Algorithmen, KI und Data Science 1 (AKIDS 1): Expert Systems \& Numerical Optimization

Herbst- / Wintersemester 2023/24
Prof. Dr. Goran Glavaš
Benedikt Ebing
Fabian David Schmidt

Expert Systems

Exercise 1.1

Explain the terms symbolism and connectionism? What are the differences?

Exercise 1.1 - Solution

- Symbolic AI:
- discrete, human interpretable
- Knowledge represented with symbols
- Inference: Formal symbolic (rule-based) reasoning over KB
- Connectionist AI:
- Continous, mostly not human interpretable
- Knowledge: Learned from raw data
- Inference: Computations in a continous representation space
- Differences:
- Discrete vs. continuous
- Human interpretable vs. not human interpretable

Symbolic AI

Connectionist AI

Country and Capital Vectors Projected by PCA

Exercise 1.2

Recap: Propositional logic

Recap: Propositional logic

- Propostional variables $V=\{A, B, C, \ldots\}$
- Logical operators
- Negation (\neg)
- Disjunction (OR, V)
- Conjunction (AND, ^)
- Implication (\rightarrow)
- Equivalence (\leftrightarrow)
- Logical constants (True T, False \perp)
- Parentheses

Recap: Propositional Logic

$$
\begin{array}{cc|ccccc}
F & G & \neg F & F \wedge G & F \vee G & F \rightarrow G & F \leftrightarrow G \\
\hline \perp & \perp & \top & \perp & \perp & \top & \top \\
\perp & \top & \top & \perp & \top & \top & \perp \\
\top & \perp & \perp & \perp & \top & \perp & \perp \\
\top & \top & \perp & \top & \top & \top & \top
\end{array}
$$

According to some political pundits, a person who is radical (R) is electable (E) if he/she is conservative (C), but otherwise is not electable. Which of the following is correct? Explain.

Exercise 1.2 - Solution

- $(R \wedge E) \leftrightarrow C$
- No, states that all conservatives are radical which is not what is stated in the text
- $R \rightarrow(E \leftrightarrow C)$
- Correct, a radical person is electable if he/she is conservative.
- $R \rightarrow((C \rightarrow E) \vee \neg E)$
- No, states that all radicals are electable

Exercise 1.3

Which of the following logical consequences are correct?
Hint: Formula G is a logical consequence of formula $F(F=\Rightarrow G)$ if and only if
every assignment that satisfies F also satisfies
G.

Exercise 1.3 - Solution

- False \rightarrow True
- Correct
- True \rightarrow False
- Incorrect
- $(A \wedge B) \rightarrow(A \leftrightarrow B)$
- Correct, left-hand side (lhs) has only one assignment that satisfies, this assignment is satisfied on the right-hand side (rhs) as well
- $(A \leftrightarrow B) \rightarrow(A \vee B)$
- Incorrect, Ihs is satisfied for $A=$ False and $B=$ False, rhs not

Exercise 1.3 - Solution

- $(A \leftrightarrow B) \rightarrow(\neg A \vee B)$
- Correct, rhs equivalent to $(A \rightarrow B)$
- $((A \wedge B) \rightarrow C) \rightarrow((A \rightarrow C) \vee(B \rightarrow C))$
- Correct, rhs is only False for $A=$ True, $B=$ True and $C=$ False, in that case is lhs False as well
- $(A \vee B) \wedge(\neg C \vee \neg D \vee E) \rightarrow(A \vee B)$
- Correct, removing a conjunction on the rhs only allows for more assignments
- $(A \vee B) \wedge(\neg C \vee \neg D \vee E) \rightarrow(A \vee B) \wedge(\neg D \vee E)$
- Incorrect, removing a disjunction on the rhs allows for less assignments to satisfy on the rhs

Exercise 1.4

Recap: Chaining

Recap: Forward vs. Backward chaining

- Forward chaining:
- Starting from known data and advancing towards a conclusion
- To use: when there is a small amount of data and a large space of possible solutions
- Backward chaining:
- Choosing a possible conclusion (hypothesis) and trying to prove that it is valid by finding evidence
- To use: Not too many possible conclusions, the amount of known data is large

Recap: Expert System Example

```
Shape: elongated | circular | rounded
Surface: smooth | coarse
Color: green | yellow | brown-yellow |
    red | blue | orange
No. seeds: 0 | 1 | >1
```

$\mathrm{R}_{1}:$ IF Shape $=$ elongated \& Color $=$ green \mid yellow THEN Fruit = banana
R_{2} : IF Shape $=$ circular \mid rounded $\&$ Diameter $=>10 \mathrm{~cm}$ THEN Fruit Type $=$ vine
R_{3} : IF Shape $=$ circular \& Diameter $=<10 \mathrm{~cm}$ THEN Fruit Type $=$ tree
R_{4} : IF No. Seeds = 1 THEN Seed Type = bony

Recap: Backward Chaining Steps

1. Put goal variable onto (empty) stack
2. Find all rules with variable from the stack top on RHS
3. If no rule has the stack-top variable on the RHS \rightarrow Ask the user
4. For each such rule:
5. If LHS satisfied (all variables have correct values in WM)

- Apply the rule (place the RHS variable and value in WM)
- Remove the current goal from the stack
- Continue form Step 2

2. IF LHS not satisfied and value of some variable different to WM

- Do not apply rule

3. If LHS not satisfied and value of some variable missing in WM

- Add variable to stack
- Continue from Step 2

Exercise 1.4-Solution

Step	Stack	WM	Conflicting Rules	Action
$\mathbf{0}$	Fruit		R1, R6, R7, R8, R9, R10, R11, R12, R13, R14	Add Fruit Type to stack
$\mathbf{1}$	Fruit Type Fruit		R2, R3	Ask user for Shape and add to WM
$\mathbf{2}$	Fruit Type Fruit	Shape: circular	R2, R3	Ask user for Diameter and add to WM
$\mathbf{3}$	Fruit Type Fruit	Shape: circular, Diameter: $<10 \mathrm{~cm}$	R2, R3	Add fruit type to WM and pop from stack
$\mathbf{4}$	Fruit	Shape: circular, Diameter: $<10 \mathrm{~cm}$, Fruit Type: Tree	R1, R6, R7, R8, R9, R10, R11, R12, R13, R14	Ask user for No. Seeds and add to WM

Exercise 1.4-Solution

Step	Stack	WM	Conflicting Rules	Action
5	Seed Type Fruit	Shape: circular, Diameter: $<10 \mathrm{~cm}$, Fruit Type: Tree, Color: green	R1, R6, R7, R8, R9, R10, R11, R12, R13, R14	Add Seed Type to Stack
6	Seed Type Fruit	Shape: circular, Diameter: $<10 \mathrm{~cm}$, Fruit Type: Tree, Color: green	R4, R5	As user for No. Seeds and add to WM
7	Seed Type Fruit	Shape: circular, Diameter: $<10 \mathrm{~cm}$, Fruit Type: Tree, Color: green, No. Seeds: >1	R4, R5	Add Seed Type to WM and pop from Stack
8	Fruit	Shape: circular, Diameter: $<10 \mathrm{~cm}$, Fruit Type: Tree, Color: green, No. Seeds: >1, Seed Type: multiple	R1, R6, R7, R8, R9, R10, R11, R12, R13, R14	Add Fruit=Apple to WM and pop stack -> Done

Exercise 1.5

Recap: Backward Chaining Algorithm

```
backward_chain(ont, rules, goal)
    s = [] # empty stack
    s.push(goal)
    wm = {} # empty hash table
    while not s.is_empty()
        goal = s.peek()
        matches = find rules(rules, goal)
        if len(matches) == 0 # no rule with stack-top varia
        val = ask_user(goal)
        if value_valid(ont, val, goal)
        wm[goal] = val
        else
                return "error"
        for m in matches
            status = rule_status (m, wm)
            if status == True # LHS satisfiec
                apply_rule (m, wm) # RHS added to wm
                s.pop()
            break
            elif status == False # LHS in conflict with wm
            continue
            else # status is a variable not in wm
                s.push(status)
                break
    return wm[goal]
```

```
value_valid(ont, var, val)
    vals = ont[var]
    if val in vals # hashtable lookup
        return True
    else
        return False
rule_status(rule, wm)
    for var in rule.LHS
        if var not in wm
            return var # not in wm
        elif rule.LHS[var] \not= wm[var]
            return False # in wm, wrong val
    return True
apply_rule(rule, wm)
    var = rule.RHS.var
    val = rule.RHS.val
    wm[var] = val
find_rules(rules, goal)
    matches = []
    for rule in rules
        if rule.RHS.var == goal
        matches.append(rule)
    return matches
```


Numerical Optimization

Exercise 2.1 - Solution

- Newton's Method:
- $x^{k+1}=x^{k}-\frac{f\left(x^{k}\right)}{f^{\prime}\left(x^{k}\right)}$
- $x^{k+1}=x^{k}-\frac{\mathrm{f}^{\prime}\left(\mathrm{x}^{\mathrm{k}}\right)}{f^{\prime \prime}\left(x^{k}\right)}$
- Looking for $f^{\prime}(x)=0$
- Given: $f(x)=3 x^{3}+6 x^{2}+x-3 ; x^{0}=1$
- Derivatives:
- $f^{\prime}(x)=9 x^{2}+12 x+1$
- $f^{\prime \prime}(x)=18 x+12$

Exercise 2.1 - Solution

- $x^{k+1}=x^{k}-\frac{\mathrm{f}^{\prime}\left(\mathrm{x}^{\mathrm{k}}\right)}{f^{\prime \prime}\left(x^{k}\right)}$
- $f^{\prime}(x)=9 x^{2}+12 x+1$
- $f^{\prime \prime}(x)=18 x+12$
- Computation:
- $x^{1}=1-\frac{9 \times 1^{2}+12 \times 1+1}{18 \times 1+1}=0.2667$
- $x^{2}=-0.0214 ; x^{3}=-0.0857 ; \boldsymbol{x}^{4}=-\mathbf{0 . 0 8 9 3}$
- Starting in $x^{0}=-2$ leads to convergence at maximum $x=-1.244$

Exercise 2.1 - Solution

- Gradient Descent:
- $x^{k+1}=x^{k}-\eta f^{\prime}\left(x^{k}\right)$
- Looking for $f^{\prime}(x)=0$
- Given: $f(x)=3 x^{3}+6 x^{2}+x-3 ; x^{0}=1$
- Derivatives:
- $f^{\prime}(x)=9 x^{2}+12 x+1$
- Computation:
- $x^{1}=1-0.1\left(9 \times 1^{2}+12 \times 1+1\right)=1.2$
- $x^{2}=-1.156 ; x^{3}=-1.07 ; \boldsymbol{x}^{4}=\mathbf{0 . 9 1}$
- Starting in $x^{0}=-2$ leads to divergence.

