbitrary collections of data (aka datasets). This 

knowledge is typically captured in the form of rules, patterns, or models.     

Machine Learning

Source: https://tinyurl.com/mpd39647
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Machine Learning Components

• Any ML algorithm/approach has to have                                  
the following three components:

• Model
• Objective
• Optimization algorithm
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The Basics of ML...

• Input: example represented by the feature vector: x = [x1, x2, ..., xn] 
• Output (in supervised learning): the label y assigned to the example

• y is a discrete class (in classification problems) or a score (in regression problems)

• A machine learning model h maps an input [x1, x2, ..., xn] to a label y
• The model has a set of k parameters θ = [θ1, θ2, ..., θk]: y' = h(x|θ)

h(x|θ)…

x1
x2

xn

y'
Notation for ground truth y 
vs. prediction y'
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“Classical” Machine Learning

• (Multi-layer) perceptron (today‘s lecture) typically works with 
predefined features

• „Hand-crafted“ feature design replaced by data-driven and end-to-end 
feature learning in state-of-the-art architectures

• Most concepts are important across architectures

measurement preprocessing feature extraction classification

training
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Supervised ML: Toy Example

• You want to learn a classifier that can differentiate between an apple
and a banana

• Instance/example: some concrete apple or some concrete banana.
• Feature vector x = [x1, x2, x3, x4, ...]

• Label: y ∈ { c1 = apple, c2 = banana}

x1: length of the fruit
x2: circumference
x3: weight
x4: color
…
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From Machine Learning to Representation Learning

Essential terms in the context of Deep Learning:
1. Representation of data
2. Transformation
3. Dimensionality reduction

 Goal: Make final classification (or regression) as easy as possible
12

x1: length of the fruit
x2: circumference
x3: weight
x4: average color
…

x1: top left pixel color
x2: top right pixel color
x3: bottom left pixel color
x4: bottom right pixel color
…

x1

x2

x1

x2



Fahrplan

• Recap: Machine Learning and Deep Learning
• Perceptron
• Fully-Connected Layers and Universal approximation theorem
• From Activations to Classifications
• Credit Assignment Problem
• Activation Functions
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Toward Neural Networks

• Core contribution: 
Rosenblatt’s perceptron (1957) [1]
aka: McCulloch–Pitts neuron

• Goal: Model a single (artificial) neuron 
with incoming connections

• Motivated by biological neurons
• Connected by synapses
• If the sum of incoming activations is large enough,

an action potential is created
• “All-or-nothing” response based on a threshold
• Exhibits non-linear behavior Adapted from Wikimedia Commons, Link

14[1] Frank Rosenblatt. The Perceptron–a perceiving and recognizing automaton. 85-460-1. Cornell Aeronautical Laboratory, 1957.

https://commons.wikimedia.org/wiki/File:Complete_neuron_cell_diagram_de.svg


The Perceptron 

• Incoming signals: weighted sum of 
inputs x = [x1, x2, ..., xn]
with weights w = [w1, w2, ..., wn] and w0

z = wTx + w0

Linear transformation of input

• “All-or-nothing” response (Heaviside):

 Binary classification y ∈ {0, 1}

w2x2

...
...

wnxn

w1x1

w01

inputs weights

Activation 
function

∑

y‘ = σ(z) = 1 if z ≥ 0,
0 otherwise
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Learned via a suitable 
learning rule 



Decision Boundary of a Perceptron

w2x2

...
...

wnxn

w1x1

w01

inputs weights

Activation 
function

∑ y‘ = σ(wTx + w0)
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XOR-Problem

• Q: Why is this problem (c1:   , c2:   ) 
not solvable with a perceptron?

• No linear projection exists that 
separates the two classes

• 1969: “Perceptrons” [2] described 
limitations of neural networks 
 First “AI winter”

x1

x2

17
[2] Marvin Minsky, Seymour A. Papert. Perceptrons: An Introduction to Computational Geometry. The MIT Press, 2017 
(Original 1969/1987). https://doi.org/10.7551/mitpress/11301.001.0001

https://doi.org/10.7551/mitpress/11301.001.0001


Fahrplan

• Recap: Machine Learning and Deep Learning
• Perceptron
• Fully-Connected Layers and Universal Approximation Theorem
• From Activations to Classifications
• Credit Assignment Problem
• Activation Functions
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From Single to Multilayer Perceptrons

• A single perceptron ≈ a single neuron
 complex decisions need many neurons

• Use multiple neurons as a layer
• Important synonym: fully-connected layer
• Chain layers of neurons
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Multilayer Perceptron

w(1)
0,0

w(1)
1,0

w(0)
1,0

w(0)
0,1

w(0)
0,0

w(0)
1,1

w(0)
n,0

w(0)
n,1

1

x1

xn
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weights

Activation 
function

inputs weights

Activation 
function

∑

∑
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Universal Approximation Theorem (UTA)
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Terminology

• Typically: Input layer, hidden layers, output layer
• A single hidden layer (of arbitrary width) can already be shown to be a 

universal function approximator
• Non-linear functions:

• are called activation functions in hidden layers
• provide the final output and are used for the loss function
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Notation and Abstraction to Layers

• Single neuron: 
z = wTx + w0 = [w1, w2, ..., wn] ∙ x + w0

Elegant vector computation:
z = [w0, w1, w2, ..., wn] ∙ [1, x1, x2, ..., xn] T = w’Tx’

• For M neurons in a layer with (w0, … , wm-1)
zm = wm

Tx
• This means we can formulate a matrix multiplication  layer view

z = Wx
For layer 0: h0(x, W0) = σ(W0x)

24

dropping ’ for 
convenience



“Classical” Machine Learning vs. Representation Learning

• (Multi-layer) perceptron iteratively transform features
• Neural networks are a concatenation of functions:

measurement preprocessing feature extraction classification

training

measurement preprocessing feature 
extraction

feature transformation &
classification
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DL vs. ML: Representation Learning

The key principle of deep learning is representation learning:
Instead of precomputing features according to human intuition,
let’s learn features from the raw data 

Source: https://levity.ai/blog/difference-machine-learning-deep-learning
26



Fahrplan

• Recap: Machine Learning and Deep Learning
• Perceptron
• Fully-Connected Layers and Universal Approximation Theorem
• From Activations to Classifications
• Credit Assignment Problem
• Activation Functions
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From Activations to Classification: 
Softmax Function

28

• So far: ground truth/estimated label described by y/y’ ∈ {0, 1}
• Instead, we can use a vector y = (y1, … , yK )T where K = #classes
• For exclusive classes, y is then:

• Called one-hot encoding: Only one element is ≠ 0
• Follows properties of a probability distribution:



Softmax activation function

• One-hot ground truth needs matching prediction
• Softmax-function rescales a vector z:

• Allows to treat the output as normalized probabilities
• Softmax function is also known as the normalized exponential function
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Example: Ground truth & Softmax

• Softmax-function rescales a vector z:

• Four-class problem: y = [y1, … , y4 ]T

• New sample: y = [0, 1, 0, 0]T

Prediction: y’ = [0.00, 0.06, 0.01, 0.93]T

30Source: https://www.chefsculinar.de/rote-obstbanane-8515.htm
https://www.chefsculinar.de/chefsculinar/ds_img/assets_800/wk-01-rote_obstbanane.jpg

Label zk exp(zk) yk'

Apple -3.44

Banana 1.16

Pear -0.81

Cherry 3.91

Label zk exp(zk) yk'

Apple -3.44 0.03

Banana 1.16 3.19

Pear -0.81 0.44

Cherry 3.91 49.90

Label zk exp(zk) yk'

Apple -3.44 0.03 0.0006

Banana 1.16 3.19 0.0596

Pear -0.81 0.44 0.0083

Cherry 3.91 49.90 0.9315

https://www.chefsculinar.de/rote-obstbanane-8515.htm
https://www.chefsculinar.de/rote-obstbanane-8515.htm


Loss function

• We now have two probability distributions (ground truth/prediction)
 they should be as similar as possible

• The cross entropy H of probability distributions p and q

• Based on H, we formulate a loss function L:

More about this in the next lecture
31



Example: Ground truth & Softmax

• Four-class problem: y = [y1, … , y4 ]T

• Ground truth: y = [0, 1, 0, 0]T

• Prediction: y’ = [0.00, 0.06, 0.01, 0.93]T

 Loss / Error for this specific sample: - log(0.06) = 1.22
32



"Softmax loss"

• Cross-entropy and the Softmax function typically appear together

• Naturally handles multiple class problems
• Teaser: One-hot encoding, softmax, & cross-entropy allow 

generalization to multi-label & label smoothing (non-unique class 
assignments)
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Fahrplan

• Recap: Machine Learning and Deep Learning
• Perceptron
• Fully-Connected Layers and Universal Approximation Theorem
• From Activations to Classifications
• Credit Assignment Problem
• Activation Functions
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Optimization: Credit Assignment Problem

What do these two images have in common?
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https://krypt3ia.files.wordpress.com/2011/11/rube.jpg

 Difficult to identify which parts to adjust to change the output in a specific direction 



Formalization as Optimization Problem

Goal: Find best weights W for all layers
• Abstract the whole network as a function:

• Consider all N training samples:

• We want to minimize the loss criterion:

36



Gradient Descent

Method of choice: Gradient Descent
1. Initialize W
2. Iterate until convergence

where η is commonly referred to as the learning rate

37



What is this L we are trying to optimize?

Complex network can be seen as a composed functions:

 Gradient for each weight matrix needs to be determined

38



Backpropagation – Excessively Applying the Chain Rule

• Network is a set of composed (linear and non-linear) functions

• Chain rule:

• Important: Need to compute weights
both for W and (intermediate) z

39



Additional Information on Backpropagation
Excessively Applying the Chain Rule

41

To ease notation, replace with y1
Does not depend on W2



Fahrplan

• Recap: Machine Learning and Deep Learning
• Perceptron
• Fully-Connected Layers and Universal Approximation Theorem
• From Activations to Classifications
• Credit Assignment Problem
• Activation Functions
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Activation Functions (Recap)

• Recap 1: Biological neurons generate “all-or-nothing” 
response

• Recap 2: UTA requires non-linear1 function σ

• Recap 3: Composition of two linear transforms

W1 ∙ W0 is again a linear transform

 Non-linearity “prevents” collapse

• Recap 4: In perceptron: Heaviside function

1: plus additional properties
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Sign activation function

Sign function:

45

+ Normalized output
- Gradient still vanishes almost everywhere 
↯ Backpropagation



Linear activation function

Linear function with parameter α

46

• Provides scaling / identity
+ Simple, good for certain proofs
- Does not introduce non-linearity

Source: https://tenor.com/de/view/captain-
obvious-super-hero-superhero-gif-18644946



Sigmoid activation function

Sigmoid (logistic) function: 

47

• Close to biological model, but differentiable
+ Probabilistic output
− Saturates for x ≪ 0 and x ≫ 0
− Not zero-centered



Why zero-centering?
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Tanh Activation Function

49

Tanh (hyperbolic tangent) function 

• Shifted version of the sigmoid function
tanh(x) = 2σ(2x) - 1

+ Zero-centered (LeCun ’91)
− Still saturates for x ≪ 0 and x ≫ 0



Why are vanishing gradients a problem?

• Essence of learning: How does x affect y?
• Sigmoid/tanh map 

large regions of X to a small range in Y
• A large change in x ↦ minimal change in y
• Problem is amplified by backpropagation: 

Multiplication of small gradients
• Related problem: Exploding gradients

50



Rectified Linear Unit

So vanishing gradients are a problem  linear function + non-linearity

51

Rectified Linear Unit (ReLU):

+ Good generalization due to piece-wise linearity
+ Speed up during learning (6x (Krizhevsky '12))
+ No vanishing gradient problem 
- No signal <= 0
- Not zero-centered



Piecewise-linear Activation Function

52

• ReLUs were a big step forward!
• ReLUs enable deep supervised neural

networks without unsupervised pretraining
• First derivative is 1 if the unit is active,

second derivative is 0 almost everywhere
 no second-order effects



Variants
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Swish/Sigmoid Linear Unit (SiLU) function

54

Combination of Sigmoid and ReLU:

• Trainable version:

• Preserves flow of gradients for x < 0
• Smoother gradient flow that leaky ReLU
• superior or comparable performance to ReLU on deeper models and 

complex datasets
 Exercise 



Dancing activation functions
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Summary

• Core building blocks:
• Linear Transformation
• Activation Function
• Loss Function

• Perceptron as an artificial neuron, inspired by biology
 linear transformation + non-linearity

• Multilayer fully-connected networks with suitable activation functions 
are universal function approximators (but how to get there…)

• Comparison of probability distributions: Softmax & cross-entropy
• Credit Assignment Problem: How to update what & Backpropagation
• Activation Functions: Non-linearity, no vanishing gradients, ReLU and

SiLU as good standard options
56
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Optimization and Training (April 29)

https://krypt3ia.files.wordpress.com/2011/11/rube.jpg Photograph by Twentieth Century Fox Film Corp., Link
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https://i.natgeofe.com/n/45277cd7-1e97-425a-9d50-55928c30802e/47096_4x3.jpg


2. Feed-Forward Neural Netwoks

Deep Learning
Summer semester ‘24
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Learning algorithm / Update rule of the perceptron

Task: find weights that minimize the distance of misclassified samples 
to the decision boundary.
Training set: (X, Y) = [(x1,y1), (x2, y2), …, (xm, ym)]
Let M be the set of misclassified feature vectors yi ≠ yi' = σ(wTxi + w0)
according to a given set of weights w
Optimization problem:
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Update rule of the perceptron

• Objective function depends on misclassified feature vectors M: 
iterative optimization

• In each iteration, the cardinality and composition ofMmay change
• The gradient of the objective function is:
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Update rule of the perceptron

• Strategy 1: Process all samples, then perform weight update
• Strategy 2: Take an update step right after each misclassified sample
• Update rule in iteration (k + 1) for the misclassified sample xi

simplifies to:
w(k+1) = w(k) + α (yi – yi') · xi

where α is the step size
• Optimization until convergence or for a predefined number of 

iterations

65



Machine Learning Components

• Any ML algorithm/approach has three components:

1. Model
• A set of functions among which we’re looking for the „best” one

H = {h(x|θ)}θ
• Hypothesis h = a concrete function obtained for some concrete 

values of θ
• Model = set of hypotheses

66



Machine Learning Components

• Any ML algorithm/approach has three components:

2. Objective
• We’re looking from the best hypothesis h in the model H = {h(x|θ)}θ

• Q: But „best” according to what?

• Objective J is a function that quantifies how good/bad a hypothesis h is
• Usually J is a „loss function” that we’re minimizing

• We’re looking for h (that is, values of parameters θ) that maximize or 
minimize the objective J

• ML thus amounts to solving optimization problems

h* = argminh∈H J(h(x|θ))
θ* = argminθ J(h(x|θ))
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Machine Learning Components

• Any ML algorithm/approach has three components:

1. Optimization algorithm
• An exact algorithm that we use to solve the optimization problem

θ* = argminθ J(h(x|θ))

• Selection/type of the optimization algorithm depends on the two 
functions – the model H and the objective J

68
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