Coloring and Recognizing Mixed Interval Graphs

Grzegorz Gutowski, Konstanty Junosza-Szaniawski, Felix Klessen, Paweł Rzążewski, Alexander Wolff, Johannes Zink

Jagiellonian University, Warsaw University of Technology, Universität Würzburg

Warsaw University of Technology

ISAAC 2023 – arXiv: 2303.07960 Previous paper: GD 2022 – arXiv: 2208.14250

Graph Drawing

- layered drawing
- orthogonal drawing
- Sugiyama's framework:
 - ▶ eliminate cycles
 - assign layers
 - minimize crossings
 - ▶ place nodes
 - route edges

Motivation

Edge Routing

- ► two layers
- fixed vertices
- ► orthogonal edges
- ► two bends
- no overlaps
- minimize #crossings
- minimize #sub-layers

Motivation

Edge Routing

- ► two layers
- fixed vertices
- ► orthogonal edges
- ► two bends
- no overlaps
- minimize #crossings
- minimize #sub-layers

Coloring Mixed Interval Graphs

Mixed Interval Graph

interval graph

Coloring Mixed Interval Graphs

Mixed Interval Graph

- interval graph
- ► some edges directed

Coloring Mixed Interval Graphs

Mixed Interval Graph

- interval graph
- ► some edges directed

В

Coloring

- ▶ colors: \mathbb{N}
- \blacktriangleright color = sub-layer
- ▶ no monochromatic edges: $\{u, w\} \in E \implies c(u) \neq c(w)$
- ▶ strictly monotone arcs: $(u, w) \in A \implies c(u) < c(w)$

Coloring

- ▶ any mixed graph G = (V, E, A) on input
- minimize number of colors in $c: V \mapsto \mathbb{N}$
- ▶ no monochromatic edges: $\{u, w\} \in E \implies c(u) \neq c(w)$
- ▶ strictly monotone arcs: $(u, w) \in A \implies c(u) < c(w)$

Coloring

- ▶ any **mixed** graph G = (V, E, A) on input
- minimize number of colors in $c: V \mapsto \mathbb{N}$
- ▶ no monochromatic edges: $\{u, w\} \in E \implies c(u) \neq c(w)$
- ▶ strictly monotone arcs: $(u, w) \in A \implies c(u) < c(w)$

Observations

• only edges \implies proper coloring (NP-hard)

Coloring

- ▶ any **mixed** graph G = (V, E, A) on input
- minimize number of colors in $c: V \mapsto \mathbb{N}$
- ▶ no monochromatic edges: $\{u, w\} \in E \implies c(u) \neq c(w)$
- ▶ strictly monotone arcs: $(u, w) \in A \implies c(u) < c(w)$

Observations

- ▶ only edges \implies proper coloring (NP-hard)
- \blacktriangleright only arcs \implies longest directed path (easy)

Coloring

- ▶ any **mixed** graph G = (V, E, A) on input
- ▶ minimize number of colors in $c : V \mapsto \mathbb{N}$
- ▶ no monochromatic edges: $\{u, w\} \in E \implies c(u) \neq c(w)$
- ▶ strictly monotone arcs: $(u, w) \in A \implies c(u) < c(w)$

Observations

- only edges \implies proper coloring (NP-hard)
- \blacktriangleright only arcs \implies longest directed path (easy)
- ▶ Gallai, Hasse, Roy, Vitaver: proper coloring \approx orientation minimizing longest directed path

Coloring

- ▶ any mixed graph G = (V, E, A) on input
- ▶ minimize number of colors in $c : V \mapsto \mathbb{N}$
- ▶ no monochromatic edges: $\{u, w\} \in E \implies c(u) \neq c(w)$
- ▶ strictly monotone arcs: $(u, w) \in A \implies c(u) < c(w)$

Observations

- only edges \implies proper coloring (NP-hard)
- \blacktriangleright only arcs \implies longest directed path (easy)
- ▶ Gallai, Hasse, Roy, Vitaver: proper coloring ≈ orientation minimizing longest directed path
- \blacktriangleright mixed graph coloring \approx partial orientation extension

Theorem Coloring Mixed Interval Graphs is barely NP-hard. Proof. Coloring Circular Arc Graphs is NP-hard.

Geometric Variants Interval Graphs + geometric condition which edges turn into arcs

Geometric Variants Interval Graphs + geometric condition which edges turn into arcs

Containment Variant

Geometric Variants Interval Graphs + geometric condition which edges turn into arcs

Containment Variant

Geometric Variants Interval Graphs + geometric condition which edges turn into arcs

Containment Variant

Grzegorz Gutowski

Mixed Interval Graphs

	general	interval	containment	directional	bidirectional
optimal	NP-hard	NP-hard	NP-hard	\checkmark	NP-hard
approximate	8	?	2	1	2
recognition	\checkmark	\checkmark	\checkmark	\checkmark	?

Grzegorz Gutowski

New Results

- Containment Mixed Interval Graphs
 - Recognition
 - NP-hardness of coloring
 - ▶ $2\omega 1$ bounds
 - 2-approximation

- Bidirectional Mixed Interval Graphs
 - NP-hardness of coloring
- Mixed Interval Graphs • $O(\lambda \omega)$ bounds
- Mixed Interval Graphs

Theorem

Coloring Containment Mixed Interval Graphs admits a 2-approximation.

Theorem

Coloring Containment Mixed Interval Graphs admits a 2-approximation.

Algortihm

Select maximal intervals.

Theorem

Coloring Containment Mixed Interval Graphs admits a 2-approximation.

Algortihm

- Select maximal intervals.
- ▶ Greedily select minimal subset that covers everything.

Theorem

Coloring Containment Mixed Interval Graphs admits a 2-approximation.

Algortihm

- Select maximal intervals.
- Greedily select minimal subset that covers everything.
- ▶ Use colors 1, 2 and decrease clique number.

Theorem

Coloring Containment Mixed Interval Graphs admits a 2-approximation.

Algortihm

- Select maximal intervals.
- Greedily select minimal subset that covers everything.
- ▶ Use colors 1, 2 and decrease clique number.
- Recurse.

Theorem Coloring Containment Mixed Interval Graphs is NP-hard.

Theorem Coloring Containment Mixed Interval Graphs is NP-hard.

3-SAT reduction

Theorem

Coloring Containment Mixed Interval Graphs is NP-hard.

3-SAT reduction

Variable gadget

Theorem

Coloring Containment Mixed Interval Graphs is NP-hard.

3-SAT reduction

Variable gadget

Theorem

Coloring Containment Mixed Interval Graphs is NP-hard.

3-SAT reduction

- ► Variable gadget
- Clause gadget

Theorem

Coloring Containment Mixed Interval Graphs is NP-hard.

3-SAT reduction

- ► Variable gadget
- Clause gadget

Recognizing Containment Mixed Interval Graphs

Theorem Containment Mixed Interval Graphs are decidable in P. Theorem Containment Mixed Interval Graphs are decidable in P.

Details

► Interval Graphs are decidable.

Recognizing Containment Mixed Interval Graphs

Theorem Containment Mixed Interval Graphs are decidable in P.

- Interval Graphs are decidable.
- Arcs give additional information.

Recognizing Containment Mixed Interval Graphs

Theorem Containment Mixed Interval Graphs are decidable in P.

- Interval Graphs are decidable.
- Arcs give additional information.
- Arcs give additional constraints.

Recognizing Containment Mixed Interval Graphs: PQ-trees

Recognizing Containment Mixed Interval Graphs: PQ-trees

Recognizing Containment Mixed Interval Graphs: PQ-trees

- ▶ INPUT: mixed graph G = (V, E, A)
- ▶ OUTPUT: interval representation

- ▶ INPUT: mixed graph G = (V, E, A)
- ▶ OUTPUT: interval representation
- STEP 1: turn arcs into edges.
 Check that G is an Interval Graph

- ▶ INPUT: mixed graph G = (V, E, A)
- ▶ OUTPUT: interval representation
- STEP 1: turn arcs into edges.
 Check that G is an Interval Graph
- STEP 2: find a *good* rotation of PQ-tree

- ▶ INPUT: mixed graph G = (V, E, A)
- ▶ OUTPUT: interval representation
- STEP 1: turn arcs into edges.
 Check that G is an Interval Graph
- STEP 2: find a *good* rotation of PQ-tree

- ▶ INPUT: mixed graph G = (V, E, A)
- OUTPUT: interval representation
- STEP 1: turn arcs into edges.
 Check that G is an Interval Graph
- STEP 2: find a *good* rotation of PQ-tree
- STEP 3: adjust endpoints (using 2-DIM)

- ▶ INPUT: mixed graph G = (V, E, A)
- OUTPUT: interval representation
- STEP 1: turn arcs into edges.
 Check that G is an Interval Graph
- STEP 2: find a *good* rotation of PQ-tree
- STEP 3: adjust endpoints (using 2-DIM)

	general	interval	containment	directional	bidirectional
optimal	NP-hard	NP-hard	NP-hard	\checkmark	NP-hard
approximate	8	?	2	1	2
recognition	\checkmark	\diamond	\checkmark	\bigcirc	?

	general	interval	containment	directional	bidirectional
optimal	NP-hard	NP-hard	NP-hard	\checkmark	NP-hard
approximate	8	?	2	1	2
recognition	\diamond	\diamond	\checkmark	\bigcirc	?

► Coloring Mixed Interval Graphs: approximation

	general	interval	containment	directional	bidirectional
optimal	NP-hard	NP-hard	NP-hard	\checkmark	NP-hard
approximate	8	?	2	1	2
recognition	\checkmark	\diamond	\diamond	\checkmark	?

- ► Coloring Mixed Interval Graphs: approximation
- ► Coloring Containment/Bidirectional Mixed Interval Graphs: better approximation

	general	interval	containment	directional	bidirectional
optimal	NP-hard	NP-hard	NP-hard	\checkmark	NP-hard
approximate	8	?	2	1	2
recognition	\diamond	\diamond	\diamond	\diamond	?

- ► Coloring Mixed Interval Graphs: approximation
- ► Coloring Containment/Bidirectional Mixed Interval Graphs: better approximation
- Recognizing Bidirectional Mixed Interval Graphs

	general	interval	containment	directional	bidirectional
optimal	NP-hard	NP-hard	NP-hard	\checkmark	NP-hard
approximate	8	?	2	1	2
recognition	\checkmark	\diamond	\diamond	\checkmark	?

- ► Coloring Mixed Interval Graphs: approximation
- ► Coloring Containment/Bidirectional Mixed Interval Graphs: better approximation
- Recognizing Bidirectional Mixed Interval Graphs
- Coloring Mixed Graphs

	general	interval	containment	directional	bidirectional
optimal	NP-hard	NP-hard	NP-hard	\checkmark	NP-hard
approximate	8	?	2	1	2
recognition	\diamond	\diamond	\diamond	\checkmark	?

- ► Coloring Mixed Interval Graphs: approximation
- ► Coloring Containment/Bidirectional Mixed Interval Graphs: better approximation
- Recognizing Bidirectional Mixed Interval Graphs
- Coloring Mixed Graphs
- Geometric Mixed Graphs