

What is Deep Learning?

What is Machine Learning?

 What is the difference between ML and DL?

 What is the relation between ML/DL and AI?

Fahrplan

- Machine Learning
- Deep Learning
- Course Organization

Al vs. Machine Learning

- Machine learning or learning from data is the beating heart of modern AI
 - (Un)supervised learning
 - Reinforcement learning
 - Representation learning
 - Deep Learning
 - Bayesian Learning
 - Transfer Learning

Source: https://tinyurl.com/4c86ts2f

Machine Learning

- Successful AI that's not ML-based?
 - Rare, and effectively limited to <u>rules</u>
 - Not suited for tackling complex problems "in the wild" (any domain)
 - Example: expert systems
 - Popular in the 1980s

Source: https://tinyurl.com/4c86ts2f

Machine learning

Machine Learning

Machine learning denotes the multitude of algorithms for (semi-)automatic extraction of new and useful knowledge from arbitrary collections of data (aka datasets). This knowledge is typically captured in the form of rules, patterns, or models.

Source: https://tinyurl.com/mpd39647

Why Machine Learning?

Write an algorithm (in pseudocode) for the following problems...

Image Classification

Given an **arbitrary image**, determine which object, from a set of objects **C** of interest (e.g., **C** = {cat, dog, chicken}) is on the image.

Sentiment Analysis

Given an **arbitrary product review** (text in natural language), determine whether it expresses positive or negative sentiment towards the product.

Source: https://tinyurl.com/yhtnxm3x

Source: https://cfml.se/blog/sentiment_classification

Al-Complete Problems

- Al-Complete Problems: problems that seem to require "human-like" intelligence, not solvable in classic "algorithmic" way
- Classic/Traditional AI: Search
 - Humans know how to define and tackle the problem
 - This knowledge is "codifiable" into a set of instructions
 - Machines solve the problems more efficiently
- Modern Al Approach: Learning
 - There is no codifiable human knowledge on how to reach a solution
 - Humans don't know how to explain the solution to the problem (e.g., speech recognition)
 - Humans typically solve these problems with ease!

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1 6
7				2				6
	6					2	8	
			4	1	9			5 9
				1 8			7	9

Source: https://en.wikipedia.org/wiki/Sudoku_solving_algorithms

VS.

Source: https://tinyurl.com/yhtnxm3x

Al vs. ML vs. DL

- Al is broader than just ML
- DL is a special type of ML
- 100% of today's Al hype is caused by DL models

Source: https://tinyurl.com/2yy97tu3

ML Paradigms

- Three main paradigms
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning

- In each of the three paradigms there are
 - DL models
 - Non-DL (traditional ML) models

Supervised Learning

- We have labeled data
 - Inputs with correct labels
 - Labeled data used to "train" the ML model

- Classification
 - Label is discrete (class)
- Regression
 - Label is continuous (score)

Source: https://www.tecislava.com/blog/supervised-unsupervised-reinforcement

Unsupervised Learning

- We have only input data instances, no labels
 - E.g., only images of objects, no indication which objects
- Clustering
 - Grouping similar inputs
- Outlier detection
 - Finding instances very dissimilar from most other
- Dimensionality reduction
 - Finding regularities in data in lower-dimensional spaces

Source: https://www.tecislava.com/blog/supervised-unsupervised-reinforcement

Reinforcement Learning

- An agent interacts with an environment to achieve a goal
 - The agent takes actions that change the state of the environment
- Agent typically makes several actions to achieve the goal
 - Policy decides which action to take at each step
- Reward: an indirect label, specifies whether the goal was achieved
 - Learning = adjusting the policy based on the reward

Source: https://www.tecislava.com/blog/supervised-unsupervised-reinforcement

Space of Examples

 We typically operate in (vector) spaces of examples in which individual examples (aka instances) are concrete points

Space of Examples in ML

In machine learning, individual examples (or instances) $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n]$ are **points** in a space \mathbf{X} , consisting of values for **features** $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$. The space \mathbf{X} is the determined (i.e., spanned) by the domains of the features: $\mathbf{D}_1, \mathbf{D}_2, ..., \mathbf{D}_n$. The domains of different features can be **discrete** (the so-called categorical or multinomial features) or **continuous**.

• $[x_1, x_2, ..., x_n]$ is a **feature vector** of the example/instance

Let's start with basics of ML...

- Input: example represented by the feature vector: $\mathbf{x} = [x_1, x_2, ..., x_n]$
- Output (in supervised learning): the label y assigned to the example
 - y is a discrete class (in classification problems) or a score (in regression problems)
- A machine learning model h maps an input $[x_1, x_2, ..., x_n]$ to a label y
- The model has a set of k parameters $\theta = [\theta_1, \theta_2, ..., \theta_k]$: $y = h(x | \theta)$

Supervised ML: Toy Example

- You want to learn a classifier that can differentiate between an apple and a banana
- Instance/example: some concrete apple or some concrete banana.
 - Feature vector $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}, \dots]$

x₁: length of the fruit

x₂: circumference

X₃: weight

X₄: color

• Label: $y \in \{c_1 = apple, c_2 = banana\}$

 Any ML algorithm/approach has to have the following three components:

- Model
- Objective
- Optimization algorithm

Any ML algorithm/approach has three components:

1. Model

A set of functions among which we're looking for the "best" one

$$H = \{h(x | \theta)\}_{\theta}$$

- Hypothesis h = a concrete function obtained for some concrete values of 6
- Model = set of hypotheses

Any ML algorithm/approach has three components:

2. Objective

- We're looking from the best hypothesis h in the model $H = \{h(x \mid \theta)\}_{\theta}$
 - Q: But "best" according to what?
- Objective J is a function that quantifies how good/bad a hypothesis h is
 - Usually J is a "loss function" that we're minimizing
- We're looking for h (that is, values of parameters 6) that maximize or minimize the objective J

$$h^* = \operatorname{argmin}_{h \in H} J(h(x | \theta))$$

 $\theta^* = \operatorname{argmin}_{\theta} J(h(x | \theta))$

ML thus amounts to solving optimization problems

Any ML algorithm/approach has three components:

3. Optimization algorithm

An exact algorithm that we use to solve the optimization problem

$$\theta^* = \operatorname{argmin}_{\theta} J(h(\mathbf{x} | \theta))$$

 Selection/type of the optimization algorithm depends on the two functions – the model H and the objective J

Example: Linear Regression

- Linear Regression is one of the simplest (supervised) ML model
 - Model: output is a linear combination of input features
 - Parameters : ", weights" that define how much to scale each input feature

$$h(\mathbf{x} = [x_1, x_2, ..., x_n] | \mathbf{\theta}) = \mathbf{\theta}_0 + \mathbf{\theta}_1 x_1 + \mathbf{\theta}_2 x_2 + ... + \mathbf{\theta}_n x_n$$

- Objective (loss) function: mean square error
 - D = $\{(x, y)\}_i$ is the training set pairs of inputs x with corresponding outputs y

$$L(\mathbf{y}, h(\mathbf{x}|\boldsymbol{\theta})) = (\mathbf{y} - h(\mathbf{x}|\boldsymbol{\theta}))^{2}$$

$$J(h|D) = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{y}_{i} - h(\mathbf{x}_{i}|\boldsymbol{\theta}))^{2}$$

Optimization algorithm:

$$\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} 1 & x_{1,1} & \cdots & x_{1,n} \\ \vdots & \ddots & \vdots \\ 1 & xN,_1 & \cdots & x_{N,n} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

$$\mathbf{O}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Solution is then computed as:

$$\mathbf{\Theta}^* = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\,\mathbf{X}^\mathsf{T}\mathbf{y}$$

Example: Logistic Regression

- Logistic Regression is one of the most widely used ML models
 - Model: logistic function (non-linearity) applied on linear comb. of inputs
 - Parameters : ", weights" that define how much to scale each input feature

$$h(\mathbf{x}|\boldsymbol{\theta}) = \sigma(\mathbf{x}^{\mathsf{T}}\boldsymbol{\theta})$$

$$= \frac{1}{1 + \exp(-\mathbf{x}^{\mathsf{T}}\boldsymbol{\theta})}$$

$$= \frac{1}{1 + \exp(-(\boldsymbol{\theta}_0 + \boldsymbol{\theta}_1 * \boldsymbol{x}_1 + ... + \boldsymbol{\theta}_n * \boldsymbol{x}_n))}$$

 $\sigma(x) = 1/(1+e^{-x})$

Objective (loss) function: cross entropy error

$$L_{CE}(h(\mathbf{x}_{i}|\mathbf{\theta}), y_{i}) = -[y_{i} * ln \ h(\mathbf{x}_{i}|\mathbf{\theta}) + (1 - y_{i}) * ln \ (1 - h(\mathbf{x}_{i}|\mathbf{\theta}))]$$

$$J(h|D) = \frac{1}{N} \sum_{i=1}^{N} L(h(\mathbf{x}_{i}|\mathbf{\theta}), y_{i})$$

Logistic Regression

$$\mathbf{\theta}^* = \operatorname{argmin}_{\mathbf{\theta}} J$$
Minimize per $\mathbf{\theta}$: $-\frac{1}{N} \sum_{i=1}^{N} \left[\mathbf{y}_i * \ln \mathbf{h}(\mathbf{x}_i | \mathbf{\theta}) + (1 - \mathbf{y}_i) * \ln (1 - \mathbf{h}(\mathbf{x}_i | \mathbf{\theta})) \right]$

- Q: How do we find the minimum of a continuous function?
 - We compute the gradient and solve the equation "gradient = 0"

$$\nabla_{\mathbf{e}} J = 0$$

$$\nabla_{\boldsymbol{\theta}} \left[-\frac{1}{N} \sum_{i=1}^{N} \left[\mathbf{y}_{i} * \ln h(\mathbf{x}_{i} | \boldsymbol{\theta}) + (1 - \mathbf{y}_{i}) * \ln (1 - h(\mathbf{x}_{i} | \boldsymbol{\theta})) \right] \right] = \mathbf{0}$$

- Unlike for linear regression, this equation has no closed form solution.
- Q: What do we do then?
 - Numerical optimization: gradient descent & co.

Fahrplan

- Machine Learning
- Deep Learning
- Course Organization

DL vs. ML

- Input: example represented by the feature vector: $\mathbf{x} = [x_1, x_2, ..., x_n]$
- Output (in supervised learning): the label y assigned to the example
 - y is a discrete class (in classification problems) or a score (in regression problems)
- A machine learning model h maps an input $[x_1, x_2, ..., x_n]$ to output/label y:
- The model has a set of k parameters $\theta = [\theta_1, \theta_2, ..., \theta_k]$: $y = h(x | \theta)$

Q: So, what is different in **Deep Learning?**

- Q: Anyone heard of "representation learning"?
- In ML that is not DL ("traditional" ML), feature calculation $(x_1, ..., x_n)$ is not really part of the ML model/algorithm itself
- "Manual feature design"
 - we need design and precompute good features for the problem

Example: Handwritten digit classification

- Input: 8x8 Pixel Images of handwritten digits
- Output/Label: the digit (in the image)

- Which features can we compute from the raw data (image = sequence of pixels) that would be predictive of the actual digit?
- Feature extraction
 - Option 1: each pixel one feature, 64 features?

Source: Image/example from Ingo Scholtes

Example: Handwritten digit classification

- Feature extraction
 - Option 1: each pixel one feature, 64 features?
 - Option 2: precompute something indicative e.g., center of mass (Schwerpunkt)

Source: Images/example from Ingo Scholtes

4.5

 $C: \mathbb{R}^2 \to \{3, 5, 6\}$

Two key shortcomings of manual feature design:

1. Difficult (not obvious how) to design good features

- Especially in domains with "unstructured data"
- Visual (Computer Vision) and language data (Natural Language Processing)
 - Q: Good features for image object classification?
 - Q: Good features for semantic text similarity?

• Two key shortcomings of manual feature design:

2. Loss of information

- Features compute something from the raw data
- The classifier in the end sees only the computed features a lossy representation of the original (whole) data

Source: https://tinyurl.com/yhtnxm3x

Source: https://tinyurl.com/3sknhyp6

- The key principle of deep learning is representation learning
 - Instead of precomputing features according to human intuition, let's learn features from the raw data

Source: https://levity.ai/blog/difference-machine-learning-deep-learning

- ML: Feature extraction separate from the model
- DL: Feature extraction part of the model
- Advantages of FE being part of the model:
 - Removes the need for manual feature extraction
 - No loss of information

Source: https://levity.ai/blog/difference-machine-learning-deep-learning

- Disadvantage:
 - Features based on which the prediction is made are typically no longer interpretable – just vectors of numbers
 - In manual feature extraction, we know exactly what each feature is and how we computed it from raw data

Deep Learning Models

• DL models couple feature extraction with prediction making (classification/regression), thus have two components

Encoder

- Does the feature extraction
- In other words, converts the "raw input" into the (latent) feature vector $\mathbf{x'} \in \mathbb{R}^d$
- "Body" of the model
- Classifier (or regressor)
 - Gets the feature vector $\mathbf{x'} \in \mathbb{R}^d$ from the encoder and converts it into a prediction (scalar y or vector y)
 - In traditional ML, the feature vector is precomputed
 - "Head" of the model

Deep Learning Models

- Encoder is (usually a complex) parameterized function
 - $\mathbf{x'} = \operatorname{enc}(\mathbf{x} \mid \boldsymbol{\theta}_{enc})$
- Classifier is (usually a simpler) parameterized function
 - $y = cl(x' | \theta_{cl})$
- Encoder and classifier are trained together
 - model($\mathbf{x} | \boldsymbol{\theta}_{enc}, \boldsymbol{\theta}_{cl}$)
 - "end-to-end" training

Why "Deep" Learning?

- Model is a complex function, a composition of a number of non-linear parametrized functions
- Encoder and classifier are trained together
 - model($\mathbf{x} | \boldsymbol{\theta}_{enc}, \boldsymbol{\theta}_{cl}$) = cl(enc($\mathbf{x}, \boldsymbol{\theta}_{enc}$), $\boldsymbol{\theta}_{cl}$)
- But encoders/classifiers are also compositions of "subfunctions"
 - Called layers in deep learning
 - $enc(\mathbf{x}, \boldsymbol{\theta}_{enc}) = lay_n(lay_{n-1}(...(lay_1(\mathbf{x}|\boldsymbol{\theta}_1)|\boldsymbol{\theta}_2)...)|\boldsymbol{\theta}_n)$
 - $\theta_{enc} = \{\theta_1, \theta_2, ..., \theta_{n-1}, \theta_n\}$

Example: Deep Convolutional Networks

- Different "layer" functions result in different model architectures
 - enc(\mathbf{x} , $\mathbf{\theta}_{enc}$) = lay_n(lay_{n-1}(...(lay₁($\mathbf{x} | \mathbf{\theta}_1$) | $\mathbf{\theta}_2$)...) | $\mathbf{\theta}_n$)
 - $\theta_{enc} = \{\theta_1, \theta_2, ..., \theta_{n-1}, \theta_n\}$
- Example: CNNs two types of layers, "convolutional" and "pooling"

Deep Learning: Parameters

- What are actually these "parameters" ⊕?
- Only vectors and/or matrices of real numbers!
 - Randomly initialized
 - "Learned" in training, via optimization algorithm
- Example: feed-forward networks (aka fully-connected networks aka multi-layer perceptron)
 - $lay_n(lay_{n-1}(...(lay_1(\mathbf{x}|\boldsymbol{\theta_1})|\boldsymbol{\theta_2})...)|\boldsymbol{\theta_n})$
 - $lay_k(\mathbf{x}_{k-1}|\mathbf{\theta}_k) = g(\mathbf{x}_{k-1}\mathbf{W}_k + \mathbf{b}_k)$
 - $\mathbf{x}_{k-1} \in \mathbb{R}^m$ output of the previous, (k-1)-th layer, input for the k-th layer
 - $\mathbf{W}_k \in \mathbb{R}^{m \times n} \mathbf{b}_k \in \mathbb{R}^n$ (trainable) **parameters** of the k-th layer, $\mathbf{\theta}_k = \{\mathbf{W}_k, \mathbf{b}_k\}$
 - g a non-linear function, for example logistic function: $\sigma(a) = 1/(1+e^{-a})$

Deep Learning in Practice

- All hyped AI today is based on DL models
- Large Language
 Models (LLMs)
 - ChatGPT / GPT-4
 - Gemini/Gemma
 - Llama
 - Vicuna
 - Mistral/Mixtral
 - Command R
 - ...

Deep Learning in Practice

- All hyped AI today is based on DL models
- (Text-Based)Image Generation
 - Open Al's DALL-E
 - Bing/MS Image Creator
 - DreamStudio (Stability AI)
 - aka StableDiffusion
 - ...

Deep Learning in Practice

- All hyped AI today is based on DL models
- (Text-Based)Video Generation

Fahrplan

- Machine Learning
- Deep Learning
- Course Organization

Content & Schedule I

- L1: Intro to DL & Organization (April 15; Glavaš)
- L2: Building blocks of DL & Feed-forward Nets (April 22; Breininger)
- L3: Optimization & Training (April 29; Glavaš)

- L4: Convolutional Networks (May 13; Breininger)
- L5: Autoencoders & GANs (May 27; Timofte)
- L6: Recurrent Networks (June 3; Hotho)

Content & Schedule II

- L7: Attention & Transformer (June 10; Hotho)
- L8: Introduction to Reinforcement Learning (June 17; D'Eramo)
- L9: Deep Reainforcement Learning (June 24; D'Eramo)

- L10: Graph Representation Learning (July 1; Scholtes)
- L11: Graph Neural Networks (July 8; Scholtes)

- Lectures: Monday, 12-14
- Exercise sessions: Tuesday, 14-16 (same location)

Lecturers

Katharina Breininger

Pattern Recognition

Carlo D'Eramo

Reinforcement Learning

Radu Timofte

Computer Vision

Ingo Scholtes

ML 4 Complex Networks

Andreas Hotho

Data Science

Goran Glavaš

Natural Language Processing

Exercises

- Practically oriented
 - Though there may be also theoretical/conceptual questions
- Goal: learn PyTorch
 - **#1** DL library globally

- You'll be provided with code skeleton (as Jupyter notebooks)
 - Students have to implement key parts of the code (model, training/validation loop, evaluation, etc.)

Exercises

- 10 exercise sheets in total
 - One after each lecture (except in this first week)
 - Sheets published on Tuesdays (after the exercise session)
 - Sheets submitted (to WueCampus) before the next exercise session

- Each sheet evaluated with 0, 1, or 2 points
- In total, max. 20pts, if ≥ 17 pts, you get exam bonus
- Exam bonus = if you pass the exam, you get one grade up
- In teams of two students (also possible individually, if preferred)

Exam

- Written exam (most likely)
- Sometime in the second half of July

- Re-exam (Nachholklausur) before the start of the winter semester
 - Early October

