
Non-Parametric Classification
Prof. Dr. Goran Glavaš

5.2.2024

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Non-Parametric Models
• Decision Trees

• K-Nearest Neighbours

Supervised ML

• Two important dimensions of division in supervised ML

1. Parametric vs. Non-parametric models

2. Generative vs. Discriminative models

• Today we will see some non-parametric models
• Decision Trees

• K-Nearest Neighbours

Recap: Supervised ML

Three components of a supervised machine learning algorithm

1. Model: a set of functions among which we’re looking for the best

H = { h(x|θ)}θ

• hypothesis = a concrete function obtained for some values θ

• Model is a set of hypothesis

2. Loss function L: used to compute the empirical error E on a dataset D = {(x, y)i}

E(h|D) =
1

𝑁
σ𝑖=1
𝑁 𝐿(ℎ(𝒙𝑖|θ), yi)

3. Optimization procedure: procedure or algorithm with which we find the
hypothesis h* from the model H that minimizes the empirical error

• Equivalent to finding parameters θ* that minimize E

h* = argminh ∈ H E(h|D)

θ* = argminθ E(h|D)

Parametric vs. Non-Parametric

Model: a set of functions among which we’re looking for the best

H = { h(x|θ)}θ

• Parameters θ estimated using the annotated dataset D = {(x, y)i}

A model H = { h(x|θ)}θ is parametric if its number of parameters n, θ = [θ1, θ2, ..., θn]
(estimated in model training) is fixed and does not depend on the size of the training

dataset D = {(x, y)i}. Otherwise, the model is non-parametric.

Parametric vs. non-parametric models

Content

• Non-Parametric Models
• Decision Trees

• K-Nearest Neighbours

Decision Trees

• Decision tree refers to a non-parametric machine learning algorithm
that builds a classifier as a tree of if-then rules
• Intermediate nodes: features

• Leaf nodes: classes

Decision Trees: Learning

• Key questions:
(1) How do we select the features for the root and intermediate nodes?
(2) When do we stop branching the tree?

• Core algorithm:
Iterate the following steps:
1. Select the „best” feature xi for the next node
2. Assign the selected feature xi to the node
3. For each value xi create a new child node
4. Filter „remaining” training examples for each new (child) node
5. If the „remaining” examples for a node belong to a single class, stop further

branching!

Decision Trees: Learning

• Let select be the function that picks the „best” feature
• Based on some criteria we haven’t specified yet

• Step #1:
• select picks, e.g., Outlook

• Since it’s a root node selection, all instances

are considered for the selection criteria

? ? ?

Decision Trees: Learning

• Let select be the function that picks the „best” feature
• Based on some criteria we haven’t specified yet

• Step #2:
• select picks Humidity, by applying the selection criteria only over instances

for which Outlook = sunny
• And obviously chooses only between

remaining features (Temp., Humid., Wind)
• Remaining instances not all of the same

label, fork the tree further

? ? ?

...

Decision Trees: Learning

• Let select be the function that picks the „best” feature
• Based on some criteria we haven’t specified yet

• Steps #3 & #4:
• All instances with Outlook = sunny and Humidity = high have the label No

• All instances with Outlook = sunny and Humidity = high have the label Yes

• We stop for both branches!

? ?

No Yes

Decision Trees: Learning

• Let select be the function that picks the „best” feature
• Based on some criteria we haven’t specified yet

• Step #5:
• All instances with Outlook = overcast have the label Yes

• We stop for this branch!

? ?

No Yes

Yes

Decision Trees: Learning

• Let select be the function that picks the „best” feature
• Based on some criteria we haven’t specified yet

• Step #6:
• Outlook = Rain path (not all remaining instances have the same label)→ let’s

say select next chooses Wind

? ?

No Yes

Yes

Decision Trees: Learning

• Let select be the function that picks the „best” feature
• Based on some criteria we haven’t specified yet

• Step #7:
• All instances for which Outlook = Rain and Wind = Weak have label Yes

• Instances for which Outlook = Rain and Wind = Strong are not all of single
label, we must continue that path...

No Yes

YesYes

Yes...

Decision Trees: Learning

• We still need to define the criteria for choosing the feature for a node
given a (sub)set of instances

• Some options:
• Random: randomly pick one of the remaining features

• Least-Values: choose the feature with the smallest number of values

• Most-Values: choose the feature with the largest number of values

• Max-Gain: choose the features that has the largest expected information gain
• The one that reduces the uncertainty (entropy :) the most!

Entropy

• We will now introduce basic concepts from the information theory

• Entropy is a measure of (un)certainty or „chaos” (order)
• Completely unpredictable things have maximal entropy
• Completely predictable things have minimal entropy

• For a feature xi for which the possible values are {v1, v2, ..., vm}, with
the corresponding probabilities {P(xi = v1), P(xi = v2), ..., P(xi = vm)},
entropy is defined as:

Entropy(xi) = – σ𝑗=1
𝑚 𝑃(xi = vj) * log2P(xi = vj) bits

• Q: When is entropy maximal?

• Q: When is it minimal (and how much is it)?

Entropy

• Entropy is a measure of (un)certainty or „chaos” (order)
• Completely unpredictable things have maximal entropy

• Completely predictable things have minimal entropy

Entropy(xi) = – σ𝑗=1
𝑚 𝑃(xi = vj) * log2P(xi = vj) bits

• Entropy(xi) = 0 (minimal) when some value vj has all of the probability mass
P(xi = vj) = 1 and all other values have zero probability, P(xi = vk) = 0, vk≠ vj

• Certain (completely predictable) that the feature xi will have the value vj

• Entropy(xi) = log2m (maximal) when all values vj have exactly the same probability,
P(xi = vj) = 1/m
• Maximal uncertainty (least predictable), as feature xi is equally like to have any of the values

Information Gain

• Information gain a measure of change in entropy
• For a node, where we need to assign one of remaining features, we measure:

1. Entropy of the node before assignment (taking into account all remaining
training instances for the node)

2. (Weighted) average of entropies of children nodes to which we branch upon
assignment of some feature to the parent node

3. Information gain, as the difference between 1) and 2)

• We then choose the feature for which the information gain, i.e.,
reduction in entropy is the largest

Information Gain

• Entropy(y|D): entropy of the label variable on a (sub)set of training instances D

• If D is the set of |D| instances covered by the parent node, and xi with values {v1,
v2, ..., vm} is the feature we consider to put into that parent node, then IG of xi is:

IG(xi|D) = Entropy(y|D) – σ𝑗=1
𝑚 |𝐷(𝑥

𝑖
=𝑣

𝑗
)|

|𝐷|
Entropy(y|D(xi = vj))

• D(xi = vj) is the subset of instances in D for which the value of xi is vj

Information Gain: Example

• We choose the feature for the root node

• D = set of all instances, |D| = 14

Entropy(y|D) = – 5/14*log25/14 – 9/14*log29/14 = 0.94

• Let’s first consider Outlook
• If Outlook = sunny, |DO=sunny| = 5, y → 3 x No, 2 x Yes

Entropy(y|DO=sunny) = – 3/5*log23/5 – 2/5*log22/5 = 0.97

• If Outlook = overcast, |DO=overc| = 4, y → 0 x No, 4 x Yes

Entropy(y|DO=sunny) = – 0/4*log20/4 – 4/4*log24/4 = 0

• If Outlook = rain, |DO=rain| = 5, y → 2 x No, 3 x Yes

Entropy(y|DO=sunny) = – 2/5*log22/5 – 3/5*log23/5 = 0.97

IG(Outlook|D) = 0.94 – (5/14 * 0.97 + 4/14*0 + 5/14 * 0.97)

= 0.94 – 0.69

= 0.25

Decision Trees

• ID3 = decision tree algorithm that builds the tree
based on information gain, proposed by Ross Quinlan
• Slightly more advanced extension of ID3 is widely used C4.5

• It just recursively builds the tree by choosing features
for nodes as shown
• Q: guaranteed that this procedure finishes?

• Pseudocode: recursive function, each node gets
• The remaining instances D (filtered by the path to that node)

• List of remaining features feats between which to choose
• A hashtable: feature name as key and list of feature values as value

• parent node p

• Value of feature of parent v that leads to the node

id3(D, feats, p, v)

n = new node

n.parent = p

p.children[v] = n

e = entropy(D)

if e = 0

n.content = get_class(D)

else

maxig = -inf

best_f = null

for f in feats:

ig = inf_gain(e, f, D)

if ig > maxig

maxig = ig

best_f = f

n.content = best_f

for val in feats[best_f]

D_val = filter(D, best_f, val)

recursive call

id3(D_val, feats/{best_f}, n, val)

Decision Trees: Numerical Features

• Our entropy and IG computation kind of assumed discrete features
• Q: Can decision trees operate on numeric features?

• For numeric features, we need to „discretize” into two values „> t”
and „< t” where t is some threshold value.
• Q: but how do we choose t (infinite number of choices)?

• Some strategies for choosing the discretization threshold t:
• Mean value of the feature on D
• Median value of the feature on D
• Search for „best” t (among a predefined set of candidate values): one that

that gives the largest Information Gain for the feature

Decision trees: overfitting

• Following IG (or any similar measure) as a splitting criterion for building a
tree can sometimes result in overly specific trees

• Last-level non-leaf nodes cover as few as 1-2 instances from the training set

• A splitting rule is less reliable the fewer instances it was made based on
→Likely leads to a tree that overfits to the noise in the training set

• Solution #1:
• Search: Build multiple trees (with different choices for features in nodes) and choose

the simplest among them (Q: what is the „simplest”?)

• Solution #2:
• Pruning: stop trees from becoming deeper than some fixed depth d

Decision Trees: overfitting

• The simplest „explanation” for our training data D is the tree with
least rules: the shallowest of the possible decision trees

• Search:
• If we have a small number of features, we can build many (all) possible trees

(e.g., try all possible assignments of features to nodes)

• Choose: (i) the shallowest one or (ii) one that performs best on our
development/validation dataset

A philosophical principle that favors simplicity: for any phenomenon, a simple
explanation – one that introduces fewer assumptions – should be preferred over more

complex ones – those that introduce more assumptions.

Occam’s razor

Decision Trees: overfitting

• If the number of features is large, search is not possible
• Q: Why? If we have N features, what’s the time complexity of building all

possible trees (i.e., how many different trees are there)?

• Pruning: we simply stop building the tree after some maximal depth d
• But the nodes at this maximal depth d may still have some Entropy > 0

• In other words, remaining (filtered) instances corresponding to that node may not all
belong to the same class (classification still ambiguous)

• Yet, we must make a classification decision at this depth (as we’re not allowed to build
the tree further). Q: How then?

• Prediction for nodes at d: the most frequent class among the remaining instances

Decision Trees: Decision Boundary

• Q: Is DT discriminative or generative ML model?

• How do decision trees actually divide the classes?
• They divide the feature space into axis-parallel hyper-rectangles

Image from: https://www.seas.upenn.edu/~cis5190/fall2017/lectures/02_DecisionTrees.pdf

https://www.seas.upenn.edu/~cis5190/fall2017/lectures/02_DecisionTrees.pdf

Content

• Non-Parametric Models
• Decision Trees

• K-Nearest Neighbours

K-Nearest Neigbours

• K-Nearest Neighbours (K-NN) is a non-parametric ML algorithm that doesn’t really
have a training procedure, it merely classifies new instances based on the distance
to (or similarity to) „training” examples

• Training instances (x = [x1, x2, ..., xn], y) from Dtr are simply stored in memory

• We then classify new example x’ as follows:

1. We identify k examples from Dtr that are most similar
(closest) to x’

2. Among these k nearest neighbours, we identify the
most freqent class label and assign that class to x’

Image from: https://www.jcchouinard.com/k-nearest-neighbors/

https://www.jcchouinard.com/k-nearest-neighbors/

K-Nearest Neigbours

• Obviously we need to specify two things:

1. The number of nearest neighbours k to consider
• k is a hyperparameter, we find its optimal value with a validation dataset Dval

2. Measure of distance (or similarity) between two vectors
• Many different distance/similarity measures, depending on the nature of the

vectors/features (discrete, numeric, or a combination)

dE(x, x’) = σ𝑖=1
𝑛 𝑥𝑖 − 𝑥𝑖

′ 2 cos(x, x’) =

σ𝑖=1
𝑛 𝑥

𝑖
∗𝑥

𝑖
′

σ𝑖=1
𝑛 𝑥

𝑖
2 σ𝑖=1

𝑛 𝑥
𝑖
′2

Euclidean distance Cosine similarity

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и

тан
н

я?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w

ọ
n

ib
e

er
e

?

ค ำถำม?

	Default Section
	Slide 1: Non-Parametric Classification Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Supervised ML
	Slide 4: Recap: Supervised ML
	Slide 5: Parametric vs. Non-Parametric
	Slide 6: Content
	Slide 7: Decision Trees
	Slide 8: Decision Trees: Learning
	Slide 9: Decision Trees: Learning
	Slide 10: Decision Trees: Learning
	Slide 11: Decision Trees: Learning
	Slide 12: Decision Trees: Learning
	Slide 13: Decision Trees: Learning
	Slide 14: Decision Trees: Learning
	Slide 15: Decision Trees: Learning
	Slide 16: Entropy
	Slide 17: Entropy
	Slide 18: Information Gain
	Slide 19: Information Gain
	Slide 20: Information Gain: Example
	Slide 21: Decision Trees
	Slide 22: Decision Trees: Numerical Features
	Slide 23: Decision trees: overfitting
	Slide 24: Decision Trees: overfitting
	Slide 25: Decision Trees: overfitting
	Slide 26: Decision Trees: Decision Boundary
	Slide 27: Content
	Slide 28: K-Nearest Neigbours
	Slide 29: K-Nearest Neigbours
	Slide 30: Questions?

