
1. Introduction to Deep Learning
(+ Course Organization)

Deep Learning
Summer semester ‘24

What is Deep Learning?

• What is Machine
Learning?

• What is the difference
between ML and DL?

• What is the relation
between ML/DL and AI?

Fahrplan

• Machine Learning

• Deep Learning

• Course Organization

AI vs. Machine Learning

• Machine learning – or learning from
data is the beating heart of modern AI
• (Un)supervised learning

• Reinforcement learning

• Representation learning

• Deep Learning

• Bayesian Learning

• Transfer Learning
• ...

Source: https://tinyurl.com/4c86ts2f

https://tinyurl.com/4c86ts2f

Machine Learning

• Successful AI that’s not ML-based?
• Rare, and effectively limited to rules

• Not suited for tackling complex
problems „in the wild” (any domain)

• Example: expert systems
• Popular in the 1980s

Source: https://tinyurl.com/4c86ts2f

https://tinyurl.com/4c86ts2f

Machine learning

Machine learning denotes the multitude of algorithms for (semi-)automatic extraction of
new and useful knowledge from arbitrary collections of data (aka datasets). This

knowledge is typically captured in the form of rules, patterns, or models.

Machine Learning

Source: https://tinyurl.com/mpd39647

https://tinyurl.com/mpd39647

Why Machine Learning?

• Write an algorithm (in pseudocode) for the following problems...

Given an arbitrary image, determine which
object, from a set of objects C of interest

(e.g., C = {cat, dog, chicken}) is on the image.

Image Classification

Given an arbitrary product review (text in
natural language), determine whether it
expresses positive or negative sentiment

towards the product.

Sentiment Analysis

Source: https://cfml.se/blog/sentiment_classification

Source: https://tinyurl.com/yhtnxm3x

https://cfml.se/blog/sentiment_classification
https://tinyurl.com/yhtnxm3x

AI-Complete Problems

• AI-Complete Problems: problems that seem to
require „human-like” intelligence, not solvable in
classic „algorithmic” way

• Classic/Traditional AI: Search
• Humans know how to define and tackle the problem
• This knowledge is „codifiable” into a set of

instructions
• Machines solve the problems more efficiently

• Modern AI Approach: Learning
• There is no codifiable human knowledge on how to

reach a solution
• Humans don’t know how to explain the solution to the

problem (e.g., speech recognition)
• Humans typically solve these problems with ease!

Source: https://tinyurl.com/yhtnxm3x

Source: https://en.wikipedia.org/wiki/Sudoku_solving_algorithms

vs.

https://tinyurl.com/yhtnxm3x
https://en.wikipedia.org/wiki/Sudoku_solving_algorithms

AI vs. ML vs. DL

• AI is broader than just ML

• DL is a special type of ML

• 100% of today’s AI hype is
caused by DL models

Source: https://tinyurl.com/2yy97tu3

ML Paradigms

Source: https://vitalflux.com/great-mind-maps-for-learning-machine-learning/

• Three main paradigms
• Supervised learning

• Unsupervised learning

• Reinforcement learning

• In each of the three
paradigms there are
• DL models

• Non-DL (traditional ML)
models

https://vitalflux.com/great-mind-maps-for-learning-machine-learning/

Supervised Learning

Source:https://www.tecislava.com/blog/supervised-unsupervised-reinforcement

• We have labeled data
• Inputs with correct labels

• Labeled data used to „train”
the ML model

• Classification
• Label is discrete (class)

• Regression
• Label is continuous (score)

Unsupervised Learning

Source:https://www.tecislava.com/blog/supervised-unsupervised-reinforcement

• We have only input data
instances, no labels
• E.g., only images of objects,

no indication which objects

• Clustering
• Grouping similar inputs

• Outlier detection
• Finding instances very

dissimilar from most other

• Dimensionality reduction
• Finding regularities in data in

lower-dimensional spaces

Reinforcement Learning

Source:https://www.tecislava.com/blog/supervised-unsupervised-reinforcement

• An agent interacts with an
environment to achieve a goal
• The agent takes actions that

change the state of the
environment

• Agent typically makes several
actions to achieve the goal
• Policy decides which action to

take at each step

• Reward: an indirect label,
specifies whether the goal was
achieved
• Learning = adjusting the policy

based on the reward

Space of Examples

• We typically operate in (vector) spaces of examples in which
individual examples (aka instances) are concrete points

• [x1, x2, ..., xn] is a feature vector of the example/instance

In machine learning, individual examples (or instances) x = [x1, x2, ..., xn] are points in a
space X, consisting of values for features x1, x2, ..., xn. The space X is the determined (i.e.,
spanned) by the domains of the features: D1, D2, ..., Dn. The domains of different features

can be discrete (the so-called categorical or multinomial features) or continuous.

Space of Examples in ML

Let’s start with basics of ML...

• Input: example represented by the feature vector: x = [x1, x2, ..., xn]

• Output (in supervised learning): the label y assigned to the example
• y is a discrete class (in classification problems) or a score (in regression problems)

• A machine learning model h maps an input [x1, x2, ..., xn] to a label y

• The model has a set of k parameters θ = [θ1, θ2, ..., θk]: y = h(x|θ)

Supervised ML: Toy Example

• You want to learn a classifier that can differentiate between an apple
and a banana

• Instance/example: some concrete apple or some concrete banana.
• Feature vector x = [x1, x2, x3, x4, ...]

• Label: y ∈ { c1 = apple, c2 = banana}

x1: length of the fruit
x2: circumference
x3: weight
x4: color
…

Machine Learning Components

• Any ML algorithm/approach has to have
the following three components:

• Model

• Objective

• Optimization algorithm

Machine Learning Components

• Any ML algorithm/approach has three components:

1. Model
• A set of functions among which we’re looking for the „best” one

H = {h(x|θ)}θ

• Hypothesis h = a concrete function obtained for some concrete
values of θ

• Model = set of hypotheses

Machine Learning Components

• Any ML algorithm/approach has three components:

2. Objective
• We’re looking from the best hypothesis h in the model H = {h(x|θ)}θ

• Q: But „best” according to what?

• Objective J is a function that quantifies how good/bad a hypothesis h is
• Usually J is a „loss function” that we’re minimizing

• We’re looking for h (that is, values of parameters θ) that maximize or
minimize the objective J

• ML thus amounts to solving optimization problems

h* = argminh∈H J(h(x|θ))
θ* = argminθ J(h(x|θ))

Machine Learning Components

• Any ML algorithm/approach has three components:

3. Optimization algorithm
• An exact algorithm that we use to solve the optimization problem

θ* = argminθ J(h(x|θ))

• Selection/type of the optimization algorithm depends on the two
functions – the model H and the objective J

Example: Linear Regression

• Linear Regression is one of the simplest (supervised) ML model
• Model: output is a linear combination of input features

• Parameters θ: „weights” that define how much to scale each input feature

h(x = [x1, x2, ..., xn]|θ) = θ0 + θ1x1 + θ2x2 + ... + θnxn

• Objective (loss) function: mean square error
• D = {(x, y)}i is the training set – pairs of inputs x with corresponding outputs y

L(y, h(x|θ)) = (y – h(x|θ))2

J(h|D) = ½ σ𝑖=1
𝑁 (yi – h(xi|θ))2

• Optimization algorithm:

X =

𝒙1
𝒙2

…
𝒙𝑁

=
1 𝑥1,1 ⋯ 𝑥1, 𝑛

⋮ ⋱ ⋮
1 𝑥𝑁, 1 ⋯ 𝑥𝑁, 𝑛

y =

𝑦1
𝑦2

…
𝑦𝑁

Solution is then computed as:

θ* = (XTX)-1 XTy

Example: Logistic Regression

• Logistic Regression is one of the most widely used ML models
• Model: logistic function (non-linearity) applied on linear comb. of inputs

• Parameters θ: „weights” that define how much to scale each input feature

h(x|θ) = σ(xTθ)

=
1

1+exp(−xTθ)

=
1

1+exp(−(θ
0
+θ

1
∗𝑥

1
+…+θ

𝑛
∗𝑥

𝑛
))

• Objective (loss) function: cross entropy error

LCE (h(xi|θ), yi) = -[yi * ln h(xi|θ) + (1 - yi) * ln (1 - h(xi|θ))]

J(h|D) =
1

𝑁
σ𝑖=1
𝑁 𝐿(ℎ(𝒙𝑖|θ), yi)

σ(x) = 1/(1+e-x)

Logistic Regression

θ* = argminθ 𝐽

Minimize per θ: −
1

𝑁
σ𝑖=1
𝑁 [yi ∗ ln h(xi|θ) + (1 − yi) ∗ ln (1 − h(xi|θ))]

• Q: How do we find the minimum of a continuous function?
• We compute the gradient and solve the equation „gradient = 0”

∇θ 𝐽 = 0

∇θ[− 1

𝑁
σ𝑖=1
𝑁 [yi ∗ ln h(xi|θ) + (1 − yi) ∗ ln (1 − h(xi|θ))]] = 0

• Unlike for linear regression, this equation has no closed form solution.

• Q: What do we do then?
• Numerical optimization: gradient descent & co.

Fahrplan

• Machine Learning

• Deep Learning

• Course Organization

DL vs. ML

• Input: example represented by the feature vector: x = [x1, x2, ..., xn]

• Output (in supervised learning): the label y assigned to the example
• y is a discrete class (in classification problems) or a score (in regression problems)

• A machine learning model h maps an input [x1, x2, ..., xn] to output/label y:

• The model has a set of k parameters θ = [θ1, θ2, ..., θk]: y = h(x|θ)

Q: So, what is different in
Deep Learning?

DL vs. ML: Representation Learning

• Q: Anyone heard of „representation learning”?

• In ML that is not DL („traditional” ML), feature calculation (x1, ..., xn) is
not really part of the ML model/algorithm itself

• „Manual feature design”
• we need design and precompute good features for the problem

Example: Handwritten digit classification

• Input: 8x8 Pixel Images of handwritten digits

• Output/Label: the digit (in the image)

• Which features can we compute from the raw
data (image = sequence of pixels) that would
be predictive of the actual digit?

• Feature extraction
• Option 1: each pixel one feature, 64 features?

Source: Image/example from Ingo Scholtes

Example: Handwritten digit classification

• Feature extraction
• Option 1: each pixel one feature, 64 features?

• Option 2: precompute something indicative – e.g.,
center of mass (Schwerpunkt)

Source: Images/example from Ingo Scholtes

DL vs. ML: Representation Learning

• Two key shortcomings of manual feature design:

1. Difficult (not obvious how) to design good features
• Especially in domains with „unstructured data”

• Visual (Computer Vision) and language data (Natural Language Processing)
• Q: Good features for image object classification?

• Q: Good features for semantic text similarity?

DL vs. ML: Representation Learning

• Two key shortcomings of manual feature design:

2. Loss of information
• Features compute something from the raw data

• The classifier in the end sees only the computed features – a lossy
representation of the original (whole) data

Source: https://tinyurl.com/yhtnxm3x Source: https://tinyurl.com/3sknhyp6

https://tinyurl.com/yhtnxm3x

DL vs. ML: Representation Learning

• The key principle of deep learning is representation learning
• Instead of precomputing features according to human intuition, let’s learn

features from the raw data

Source: https://levity.ai/blog/difference-machine-learning-deep-learning

DL vs. ML: Representation Learning

• ML: Feature extraction separate from the model

• DL: Feature extraction part of the model

• Advantages of FE being part of the model:
• Removes the need for manual feature extraction

• No loss of information

• Disadvantage:
• Features based on which the prediction is made are typically no longer

interpretable – just vectors of numbers

• In manual feature extraction, we know exactly what each feature is and how
we computed it from raw data

Source: https://levity.ai/blog/difference-machine-learning-
deep-learning

Deep Learning Models

• DL models couple feature extraction with prediction making
(classification/regression), thus have two components

• Encoder
• Does the feature extraction
• In other words, converts the „raw input” into

the (latent) feature vector x’ ∈ ℝd

• „Body” of the model

• Classifier (or regressor)
• Gets the feature vector x’ ∈ ℝd from the encoder and

converts it into a prediction (scalar y or vector y)
• In traditional ML, the feature vector is precomputed
• „Head” of the model

Encoder
(aka Feature Extractor)

Classifier

M
o

d
e

l

Cat

Deep Learning Models

• Encoder is (usually a complex)
parameterized function
• x’ = enc(x|θenc)

• Classifier is (usually a simpler)
parameterized function
• y = cl(x’|θcl)

• Encoder and classifier are trained together
• model(x|θenc , θcl)

• „end-to-end” training

Encoder
(aka Feature Extractor)

Classifier

M
o

d
e

l

Cat

Why „Deep” Learning?

• Model is a complex function, a composition
of a number of non-linear parametrized
functions

• Encoder and classifier are trained together
• model(x|θenc , θcl) = cl(enc(x, θenc), θcl)

• But encoders/classifiers are also compositions
of „subfunctions”
• Called layers in deep learning

• enc(x, θenc) = layn(layn-1(...(lay1(x|θ1)|θ2)...)|θn)

• θenc= {θ1, θ2, ..., θn-1, θn}

Encoder
(aka Feature Extractor)

Classifier

M
o

d
e

l

Cat

Example: Deep Convolutional Networks

• Different „layer” functions result in different model architectures
• enc(x, θenc) = layn(layn-1(...(lay1(x|θ1)|θ2)...)|θn)

• θenc= {θ1, θ2, ..., θn-1, θn}

• Example: CNNs – two types of layers, „convolutional” and „pooling”

convolutional encoder classifier

features
(output of the
convolutional

encoder)

Deep Learning: Parameters

• What are actually these „parameters” θ?

• Only vectors and/or matrices of real numbers!

• Randomly initialized

• „Learned” in training, via optimization algorithm

• Example: feed-forward networks (aka fully-connected networks aka
multi-layer perceptron)
• layn(layn-1(...(lay1(x|θ1)|θ2)...)|θn)

• layk (xk-1|θk) = g(xk-1Wk + bk)

• xk-1 ∈ ℝ
m – output of the previous, (k-1)-th layer, input for the k-th layer

• Wk ∈ ℝ
m x n bk ∈ ℝ

n – (trainable) parameters of the k-th layer, θk = {Wk , bk}

• g – a non-linear function, for example logistic function: σ(a) = 1/(1+e-a)

Deep Learning in Practice

• All hyped AI today is based on DL models

• Large Language

Models (LLMs)
• ChatGPT / GPT-4

• Gemini/Gemma

• Llama

• Vicuna

• Mistral/Mixtral

• Command R

• ...

Deep Learning in Practice

• All hyped AI today is based on DL models

• (Text-Based)

Image Generation
• Open AI’s DALL-E

• Bing/MS Image Creator

• DreamStudio (Stability AI)
• aka StableDiffusion

• ...

Deep Learning in Practice

• All hyped AI today is based on DL models

• (Text-Based)

Video Generation

Fahrplan

• Machine Learning

• Deep Learning

• Course Organization

Content & Schedule I

• L1: Intro to DL & Organization (April 15; Glavaš)

• L2: Building blocks of DL & Feed-forward Nets (April 22; Breininger)

• L3: Optimization & Training (April 29; Glavaš)

• L4: Convolutional Networks (May 13; Breininger)

• L5: Autoencoders & GANs (May 27; Timofte)

• L6: Recurrent Networks (June 3; Hotho)

Content & Schedule II

• L7: Attention & Transformer (June 10; Hotho)

• L8: Introduction to Reinforcement Learning (June 17; D’Eramo)

• L9: Deep Reainforcement Learning (June 24; D’Eramo)

• L10: Graph Representation Learning (July 1; Scholtes)

• L11: Graph Neural Networks (July 8; Scholtes)

• Lectures: Monday, 12-14

• Exercise sessions: Tuesday, 14-16 (same location)

Lecturers

Katharina
Breininger

Pattern
Recognition

Carlo
D’Eramo

Reinforcement
Learning

Radu
Timofte

Computer
Vision

Ingo
Scholtes

ML 4 Complex
Networks

Andreas
Hotho

Data Science

Goran
Glavaš

Natural
Language
Processing

Exercises

• Practically oriented
• Though there may be also theoretical/conceptual questions

• Goal: learn PyTorch
• #1 DL library globally

• You’ll be provided with code skeleton (as Jupyter notebooks)
• Students have to implement key parts of the code

(model, training/validation loop, evaluation, etc.)

Exercises

• 10 exercise sheets in total
• One after each lecture (except in this first week)

• Sheets published on Tuesdays (after the exercise session)

• Sheets submitted (to WueCampus) before the next exercise session

• Each sheet evaluated with 0, 1, or 2 points

• In total, max. 20pts, if ≥ 17 pts, you get exam bonus

• Exam bonus = if you pass the exam, you get one grade up

• In teams of two students (also possible individually, if preferred)

Exam

• Written exam (most likely)

• Sometime in the second half of July

• Re-exam (Nachholklausur) before the start of the winter semester
• Early October

1. Introduction to Deep Learning
(+ Course Organization)

Deep Learning
Summer semester ‘24

	Slide 1
	Slide 2: What is Deep Learning?
	Slide 3: Fahrplan
	Slide 4: AI vs. Machine Learning
	Slide 5: Machine Learning
	Slide 6: Machine learning
	Slide 7: Why Machine Learning?
	Slide 8: AI-Complete Problems
	Slide 9: AI vs. ML vs. DL
	Slide 10: ML Paradigms
	Slide 11: Supervised Learning
	Slide 12: Unsupervised Learning
	Slide 13: Reinforcement Learning
	Slide 14: Space of Examples
	Slide 15: Let’s start with basics of ML...
	Slide 16: Supervised ML: Toy Example
	Slide 17: Machine Learning Components
	Slide 18: Machine Learning Components
	Slide 19: Machine Learning Components
	Slide 20: Machine Learning Components
	Slide 21: Example: Linear Regression
	Slide 22: Example: Logistic Regression
	Slide 23: Logistic Regression
	Slide 24: Fahrplan
	Slide 25: DL vs. ML
	Slide 26: DL vs. ML: Representation Learning
	Slide 27: Example: Handwritten digit classification
	Slide 28: Example: Handwritten digit classification
	Slide 29: DL vs. ML: Representation Learning
	Slide 30: DL vs. ML: Representation Learning
	Slide 31: DL vs. ML: Representation Learning
	Slide 32: DL vs. ML: Representation Learning
	Slide 33: Deep Learning Models
	Slide 34: Deep Learning Models
	Slide 35: Why „Deep” Learning?
	Slide 36: Example: Deep Convolutional Networks
	Slide 37: Deep Learning: Parameters
	Slide 38: Deep Learning in Practice
	Slide 39: Deep Learning in Practice
	Slide 40: Deep Learning in Practice
	Slide 41: Fahrplan
	Slide 42: Content & Schedule I
	Slide 43: Content & Schedule II
	Slide 44: Lecturers
	Slide 45: Exercises
	Slide 46: Exercises
	Slide 47: Exam
	Slide 48

