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What is Deep Learning?

• What is Machine 
Learning?

• What is the difference                    
between ML and DL?

• What is the relation 
between ML/DL and AI?
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AI vs. Machine Learning

• Machine learning – or learning from 
data is the beating heart of modern AI 
• (Un)supervised learning

• Reinforcement learning

• Representation learning

• Deep Learning

• Bayesian Learning

• Transfer Learning
• ...

Source: https://tinyurl.com/4c86ts2f

https://tinyurl.com/4c86ts2f


Machine Learning

• Successful AI that’s not ML-based? 
• Rare, and effectively limited to rules

• Not suited for tackling complex 
problems „in the wild” (any domain)

• Example: expert systems
• Popular in the 1980s

Source: https://tinyurl.com/4c86ts2f

https://tinyurl.com/4c86ts2f


Machine learning

Machine learning denotes the multitude of algorithms for (semi-)automatic extraction of 
new and useful knowledge from arbitrary collections of data (aka datasets). This 

knowledge is typically captured in the form of rules, patterns, or models.     

Machine Learning

Source: https://tinyurl.com/mpd39647

https://tinyurl.com/mpd39647


Why Machine Learning?

• Write an algorithm (in pseudocode) for the following problems...

Given an arbitrary image, determine which 
object, from a set of objects C of interest 

(e.g., C = {cat, dog, chicken}) is on the image. 

Image Classification

Given an arbitrary product review (text in 
natural language), determine whether it 
expresses positive or negative sentiment 

towards the product. 

Sentiment Analysis

Source: https://cfml.se/blog/sentiment_classification

Source: https://tinyurl.com/yhtnxm3x

https://cfml.se/blog/sentiment_classification
https://tinyurl.com/yhtnxm3x


AI-Complete Problems

• AI-Complete Problems: problems that seem to 
require „human-like” intelligence, not solvable in 
classic „algorithmic” way

• Classic/Traditional AI: Search
• Humans know how to define and tackle the problem  
• This knowledge is „codifiable” into a set of 

instructions
• Machines solve the problems more efficiently

• Modern AI Approach: Learning
• There is no codifiable human knowledge on how to 

reach a solution
• Humans don’t know how to explain the solution to the 

problem (e.g., speech recognition)
• Humans typically solve these problems with ease!

Source: https://tinyurl.com/yhtnxm3x

Source: https://en.wikipedia.org/wiki/Sudoku_solving_algorithms

vs.

https://tinyurl.com/yhtnxm3x
https://en.wikipedia.org/wiki/Sudoku_solving_algorithms


AI vs. ML vs. DL

• AI is broader than just ML

• DL is a special type of ML

• 100% of today’s AI hype is 
caused by DL models

Source: https://tinyurl.com/2yy97tu3



ML Paradigms

Source: https://vitalflux.com/great-mind-maps-for-learning-machine-learning/

• Three main paradigms
• Supervised learning

• Unsupervised learning

• Reinforcement learning

• In each of the three 
paradigms there are 
• DL models

• Non-DL (traditional ML) 
models 

https://vitalflux.com/great-mind-maps-for-learning-machine-learning/


Supervised Learning

Source:https://www.tecislava.com/blog/supervised-unsupervised-reinforcement

• We have labeled data
• Inputs with correct labels

• Labeled data used to „train” 
the ML model

• Classification
• Label is discrete (class)

• Regression
• Label is continuous (score)



Unsupervised Learning

Source:https://www.tecislava.com/blog/supervised-unsupervised-reinforcement

• We have only input data 
instances, no labels
• E.g., only images of objects, 

no indication which objects

• Clustering
• Grouping similar inputs

• Outlier detection
• Finding instances very 

dissimilar from most other

• Dimensionality reduction
• Finding regularities in data in 

lower-dimensional spaces



Reinforcement Learning

Source:https://www.tecislava.com/blog/supervised-unsupervised-reinforcement

• An agent interacts with an 
environment to achieve a goal
• The agent takes actions that 

change the state of the 
environment

• Agent typically makes several 
actions to achieve the goal
• Policy decides which action to 

take at each step

• Reward: an indirect label, 
specifies whether the goal was 
achieved
• Learning = adjusting the policy 

based on the reward



Space of Examples

• We typically operate in (vector) spaces of examples in which 
individual examples (aka instances) are concrete points

• [x1, x2, ..., xn] is a feature vector of the example/instance

In machine learning, individual examples (or instances) x = [x1, x2, ..., xn] are points in a 
space X, consisting of values for features x1, x2, ..., xn. The space X is the determined (i.e., 
spanned) by the domains of the features: D1, D2, ..., Dn. The domains of different features 

can be discrete (the so-called categorical or multinomial features) or continuous. 

Space of Examples in ML



Let’s start with basics of ML...

• Input: example represented by the feature vector: x = [x1, x2, ..., xn] 

• Output (in supervised learning): the label y assigned to the example
• y is a discrete class (in classification problems) or a score (in regression problems)

• A machine learning model h maps an input [x1, x2, ..., xn] to a label y

• The model has a set of k parameters θ = [θ1, θ2, ..., θk]: y = h(x|θ)



Supervised ML: Toy Example

• You want to learn a classifier that can differentiate between an apple
and a banana

• Instance/example: some concrete apple or some concrete banana.
• Feature vector x = [x1, x2, x3, x4, ...]

• Label: y ∈ { c1 = apple, c2 = banana}

x1: length of the fruit
x2: circumference
x3: weight
x4: color
…



Machine Learning Components

• Any ML algorithm/approach has to have                                  
the following three components:

• Model

• Objective

• Optimization algorithm



Machine Learning Components

• Any ML algorithm/approach has three components:

1. Model
• A set of functions among which we’re looking for the „best” one

H = {h(x|θ)}θ

• Hypothesis h = a concrete function obtained for some concrete 
values of θ

• Model = set of hypotheses



Machine Learning Components

• Any ML algorithm/approach has three components:

2. Objective
• We’re looking from the best hypothesis h in the model H = {h(x|θ)}θ

• Q: But „best” according to what?

• Objective J is a function that quantifies how good/bad a hypothesis h is
• Usually J is a „loss function” that we’re minimizing

• We’re looking for h (that is, values of parameters θ) that maximize or 
minimize the objective J

• ML thus amounts to solving optimization problems

h* = argminh∈H J(h(x|θ))
θ* = argminθ J(h(x|θ))



Machine Learning Components

• Any ML algorithm/approach has three components:

3. Optimization algorithm
• An exact algorithm that we use to solve the optimization problem

θ* = argminθ J(h(x|θ))

• Selection/type of the optimization algorithm depends on the two 
functions – the model H and the objective J



Example: Linear Regression

• Linear Regression is one of the simplest (supervised) ML model
• Model: output is a linear combination of input features

• Parameters θ: „weights” that define how much to scale each input feature

h(x = [x1, x2, ..., xn]|θ) = θ0 + θ1x1 + θ2x2 + ... + θnxn

• Objective (loss) function: mean square error 
• D = {(x, y)}i is the training set – pairs of inputs x with corresponding outputs y

L(y, h(x|θ)) = (y – h(x|θ))2

J(h|D) = ½ σ𝑖=1
𝑁 (yi – h(xi|θ))2

• Optimization algorithm:

X = 

𝒙1
𝒙2

…
𝒙𝑁

= 
1 𝑥1,1 ⋯ 𝑥1, 𝑛

⋮ ⋱ ⋮
1 𝑥𝑁, 1 ⋯ 𝑥𝑁, 𝑛

y = 

𝑦1
𝑦2

…
𝑦𝑁

Solution is then computed as:

θ* = (XTX)-1 XTy



Example: Logistic Regression

• Logistic Regression is one of the most widely used ML models
• Model: logistic function (non-linearity) applied on linear comb. of inputs

• Parameters θ: „weights” that define how much to scale each input feature

h(x|θ) = σ(xTθ) 

= 
1

1+exp(−xTθ)

= 
1

1+exp(−(θ
0
+θ

1
∗𝑥

1
+…+θ

𝑛
∗𝑥

𝑛
))

• Objective (loss) function: cross entropy error

LCE (h(xi|θ), yi) = -[ yi * ln h(xi|θ) + (1 - yi) * ln (1 - h(xi|θ)) ]

J(h|D) = 
1

𝑁
σ𝑖=1
𝑁 𝐿( ℎ(𝒙𝑖|θ), yi)

σ(x) = 1/(1+e-x)



Logistic Regression

θ* = argminθ 𝐽

Minimize per θ: −
1

𝑁
σ𝑖=1
𝑁 [ yi ∗ ln h(xi|θ) + (1 − yi) ∗ ln (1 − h(xi|θ)) ]

• Q: How do we find the minimum of a continuous function?
• We compute the gradient and solve the equation „gradient = 0” 

∇θ 𝐽 = 0

∇θ[− 1

𝑁
σ𝑖=1
𝑁 [ yi ∗ ln h(xi|θ) + (1 − yi) ∗ ln (1 − h(xi|θ)) ] ] = 0

• Unlike for linear regression, this equation has no closed form solution. 

• Q: What do we do then? 
• Numerical optimization: gradient descent & co. 
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DL vs. ML

• Input: example represented by the feature vector: x = [x1, x2, ..., xn] 

• Output (in supervised learning): the label y assigned to the example
• y is a discrete class (in classification problems) or a score (in regression problems)

• A machine learning model h maps an input [x1, x2, ..., xn] to output/label y:

• The model has a set of k parameters θ = [θ1, θ2, ..., θk]: y = h(x|θ)

Q: So, what is different in 
Deep Learning?



DL vs. ML: Representation Learning

• Q: Anyone heard of „representation learning”?

• In ML that is not DL („traditional” ML), feature calculation (x1, ..., xn) is 
not really part of the ML model/algorithm itself 

• „Manual feature design”
• we need design and precompute good features for the problem 



Example: Handwritten digit classification

• Input: 8x8 Pixel Images of handwritten digits

• Output/Label: the digit (in the image)

• Which features can we compute from the raw 
data (image = sequence of pixels) that would 
be predictive of the actual digit?

• Feature extraction
• Option 1: each pixel one feature, 64 features?

Source: Image/example from Ingo Scholtes



Example: Handwritten digit classification

• Feature extraction
• Option 1: each pixel one feature, 64 features?

• Option 2: precompute something indicative – e.g., 
center of mass (Schwerpunkt)

Source: Images/example from Ingo Scholtes



DL vs. ML: Representation Learning

• Two key shortcomings of manual feature design:

1. Difficult (not obvious how) to design good features
• Especially in domains with „unstructured data”

• Visual (Computer Vision) and language data (Natural Language Processing)
• Q: Good features for image object classification? 

• Q: Good features for semantic text similarity?



DL vs. ML: Representation Learning

• Two key shortcomings of manual feature design:

2. Loss of information
• Features compute something from the raw data

• The classifier in the end sees only the computed features – a lossy 
representation of the original (whole) data 

Source: https://tinyurl.com/yhtnxm3x Source: https://tinyurl.com/3sknhyp6

https://tinyurl.com/yhtnxm3x


DL vs. ML: Representation Learning

• The key principle of deep learning is representation learning
• Instead of precomputing features according to human intuition, let’s learn

features from the raw data 

Source: https://levity.ai/blog/difference-machine-learning-deep-learning



DL vs. ML: Representation Learning

• ML: Feature extraction separate from the model

• DL: Feature extraction part of the model

• Advantages of FE being part of the model: 
• Removes the need for manual feature extraction

• No loss of information

• Disadvantage: 
• Features based on which the prediction is made are typically no longer 

interpretable – just vectors of numbers

• In manual feature extraction, we know exactly what each feature is and how
we computed it from raw data

Source: https://levity.ai/blog/difference-machine-learning-
deep-learning



Deep Learning Models

• DL models couple feature extraction with prediction making 
(classification/regression), thus have two components

• Encoder
• Does the feature extraction
• In other words, converts the „raw input” into

the (latent) feature vector x’ ∈ ℝd

• „Body” of the model

• Classifier (or regressor)
• Gets the feature vector x’ ∈ ℝd from the encoder and 

converts it into a prediction (scalar y or vector y)
• In traditional ML, the feature vector is precomputed
• „Head” of the model

Encoder
(aka Feature Extractor)

Classifier

M
o

d
e

l

Cat



Deep Learning Models

• Encoder is (usually a complex) 
parameterized function
• x’ = enc(x|θenc) 

• Classifier is (usually a simpler) 
parameterized function
• y = cl(x’|θcl) 

• Encoder and classifier are trained together
• model(x|θenc , θcl)

• „end-to-end” training

Encoder
(aka Feature Extractor)

Classifier

M
o

d
e

l

Cat



Why „Deep” Learning?

• Model is a complex function, a composition
of a number of non-linear parametrized 
functions

• Encoder and classifier are trained together
• model(x|θenc , θcl) = cl(enc(x, θenc), θcl) 

• But encoders/classifiers are also compositions 
of „subfunctions”
• Called layers in deep learning

• enc(x, θenc) = layn(layn-1(...(lay1(x|θ1)|θ2)...)|θn)

• θenc= {θ1, θ2, ..., θn-1, θn}

Encoder
(aka Feature Extractor)

Classifier

M
o

d
e

l

Cat



Example: Deep Convolutional Networks

• Different „layer” functions result in different model architectures
• enc(x, θenc) = layn(layn-1(...(lay1(x|θ1)|θ2)...)|θn)

• θenc= {θ1, θ2, ..., θn-1, θn}

• Example: CNNs – two types of layers, „convolutional” and „pooling”

convolutional encoder classifier

features
(output of the 
convolutional 

encoder) 



Deep Learning: Parameters

• What are actually these „parameters” θ?

• Only vectors and/or matrices of real numbers! 

• Randomly initialized

• „Learned” in training, via optimization algorithm 

• Example: feed-forward networks (aka fully-connected networks aka 
multi-layer perceptron)
• layn(layn-1(...(lay1(x|θ1)|θ2)...)|θn)

• layk (xk-1|θk) = g(xk-1Wk + bk)

• xk-1 ∈ ℝ
m – output of the previous, (k-1)-th layer, input for the k-th layer

• Wk ∈ ℝ
m x n bk ∈ ℝ

n – (trainable) parameters of the k-th layer, θk = {Wk , bk}

• g – a non-linear function, for example logistic function: σ(a) = 1/(1+e-a)



Deep Learning in Practice

• All hyped AI today is based on DL models

• Large Language 

Models (LLMs)
• ChatGPT / GPT-4

• Gemini/Gemma

• Llama

• Vicuna

• Mistral/Mixtral

• Command R

• ...



Deep Learning in Practice

• All hyped AI today is based on DL models

• (Text-Based)

Image Generation
• Open AI’s DALL-E

• Bing/MS Image Creator

• DreamStudio (Stability AI)
• aka StableDiffusion

• ...



Deep Learning in Practice

• All hyped AI today is based on DL models

• (Text-Based)

Video Generation



Fahrplan

• Machine Learning

• Deep Learning

• Course Organization



Content & Schedule I

• L1: Intro to DL & Organization (April 15; Glavaš)

• L2: Building blocks of DL & Feed-forward Nets (April 22; Breininger)

• L3: Optimization & Training (April 29; Glavaš)

• L4: Convolutional Networks (May 13; Breininger)

• L5: Autoencoders & GANs (May 27; Timofte) 

• L6: Recurrent Networks (June 3; Hotho) 



Content & Schedule II

• L7: Attention & Transformer (June 10; Hotho)

• L8: Introduction to Reinforcement Learning (June 17; D’Eramo)

• L9: Deep Reainforcement Learning (June 24; D’Eramo)

• L10: Graph Representation Learning (July 1; Scholtes)

• L11: Graph Neural Networks (July 8; Scholtes) 

• Lectures: Monday, 12-14

• Exercise sessions: Tuesday, 14-16 (same location)



Lecturers

Katharina 
Breininger

Pattern 
Recognition

Carlo
D’Eramo

Reinforcement
Learning

Radu 
Timofte

Computer 
Vision

Ingo 
Scholtes

ML 4 Complex 
Networks

Andreas 
Hotho

Data Science

Goran 
Glavaš

Natural 
Language 
Processing



Exercises

• Practically oriented 
• Though there may be also theoretical/conceptual questions

• Goal: learn PyTorch
• #1 DL library globally

• You’ll be provided with code skeleton (as Jupyter notebooks)
• Students have to implement key parts of the code

(model, training/validation loop, evaluation, etc.)



Exercises

• 10 exercise sheets in total
• One after each lecture (except in this first week)

• Sheets published on Tuesdays (after the exercise session)

• Sheets submitted (to WueCampus) before the next exercise session

• Each sheet evaluated with 0, 1, or 2 points

• In total, max. 20pts, if ≥ 17 pts, you get exam bonus

• Exam bonus = if you pass the exam, you get one grade up

• In teams of two students (also possible individually, if preferred)



Exam

• Written exam (most likely)

• Sometime in the second half of July

• Re-exam (Nachholklausur) before the start of the winter semester
• Early October
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